Calculate time delay with Cross Correlation

Dependencies:   mbed DHT

Revision:
3:c6b26e356c10
Parent:
2:4fdc0a17f6fa
Child:
5:3912347f8b4b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/medeltest.cpp	Thu May 11 11:03:10 2017 +0000
@@ -0,0 +1,368 @@
+#include "mbed.h"
+#include <iostream>     /*  cout */
+//#include <stdio.h>      /* printf */
+#include <math.h>       /* sin */
+#include <vector>
+#include <stdlib.h>     /* abs */
+#include <stdio.h>
+#include <AnalogIn.h>
+#include <stdint.h>
+#include <DHT.h>
+#include<sstream>
+
+//using namespace std;
+
+/* DEBUG FUNCTION
+// ersätter Debug(xyz) med xyz , där xyz är din kod
+//För att aktivera:
+#define Debug(xyz) xyz
+
+//För att "stänga av":
+#define Debug(xyz)
+
+//I din kod, skriv din debug kod liknande så här:
+Debug( std::cout << "My text: " << myVariable << std::endl; );
+
+*/
+
+#define Debug(x) x
+#define DebugPrintState(y) y
+#define DebugArcSin(z) z
+
+
+//----------VARIABLES HERE
+int dataLength = 1000;
+int captureLength = 50;
+double temp = 22;
+double hum = 10;
+double micDist = 0.250; //meters
+double threshold_1 = 0; //value when going to active mode channel 1  //old hardcoded value = 330
+double threshold_2 = 0; //value when going to active mode channel 2 //old hardcoded value = 200
+double threshold_adjust = 15;  //used to adjust threshold, + for less sensitivity, - for increased sensitivity
+bool calibratedStatus = false;      //flag to make sure Nuclueo only calibrated once for background noise
+bool checkTemp = false;         //flag - true to checktemp, false to use predefined values
+int positionOfMaxVal_1;
+int positionOfMaxVal_2;
+const double PI = 3.14159265358979323846;
+
+// State machine
+int    STATE;
+//const int NONE     = -1;
+const int IDLE  = 0;
+const int CALIBRATE = 1;
+const int TESTNEW = 2;
+const int CALC  = 3;
+const int CALC_ERROR = 4;
+const int SEND   = 5;
+//const int WAIT     = 9;
+
+//dataLength behövs kanske inte, vector klassen kan växa med behov
+std::vector<double> channel_1(dataLength);
+std::vector<double> channel_2(dataLength);
+std::vector<int> timestamps_1(dataLength);
+std::vector<int> timestamps_2(dataLength);
+std::vector<double> capture_1(captureLength);
+std::vector<double> capture_2(captureLength);
+std::vector<double> capturestamps_1(captureLength);
+std::vector<double> capturestamps_2(captureLength);
+
+int positiontest = 0;
+int test = 9;
+std::vector<double> delaytest(test);
+
+
+AnalogIn mic1(A0);
+AnalogIn mic2(A1);
+AnalogIn mic3(A2);
+DHT sensor(A3, DHT11);
+
+//TIMER
+Timer t;
+
+//led can be used for status
+DigitalOut led1(LED1);
+
+
+//----------FUNCTIONS HERE
+//Calculating distance between sound and camera
+double calcDist(double t, double v)
+{
+    double s = t*v;
+    return s;
+}
+
+//Calculating angle in radians, D distance between mic1 and mic2
+double calcAng(double s, double D)
+{
+    return asin(s/D) + PI/2;
+}
+
+//Assuming the input value is temp as a number in degrees celcius and humidity as procent
+double calcSoundSpeed(double temp, double hum)
+{
+    //Calculations were done in Matlab
+    double speed = 331.1190 + 0.6016*temp + 0.0126*hum;
+    return speed;
+}
+
+//translate angle to number for camera
+string convertAngToCamNbr(double ang)
+{
+    ang = ang*(180 / PI) + 45;  //radianer till grader
+    double angValues = 270;
+    int stepValues = 50000;
+    string tiltNumber = " 18000";   //hårdkodat Camera Pan värde
+
+    double oneAng = stepValues/angValues;
+    double cameraAngNumber = ang*oneAng;
+    int panInt = (int)(cameraAngNumber);  //double to int
+    //int to string
+    string panNumber;
+    ostringstream convert;
+    convert << panInt;
+    panNumber = convert.str();
+
+    string send = panNumber + tiltNumber;
+    return send;
+}
+
+
+//calc time delay by finding peak values in 2 vectors
+//channel = 1 or 2
+int FindPeak(int channel)
+{
+    std::vector<double> channel_curr(captureLength); //temporary vector with channel voltage values
+
+    //if channel 1 then set current channel to channel 1
+    if (channel == 1) {
+        channel_curr = capture_1;
+    } else channel_curr = capture_2;
+
+    //reset max value & sum value
+    double valueMax = 0;
+
+    //reset array position
+    int positionOfMaxVal = 0;
+
+    //find largest value & mark that position in vectors
+    for (int position = 0; position < channel_curr.size(); position++) {
