test mpu6050 for fibo

Dependencies:   mbed

Fork of MPU6050IMU by Kris Winer

Committer:
masterholy
Date:
Sat Feb 28 15:36:41 2015 +0000
Revision:
3:4b0e7e8a06ae
Parent:
1:cea9d83b8636
test mpu6050 for fibo

Who changed what in which revision?

UserRevisionLine numberNew contents of line
onehorse 0:65aa78c10981 1
onehorse 0:65aa78c10981 2 /* MPU6050 Basic Example Code
onehorse 0:65aa78c10981 3 by: Kris Winer
onehorse 0:65aa78c10981 4 date: May 1, 2014
onehorse 0:65aa78c10981 5 license: Beerware - Use this code however you'd like. If you
onehorse 0:65aa78c10981 6 find it useful you can buy me a beer some time.
onehorse 0:65aa78c10981 7
onehorse 0:65aa78c10981 8 Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
onehorse 0:65aa78c10981 9 parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
onehorse 0:65aa78c10981 10 No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
onehorse 0:65aa78c10981 11
onehorse 0:65aa78c10981 12 SDA and SCL should have external pull-up resistors (to 3.3V).
onehorse 0:65aa78c10981 13 10k resistors worked for me. They should be on the breakout
onehorse 0:65aa78c10981 14 board.
onehorse 0:65aa78c10981 15
onehorse 0:65aa78c10981 16 Hardware setup:
onehorse 0:65aa78c10981 17 MPU6050 Breakout --------- Arduino
onehorse 0:65aa78c10981 18 3.3V --------------------- 3.3V
onehorse 0:65aa78c10981 19 SDA ----------------------- A4
onehorse 0:65aa78c10981 20 SCL ----------------------- A5
onehorse 0:65aa78c10981 21 GND ---------------------- GND
onehorse 0:65aa78c10981 22
onehorse 0:65aa78c10981 23 Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
onehorse 0:65aa78c10981 24 Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
onehorse 0:65aa78c10981 25 We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
onehorse 0:65aa78c10981 26 We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
onehorse 0:65aa78c10981 27 */
onehorse 0:65aa78c10981 28
onehorse 1:cea9d83b8636 29 #include "mbed.h"
onehorse 1:cea9d83b8636 30 #include "MPU6050.h"
masterholy 3:4b0e7e8a06ae 31 //#include "N5110.h"
onehorse 0:65aa78c10981 32
onehorse 0:65aa78c10981 33 // Using NOKIA 5110 monochrome 84 x 48 pixel display
onehorse 0:65aa78c10981 34 // pin 9 - Serial clock out (SCLK)
onehorse 0:65aa78c10981 35 // pin 8 - Serial data out (DIN)
onehorse 0:65aa78c10981 36 // pin 7 - Data/Command select (D/C)
onehorse 0:65aa78c10981 37 // pin 5 - LCD chip select (CS)
onehorse 0:65aa78c10981 38 // pin 6 - LCD reset (RST)
onehorse 0:65aa78c10981 39 //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
onehorse 0:65aa78c10981 40
masterholy 3:4b0e7e8a06ae 41 AnalogIn analog_value0(A0);
masterholy 3:4b0e7e8a06ae 42 AnalogIn analog_value1(A1);
masterholy 3:4b0e7e8a06ae 43 AnalogIn analog_value2(A2);
masterholy 3:4b0e7e8a06ae 44 AnalogIn analog_value3(A3);
masterholy 3:4b0e7e8a06ae 45 AnalogIn analog_value4(A4);
masterholy 3:4b0e7e8a06ae 46 AnalogIn analog_value5(A5);
masterholy 3:4b0e7e8a06ae 47
masterholy 3:4b0e7e8a06ae 48
masterholy 3:4b0e7e8a06ae 49
masterholy 3:4b0e7e8a06ae 50
onehorse 1:cea9d83b8636 51 float sum = 0;
onehorse 1:cea9d83b8636 52 uint32_t sumCount = 0;
onehorse 1:cea9d83b8636 53
masterholy 3:4b0e7e8a06ae 54 int time_us = 0;
