New smaller slits code
Dependencies: PID
Fork of ES_CW2_Starter by
main.cpp
- Committer:
- Iswanto
- Date:
- 2017-03-18
- Revision:
- 4:a436ddb6e57e
- Parent:
- 3:60009a5ed1dc
- Child:
- 5:07b2e414d174
File content as of revision 4:a436ddb6e57e:
#include "mbed.h" #include "PID.h" ///////////////////// // Pin definitions // ///////////////////// //Photointerrupter input pins #define I1pin D2 #define I2pin D11 #define I3pin D12 DigitalIn I1(I1pin); DigitalIn I2(I2pin); DigitalIn I3(I3pin); InterruptIn I1intr(I1pin); InterruptIn I2intr(I2pin); InterruptIn I3intr(I3pin); //Incremental encoder input pins #define CHA D7 #define CHB D8 DigitalIn CHAR(CHA); DigitalIn CHBR(CHB); InterruptIn CHAintr(CHA); InterruptIn CHBintr(CHB); //Status LED DigitalOut led1 (LED1); DigitalOut led2 (LED2); DigitalOut led3 (LED3); //Motor Drive output pins //Mask in output byte #define L1Lpin D4 //0x01 #define L1Hpin D5 //0x02 #define L2Lpin D3 //0x04 #define L2Hpin D6 //0x08 #define L3Lpin D9 //0x10 #define L3Hpin D10 //0x20 PwmOut L1L(L1Lpin); PwmOut L1H(L1Hpin); PwmOut L2L(L2Lpin); PwmOut L2H(L2Hpin); PwmOut L3L(L3Lpin); PwmOut L3H(L3Hpin); //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin const int8_t lead = 2; //2 for forwards, -2 for backwards ////////////////////// // Global variables // ////////////////////// volatile float targetSpeed; // User defined instantaneous speed volatile float revPerSec; // Instantaneous speed estimate volatile float previousTime = 0; // Used to calculate revPerSec volatile float previousSpeed = 0; // Previous value of revPerSec volatile float dutyCycle; // PWM duty cycle between 0 and 1 volatile float timeMap[] = {0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 }; // Keep track of last state Timer t; // To keep track of time Serial pc(SERIAL_TX,SERIAL_RX); // Serial connection PID controller(5.0, 0.0, 0.000001, 0.001); // Arguments are Kp, Ki, Kd and interval /////////////// // Functions // /////////////// // THREAD: Blink LED1 every 0.5 seconds void blinkLED1(){ while(1){ led1 = 0; wait(0.5); led1 = 1; wait(0.5); } } // THREAD: Print instantaneous speed void printStatus() { while(1){ led3 = !led3; //pc.printf("%f\n\r",revPerSec); wait(2); } } // THREAD: Control loop void controlLoop(void){ while(true){ controller.setProcessValue(revPerSec); dutyCycle = controller.compute(); wait(0.001); } } // Measure speed using slits void measureSpeedSlits(){ float currentTime = t.read(); revPerSec = 0.4*previousSpeed + 0.6*((0.0021367521)/(currentTime-previousTime)); previousTime = currentTime; previousSpeed = revPerSec; } // Measure speed using photointerrupters void measureSpeedPhoto(){ led3 = !led3; float speedTime; speedTime = t.read(); revPerSec = 1.0/(speedTime - timeMap[I1 + 2*I2 + 4*I3]); timeMap[I1 + 2*I2 + 4*I3] = speedTime; } // Set motor states void motorOut(int8_t driveState, float dutyCycle){ //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L.write(0); // = 0 if (~driveOut & 0x02) L1H.write(dutyCycle); // = 1; if (~driveOut & 0x04) L2L.write(0); // = 0; if (~driveOut & 0x08) L2H.write(dutyCycle); // = 1; if (~driveOut & 0x10) L3L.write(0); // = 0; if (~driveOut & 0x20) L3H.write(dutyCycle); // = 1; //Then turn on if (driveOut & 0x01) L1L.write(dutyCycle); // = 1; if (driveOut & 0x02) L1H.write(0); // = 0; if (driveOut & 0x04) L2L.write(dutyCycle); // = 1; if (driveOut & 0x08) L2H.write(0); // = 0; if (driveOut & 0x10) L3L.write(dutyCycle); // = 1; if (driveOut & 0x20) L3H.write(0); // = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState(){ return stateMap[I1 + 2*I2 + 4*I3]; } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise motorOut(0,1); wait(3.0); //Get the rotor state return readRotorState(); } ////////// // Main // ////////// int main() { // Initialize threads Thread status; Thread controlLoopThread; status.start(printStatus); controlLoopThread.start(controlLoop); t.start(); // Set control loop parameters controller.setInputLimits(0, 200); controller.setOutputLimits(0.0, 1.0); controller.setBias(0.0); controller.setMode(0); controller.setSetPoint(50.0); //Initialize the serial port Serial pc(SERIAL_TX, SERIAL_RX); pc.printf("Device on \n\r"); int8_t orState = 0; //Rotot offset at motor state 0 int8_t intState = 0; int8_t intStateOld = 0; float PWM_period = 0.001f; dutyCycle = 1; L1L.period(PWM_period); L1H.period(PWM_period); L2L.period(PWM_period); L2H.period(PWM_period); L3L.period(PWM_period); L3H.period(PWM_period); // Slits interrupts CHAintr.rise(&measureSpeedSlits); CHBintr.rise(&measureSpeedSlits); CHAintr.fall(&meeasureSpeedSlits); CHBintr.fall(&measureSpeedSlits); // USE FOR PHOTOINTERRUPTERS // Photointerrupters interrupts //I1intr.rise(&measureSpeedPhoto); //I2intr.rise(&measureSpeedPhoto); //I3intr.rise(&measureSpeedPhoto); //I1intr.fall(&measureSpeedPhoto); //I2intr.fall(&measureSpeedPhoto); //I3intr.fall(&measureSpeedPhoto); //Run the motor synchronisation orState = motorHome(); //Poll the rotor state and set the motor outputs accordingly to spin the motor while (1) { // Read serial input if (pc.readable()){ char buffer[128]; pc.gets(buffer, 6); targetSpeed = atof(buffer); pc.printf("Target speed: '%f'\n\r", targetSpeed); controller.setSetPoint(targetSpeed); orState = motorHome(); } intState = readRotorState(); if (intState != intStateOld) { intStateOld = intState; motorOut((intState-orState+lead+6)%6, dutyCycle); //+6 to make sure the remainder is positive } } }