+        double val = abs(channel_curr[position]);
+        if (val > valueMax ) {
+            valueMax = val;
+            positionOfMaxVal = position;
+        }
+    }
+    return positionOfMaxVal;
+}
+
+/*Crosscorrelation code
+/*TDEVector* TDE::CrossCorrelation()
+{
+    TDEVector* res = new TDEVector(
+        2 * m_maxDelay + 1, {0, CalcZero});
+
+    for (DelayType = -m_maxDelay; delay <= m_maxDelay; delay++)
+    {
+        CalcType sum = 0;
+        for (size_t pos = 0; pos < m_datalength; pos++)
+        {
+            sum += m_channel0[pos] 
+                 * m_channel1[pos + delay + m_maxDelay];
+        }
+        res->at(delay + m_maxDelay).delay = delay;
+        res->at(delay + m_maxDelay).value = sum;
+    }
+    return res;
+}*/
+
+
+
+
+double FindTimeDelay(int positionOfMaxVal_1, int positionOfMaxVal_2)
+{
+    double timemax_1 = capturestamps_1[positionOfMaxVal_1];
+    double timemax_2 = capturestamps_2[positionOfMaxVal_2];
+    double delay = timemax_1 - timemax_2;
+    return delay; //if negative near microphone 1, if positive near micropnone 2
+}
+
+
+//get voltage value which represents audio amplitude from microphone
+double getAudioValue(AnalogIn micX)
+{
+    return 1000*micX.read();
+}
+
+
+bool overThreshold(double micValue_1, double micValue_2)
+{
+    if ((micValue_1 > threshold_1) || (micValue_2 > threshold_2)) {
+        return true;
+    } else return false;
+}
+
+//true if voltage value in microphone is above the current threshold value
+bool calibrateThreshold(double micValue, double currentThreshold)
+{
+    if ( micValue > currentThreshold ) {
+        return true;
+    } else return false;
+}
+
+
+// main() runs in its own thread in the OS
+int main()
+{
+    for(int i = 0; i < test; i++) {
+        delaytest[i] = -420 + i*105;
+    }
+    t.start(); // start timer
+
+    //while (true) {
+    led1 = !led1;
+    wait(0.5);
+
+
+    //STATE MACHINE
+    STATE = IDLE;
+    //int counter = 0;
+    while (true) {
+        switch (STATE) {
+            case IDLE: //always start here
+                DebugPrintState( std::cout << "Nucleo state is IDLE: " << std::endl; );
+                Debug( wait(0.5); );
+                if (!calibratedStatus)  STATE = CALIBRATE;
+                else STATE = TESTNEW;
+                break;
+
+            case CALIBRATE:
+                DebugPrintState( std::cout << "Nucleo state is CALIBRATE: " << std::endl; );
+                Debug( wait(1); );
+                //listen for X seconds to background noise, to set accurate threshold value
+                // This should be done only once when rebooting Nucleo
+                int startTime = t.read_us();
+                int offsetTime = 3000; //microseconds
+                int blinkTime = 500; //microseconds
+                while (t.read_us() < (startTime + offsetTime) ) {
+                    double micValue_1 = getAudioValue(mic1);
+                    if ( calibrateThreshold(micValue_1, threshold_1) ) {
+                        threshold_1 = micValue_1;       //threshold value updated
+                    }
+                    double micValue_2 = getAudioValue(mic2);
+                    if ( calibrateThreshold(micValue_2, threshold_2) ) {
+                        threshold_2 = micValue_2;       //threshold value updated
+                    }
+                    //make LED blink every 500 ms
+                    if ( t.read_us() > (startTime + blinkTime) ) {
+                        led1 = !led1;
+                        blinkTime = blinkTime + 500;
+                    }
+                }
+                threshold_1 = threshold_2 + threshold_adjust;
+                threshold_2 = threshold_2 + threshold_adjust;
+
+                //Calibrate temp and hum
+                if(checkTemp){
+                    bool done = false;
+                    while(!done) {
+                        if(sensor.readData() == 0) {
+                            temp = sensor.ReadTemperature(CELCIUS);
+                            hum = sensor.ReadHumidity();
+                            DebugPrintState(std::cout << "Temp: " << temp << "Degrees Celcius" <<std::endl; );
+                            DebugPrintState(std::cout << "Hum: " << temp << "%" <<std::endl; );
+                            done = true;
+                        }
+                    }
+                }
+