masterholy 3:4b0e7e8a06ae 55 unsigned int yawH,yawL,pitchH,pitchL,rowH,rowL;
masterholy 3:4b0e7e8a06ae 56 unsigned int axH,axL,ayH,ayL,azH,azL;
masterholy 3:4b0e7e8a06ae 57 unsigned int gxH,gxL,gyH,gyL,gzH,gzL;
masterholy 3:4b0e7e8a06ae 58 unsigned int f0,f1,f2;
masterholy 3:4b0e7e8a06ae 59 unsigned int baroH,baroL;
masterholy 3:4b0e7e8a06ae 60
masterholy 3:4b0e7e8a06ae 61
onehorse 1:cea9d83b8636 62 MPU6050 mpu6050;
onehorse 1:cea9d83b8636 63
onehorse 1:cea9d83b8636 64 Timer t;
onehorse 1:cea9d83b8636 65
onehorse 1:cea9d83b8636 66 Serial pc(USBTX, USBRX); // tx, rx
onehorse 1:cea9d83b8636 67
onehorse 1:cea9d83b8636 68 // VCC, SCE, RST, D/C, MOSI,S CLK, LED
masterholy 3:4b0e7e8a06ae 69 //N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
masterholy 3:4b0e7e8a06ae 70
masterholy 3:4b0e7e8a06ae 71 void callbackPCSerial() {
masterholy 3:4b0e7e8a06ae 72 pc.putc(255);
masterholy 3:4b0e7e8a06ae 73 pc.putc(rowH);
masterholy 3:4b0e7e8a06ae 74 pc.putc(rowL);
masterholy 3:4b0e7e8a06ae 75 pc.putc(pitchH);
masterholy 3:4b0e7e8a06ae 76 pc.putc(pitchL);
masterholy 3:4b0e7e8a06ae 77 pc.putc(yawH);
masterholy 3:4b0e7e8a06ae 78 pc.putc(yawL);
masterholy 3:4b0e7e8a06ae 79
masterholy 3:4b0e7e8a06ae 80 //pc.putc(axH);
masterholy 3:4b0e7e8a06ae 81 //pc.putc(axL);
masterholy 3:4b0e7e8a06ae 82 //pc.putc(ayH);
masterholy 3:4b0e7e8a06ae 83 //pc.putc(ayL);
masterholy 3:4b0e7e8a06ae 84 //pc.putc(azH);
masterholy 3:4b0e7e8a06ae 85 //pc.putc(azL);
masterholy 3:4b0e7e8a06ae 86
masterholy 3:4b0e7e8a06ae 87 //pc.putc(gxH);
masterholy 3:4b0e7e8a06ae 88 //pc.putc(gxL);
masterholy 3:4b0e7e8a06ae 89 //pc.putc(gyH);
masterholy 3:4b0e7e8a06ae 90 //pc.putc(gyL);
masterholy 3:4b0e7e8a06ae 91 //pc.putc(gzH);
masterholy 3:4b0e7e8a06ae 92 //pc.putc(gzL);
masterholy 3:4b0e7e8a06ae 93
masterholy 3:4b0e7e8a06ae 94 //pc.putc(baroH);
masterholy 3:4b0e7e8a06ae 95 //pc.putc(baroL);
masterholy 3:4b0e7e8a06ae 96
masterholy 3:4b0e7e8a06ae 97 //pc.putc(f0);
masterholy 3:4b0e7e8a06ae 98 //pc.putc(f1);
masterholy 3:4b0e7e8a06ae 99 //pc.putc(f2);
masterholy 3:4b0e7e8a06ae 100
masterholy 3:4b0e7e8a06ae 101 }
onehorse 1:cea9d83b8636 102
onehorse 1:cea9d83b8636 103 int main()
onehorse 1:cea9d83b8636 104 {
masterholy 3:4b0e7e8a06ae 105 pc.baud(115200);
masterholy 3:4b0e7e8a06ae 106 pc.attach(&callbackPCSerial);
onehorse 1:cea9d83b8636 107 //Set up I2C
onehorse 1:cea9d83b8636 108 i2c.frequency(400000); // use fast (400 kHz) I2C
onehorse 1:cea9d83b8636 109
onehorse 1:cea9d83b8636 110 t.start();
onehorse 1:cea9d83b8636 111
masterholy 3:4b0e7e8a06ae 112 //lcd.init();
masterholy 3:4b0e7e8a06ae 113 //lcd.setBrightness(0.05);
onehorse 1:cea9d83b8636 114
onehorse 1:cea9d83b8636 115
onehorse 1:cea9d83b8636 116 // Read the WHO_AM_I register, this is a good test of communication
onehorse 1:cea9d83b8636 117 uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
onehorse 1:cea9d83b8636 118 pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
onehorse 1:cea9d83b8636 119
onehorse 1:cea9d83b8636 120 if (whoami == 0x68) // WHO_AM_I should always be 0x68
onehorse 1:cea9d83b8636 121 {
onehorse 1:cea9d83b8636 122 pc.printf("MPU6050 is online...");
onehorse 1:cea9d83b8636 123 wait(1);