+                calibratedStatus = true;
+                STATE = TESTNEW; //next state
+                break;
+
+            case TESTNEW:
+                DebugPrintState( std::cout << "Nucleo state is TESTNEW: " << std::endl; );
+                int i = 0;
+                bool quit = false;
+                while(!quit) {
+                    channel_1[i] = getAudioValue(mic1);
+                    timestamps_1[i] = t.read_us();
+                    channel_2[i] = getAudioValue(mic2);
+                    timestamps_2[i] = t.read_us();
+                    if(overThreshold(channel_1[i], channel_2[i]) == true) {
+                        capture_1[0] = channel_1[i];
+                        capturestamps_1[0] = timestamps_1[i];
+                        capture_2[0] = channel_2[i];
+                        capturestamps_2[0] = timestamps_2[i];
+                        for(int i = 1; i < captureLength; i++) {
+                            capture_1[i] = getAudioValue(mic1);
+                            capturestamps_1[i] = t.read_us();
+                            capture_2[i] = getAudioValue(mic2);
+                            capturestamps_2[i] = t.read_us();
+                        }
+                        quit = true;
+                    }
+                    if(i < dataLength) {
+                        i++;
+                    } else {
+                        i = 0;
+                    }
+                }
+                STATE = CALC;
+                break;
+
+           
+            case CALC:
+                DebugPrintState( std::cout << "Nucleo state is CALC: " << std::endl; );
+                //Debug( wait(0.5); );
+
+                int positionOfMaxVal_1 = FindPeak(1);
+                int positionOfMaxVal_2 = FindPeak(2);
+                //run functions
+                double timedelay = FindTimeDelay(positionOfMaxVal_1, positionOfMaxVal_2); //microseceonds
+                if(abs(timedelay) > micDist/calcSoundSpeed(temp, hum)){
+                    STATE = CALC_ERROR;
+                    break;
+                }
+                double speed = calcSoundSpeed(temp, hum); //meters per second
+                double distance = calcDist(timedelay/1000000, speed); //input converted to meters
+                double angle = calcAng((double)distance, micDist); //0,15m = 15cm = 150mm, double type cast because of asin function in angle calculation
+                //go to state SEND if no calc_error
+
+                Debug(
+                    std::cout << "max position for channel 1: " << positionOfMaxVal_1+1 << std::endl;
+                    std::cout << "max position for channel 2: " << positionOfMaxVal_2+1 << std::endl;
+                    std::cout << "run FindPeak, delay is: " << timedelay << "microseconds" << std::endl;
+                    std::cout << "run calcDist, delta s is: " << distance << "  millimeters" << std::endl;
+                    std::cout << "run calcAngle, angle is: " << angle << " radians" << std::endl;
+                    std::cout << "run calcAngle, angle is: " << angle*(180 / PI) << " degrees" << std::endl;
+                    std::cout << "run convertAngToCamNbr, coordinates: "<< convertAngToCamNbr(angle)<<std::endl; //return "panNumber tiltNumber";
+                );
+                if (angle > (3 * PI )/2 || angle < 0 ) {       //vinkel larger than 270 eller minde än noll
+                    STATE = CALC_ERROR;
+                } else {
+                    STATE = SEND;
+                }
+                break;
+
+            case CALC_ERROR:
+                DebugPrintState( std::cout << "Nucleo state is CALC_ERROR: " << std::endl; );
+                Debug( wait(0.5); );
+                //error message
+                std::cout << "Error. angle not within limits 0 -270 degrees" << std::endl;
+                //nollställ vektorer, , stoppa klockan , osv
+                STATE = TESTNEW;
+                break;
+
+            case SEND:
+                DebugPrintState( std::cout << "Nucleo state is SEND: " << std::endl; );
+                Debug( wait(0.5); );
+                // send coordinates to serial port to camera
+                std::cout<<convertAngToCamNbr(angle)<<std::endl; //return "panNumber tiltNumber";
+                Debug( wait(0.5); );
+                STATE = IDLE;
+                wait(5);
+                break;
+        }
+    }
+}
+