masterholy 3:4b0e7e8a06ae 124 //lcd.clear();
masterholy 3:4b0e7e8a06ae 125 //lcd.printString("MPU6050 OK", 0, 0);
onehorse 0:65aa78c10981 126
onehorse 1:cea9d83b8636 127
onehorse 1:cea9d83b8636 128 mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
onehorse 1:cea9d83b8636 129 pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 130 pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 131 pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 132 pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 133 pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 134 pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 135 wait(1);
onehorse 0:65aa78c10981 136
onehorse 1:cea9d83b8636 137 if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
onehorse 1:cea9d83b8636 138 {
onehorse 1:cea9d83b8636 139 mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
onehorse 1:cea9d83b8636 140 mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
onehorse 1:cea9d83b8636 141 mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
onehorse 0:65aa78c10981 142
masterholy 3:4b0e7e8a06ae 143 //lcd.clear();
masterholy 3:4b0e7e8a06ae 144 //lcd.printString("MPU6050", 0, 0);
masterholy 3:4b0e7e8a06ae 145 //lcd.printString("pass self test", 0, 1);
masterholy 3:4b0e7e8a06ae 146 //lcd.printString("initializing", 0, 2);
onehorse 1:cea9d83b8636 147 wait(2);
onehorse 1:cea9d83b8636 148 }
onehorse 1:cea9d83b8636 149 else
onehorse 1:cea9d83b8636 150 {
onehorse 1:cea9d83b8636 151 pc.printf("Device did not the pass self-test!\n\r");
onehorse 0:65aa78c10981 152
masterholy 3:4b0e7e8a06ae 153 //lcd.clear();
masterholy 3:4b0e7e8a06ae 154 //lcd.printString("MPU6050", 0, 0);
masterholy 3:4b0e7e8a06ae 155 //lcd.printString("no pass", 0, 1);
masterholy 3:4b0e7e8a06ae 156 //lcd.printString("self test", 0, 2);
onehorse 1:cea9d83b8636 157 }
onehorse 1:cea9d83b8636 158 }
onehorse 1:cea9d83b8636 159 else
onehorse 1:cea9d83b8636 160 {
onehorse 1:cea9d83b8636 161 pc.printf("Could not connect to MPU6050: \n\r");
onehorse 1:cea9d83b8636 162 pc.printf("%#x \n", whoami);
onehorse 1:cea9d83b8636 163
masterholy 3:4b0e7e8a06ae 164 //lcd.clear();
masterholy 3:4b0e7e8a06ae 165 //lcd.printString("MPU6050", 0, 0);
masterholy 3:4b0e7e8a06ae 166 //lcd.printString("no connection", 0, 1);
masterholy 3:4b0e7e8a06ae 167 //lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami);
onehorse 1:cea9d83b8636 168
onehorse 1:cea9d83b8636 169 while(1) ; // Loop forever if communication doesn't happen
onehorse 0:65aa78c10981 170 }
onehorse 0:65aa78c10981 171
onehorse 0:65aa78c10981 172
onehorse 0:65aa78c10981 173
onehorse 1:cea9d83b8636 174 while(1) {
onehorse 0:65aa78c10981 175
onehorse 1:cea9d83b8636 176 // If data ready bit set, all data registers have new data
onehorse 1:cea9d83b8636 177 if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
onehorse 1:cea9d83b8636 178 mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
onehorse 1:cea9d83b8636 179 mpu6050.getAres();
onehorse 0:65aa78c10981 180
onehorse 0:65aa78c10981 181 // Now we'll calculate the accleration value into actual g's
onehorse 0:65aa78c10981 182 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
onehorse 0:65aa78c10981 183 ay = (float)accelCount[1]*aRes - accelBias[1];
masterholy 3:4b0e7e8a06ae 184 az = (float)accelCount[2]*aRes - accelBias[2];
masterholy 3:4b0e7e8a06ae 185 ax = (ax+5)*100;
masterholy 3:4b0e7e8a06ae 186 ay = (ay+5)*100;
masterholy 3:4b0e7e8a06ae 187 az = (az+5)*100;
masterholy 3:4b0e7e8a06ae 188 axH = ((int)ax)/256 ;
masterholy 3:4b0e7e8a06ae 189 axL = ((int)ax)%256;
masterholy 3:4b0e7e8a06ae 190 ayH = ((int)ay)/256 ;
masterholy 3:4b0e7e8a06ae 191 ayL = ((int)ay)%256;
masterholy 3:4b0e7e8a06ae 192 azH = ((int)az)/256 ;
masterholy 3:4b0e7e8a06ae 193 azL = ((int)az)%256;
onehorse 0:65aa78c10981 194
onehorse 1:cea9d83b8636 195 mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
onehorse 1:cea9d83b8636 196 mpu6050.getGres();
onehorse 0:65aa78c10981 197
onehorse 0:65aa78c10981 198 // Calculate the gyro value into actual degrees per second
onehorse 1:cea9d83b8636 199 gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
onehorse 1:cea9d83b8636 200 gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
onehorse 1:cea9d83b8636 201 gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
masterholy 3:4b0e7e8a06ae 202 gx = (gx+500)*10;
masterholy 3:4b0e7e8a06ae 203 gy = (gy+500)*10;
masterholy 3:4b0e7e8a06ae 204 gz = (gz+500)*10;
masterholy 3:4b0e7e8a06ae 205 gxH = ((int)gx)/256 ;
masterholy 3:4b0e7e8a06ae 206 gxL = ((int)gx)%256;
masterholy 3:4b0e7e8a06ae 207 gyH = ((int)gy)/256 ;
masterholy 3:4b0e7e8a06ae 208 gyL = ((int)gy)%256;
masterholy 3:4b0e7e8a06ae 209 gzH = ((int)gz)/256 ;
masterholy 3:4b0e7e8a06ae 210 gzL = ((int)gz)%256;
onehorse 0:65aa78c10981 211
onehorse 1:cea9d83b8636 212 tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
onehorse 0:65aa78c10981 213 temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
onehorse 0:65aa78c10981 214 }
onehorse 0:65aa78c10981 215
onehorse 0:65aa78c10981 216 Now = t.read_us();
onehorse 1:cea9d83b8636 217 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
onehorse 0:65aa78c10981 218 lastUpdate = Now;
onehorse 1:cea9d83b8636 219
onehorse 1:cea9d83b8636 220 sum += deltat;
onehorse 1:cea9d83b8636 221 sumCount++;
onehorse 1:cea9d83b8636 222
onehorse 0:65aa78c10981 223 if(lastUpdate - firstUpdate > 10000000.0f) {
onehorse 1:cea9d83b8636 224 beta = 0.04; // decrease filter gain after stabilized
onehorse 1:cea9d83b8636 225 zeta = 0.015; // increasey bias drift gain after stabilized
onehorse 0:65aa78c10981 226 }
onehorse 1:cea9d83b8636 227
onehorse 0:65aa78c10981 228 // Pass gyro rate as rad/s
onehorse 1:cea9d83b8636 229 mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
onehorse 0:65aa78c10981 230
onehorse 0:65aa78c10981 231 // Serial print and/or display at 0.5 s rate independent of data rates
onehorse 0:65aa78c10981 232 delt_t = t.read_ms() - count;
masterholy 3:4b0e7e8a06ae 233 if (delt_t > 50) { // update LCD once per half-second independent of read rate
onehorse 1:cea9d83b8636 234
masterholy 3:4b0e7e8a06ae 235 //pc.printf("ax = %f", 1000*ax);
masterholy 3:4b0e7e8a06ae 236 //pc.printf(" ay = %f", 1000*ay);
masterholy 3:4b0e7e8a06ae 237 //pc.printf(" az = %f mg\n\r", 1000*az);
onehorse 0:65aa78c10981 238
masterholy 3:4b0e7e8a06ae 239 //pc.printf("gx = %f", gx);
masterholy 3:4b0e7e8a06ae 240 //pc.printf(" gy = %f", gy);
masterholy 3:4b0e7e8a06ae 241 //pc.printf(" gz = %f deg/s\n\r", gz);
onehorse 1:cea9d83b8636 242
masterholy 3:4b0e7e8a06ae 243 //pc.printf(" temperature = %f C\n\r", temperature);
onehorse 0:65aa78c10981 244
masterholy 3:4b0e7e8a06ae 245 //pc.printf("q0 = %f\n\r", q[0]);
masterholy 3:4b0e7e8a06ae 246 //pc.printf("q1 = %f\n\r", q[1]);
masterholy 3:4b0e7e8a06ae 247 //pc.printf("q2 = %f\n\r", q[2]);
masterholy 3:4b0e7e8a06ae 248 //pc.printf("q3 = %f\n\r", q[3]);
onehorse 1:cea9d83b8636 249
masterholy 3:4b0e7e8a06ae 250 //lcd.clear();
masterholy 3:4b0e7e8a06ae 251 //lcd.printString("MPU6050", 0, 0);
masterholy 3:4b0e7e8a06ae 252 //lcd.printString("x y z", 0, 1);
masterholy 3:4b0e7e8a06ae 253 //lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
masterholy 3:4b0e7e8a06ae 254 //lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
masterholy 3:4b0e7e8a06ae 255 //lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
onehorse 1:cea9d83b8636 256
onehorse 0:65aa78c10981 257
onehorse 0:65aa78c10981 258 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
onehorse 0:65aa78c10981 259 // In this coordinate system, the positive z-axis is down toward Earth.
onehorse 0:65aa78c10981 260 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
onehorse 0:65aa78c10981 261 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
onehorse 0:65aa78c10981 262 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
onehorse 0:65aa78c10981 263 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
onehorse 0:65aa78c10981 264 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
onehorse 0:65aa78c10981 265 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
onehorse 0:65aa78c10981 266 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
onehorse 0:65aa78c10981 267 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
onehorse 0:65aa78c10981 268 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
onehorse 0:65aa78c10981 269 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
onehorse 0:65aa78c10981 270 pitch *= 180.0f / PI;
onehorse 0:65aa78c10981 271 yaw *= 180.0f / PI;
onehorse 0:65aa78c10981 272 roll *= 180.0f / PI;
onehorse 0:65aa78c10981 273
onehorse 1:cea9d83b8636 274 // pc.printf("Yaw, Pitch, Roll: \n\r");
onehorse 1:cea9d83b8636 275 // pc.printf("%f", yaw);
onehorse 1:cea9d83b8636 276 // pc.printf(", ");
onehorse 1:cea9d83b8636 277 // pc.printf("%f", pitch);
onehorse 1:cea9d83b8636 278 // pc.printf(", ");
onehorse 1:cea9d83b8636 279 // pc.printf("%f\n\r", roll);
onehorse 1:cea9d83b8636 280 // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
onehorse 0:65aa78c10981 281
onehorse 1:cea9d83b8636 282 pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
masterholy 3:4b0e7e8a06ae 283 //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
onehorse 1:cea9d83b8636 284
onehorse 1:cea9d83b8636 285 myled= !myled;
onehorse 1:cea9d83b8636 286 count = t.read_ms();
onehorse 1:cea9d83b8636 287 sum = 0;
onehorse 1:cea9d83b8636 288 sumCount = 0;
onehorse 0:65aa78c10981 289 }
onehorse 0:65aa78c10981 290 }
onehorse 1:cea9d83b8636 291
onehorse 1:cea9d83b8636 292 }