Calculate time delay with Cross Correlation

Dependencies:   mbed DHT

Committer:
reritter
Date:
Thu May 11 11:03:10 2017 +0000
Revision:
3:c6b26e356c10
Parent:
CCRtest.cpp@2:4fdc0a17f6fa
Child:
5:3912347f8b4b
medelv?rde test

Who changed what in which revision?

UserRevisionLine numberNew contents of line
reritter 1:e3d3d330c84d 1 #include "mbed.h"
reritter 1:e3d3d330c84d 2 #include <iostream> /* cout */
reritter 1:e3d3d330c84d 3 //#include <stdio.h> /* printf */
reritter 1:e3d3d330c84d 4 #include <math.h> /* sin */
reritter 1:e3d3d330c84d 5 #include <vector>
reritter 1:e3d3d330c84d 6 #include <stdlib.h> /* abs */
reritter 1:e3d3d330c84d 7 #include <stdio.h>
reritter 1:e3d3d330c84d 8 #include <AnalogIn.h>
reritter 1:e3d3d330c84d 9 #include <stdint.h>
reritter 1:e3d3d330c84d 10 #include <DHT.h>
reritter 1:e3d3d330c84d 11 #include<sstream>
reritter 1:e3d3d330c84d 12
reritter 1:e3d3d330c84d 13 //using namespace std;
reritter 1:e3d3d330c84d 14
reritter 1:e3d3d330c84d 15 /* DEBUG FUNCTION
reritter 1:e3d3d330c84d 16 // ersätter Debug(xyz) med xyz , där xyz är din kod
reritter 1:e3d3d330c84d 17 //För att aktivera:
reritter 1:e3d3d330c84d 18 #define Debug(xyz) xyz
reritter 1:e3d3d330c84d 19
reritter 1:e3d3d330c84d 20 //För att "stänga av":
reritter 1:e3d3d330c84d 21 #define Debug(xyz)
reritter 1:e3d3d330c84d 22
reritter 1:e3d3d330c84d 23 //I din kod, skriv din debug kod liknande så här:
reritter 1:e3d3d330c84d 24 Debug( std::cout << "My text: " << myVariable << std::endl; );
reritter 1:e3d3d330c84d 25
reritter 1:e3d3d330c84d 26 */
reritter 1:e3d3d330c84d 27
reritter 1:e3d3d330c84d 28 #define Debug(x) x
reritter 1:e3d3d330c84d 29 #define DebugPrintState(y) y
reritter 1:e3d3d330c84d 30 #define DebugArcSin(z) z
reritter 1:e3d3d330c84d 31
reritter 1:e3d3d330c84d 32
reritter 1:e3d3d330c84d 33 //----------VARIABLES HERE
reritter 1:e3d3d330c84d 34 int dataLength = 1000;
reritter 1:e3d3d330c84d 35 int captureLength = 50;
reritter 1:e3d3d330c84d 36 double temp = 22;
reritter 1:e3d3d330c84d 37 double hum = 10;
reritter 1:e3d3d330c84d 38 double micDist = 0.250; //meters
reritter 1:e3d3d330c84d 39 double threshold_1 = 0; //value when going to active mode channel 1 //old hardcoded value = 330
reritter 1:e3d3d330c84d 40 double threshold_2 = 0; //value when going to active mode channel 2 //old hardcoded value = 200
reritter 1:e3d3d330c84d 41 double threshold_adjust = 15; //used to adjust threshold, + for less sensitivity, - for increased sensitivity
reritter 1:e3d3d330c84d 42 bool calibratedStatus = false; //flag to make sure Nuclueo only calibrated once for background noise
reritter 1:e3d3d330c84d 43 bool checkTemp = false; //flag - true to checktemp, false to use predefined values
reritter 1:e3d3d330c84d 44 int positionOfMaxVal_1;
reritter 1:e3d3d330c84d 45 int positionOfMaxVal_2;
reritter 1:e3d3d330c84d 46 const double PI = 3.14159265358979323846;
reritter 1:e3d3d330c84d 47
reritter 1:e3d3d330c84d 48 // State machine
reritter 1:e3d3d330c84d 49 int STATE;
reritter 1:e3d3d330c84d 50 //const int NONE = -1;
reritter 1:e3d3d330c84d 51 const int IDLE = 0;
reritter 1:e3d3d330c84d 52 const int CALIBRATE = 1;
reritter 1:e3d3d330c84d 53 const int TESTNEW = 2;
reritter 1:e3d3d330c84d 54 const int CALC = 3;
reritter 1:e3d3d330c84d 55 const int CALC_ERROR = 4;
reritter 1:e3d3d330c84d 56 const int SEND = 5;
reritter 1:e3d3d330c84d 57 //const int WAIT = 9;
reritter 1:e3d3d330c84d 58
reritter 1:e3d3d330c84d 59 //dataLength behövs kanske inte, vector klassen kan växa med behov
reritter 1:e3d3d330c84d 60 std::vector<double> channel_1(dataLength);
reritter 1:e3d3d330c84d 61 std::vector<double> channel_2(dataLength);
reritter 1:e3d3d330c84d 62 std::vector<int> timestamps_1(dataLength);
reritter 1:e3d3d330c84d 63 std::vector<int> timestamps_2(dataLength);
reritter 1:e3d3d330c84d 64 std::vector<double> capture_1(captureLength);
reritter 1:e3d3d330c84d 65 std::vector<double> capture_2(captureLength);
reritter 1:e3d3d330c84d 66 std::vector<double> capturestamps_1(captureLength);
reritter 1:e3d3d330c84d 67 std::vector<double> capturestamps_2(captureLength);
reritter 1:e3d3d330c84d 68
reritter 1:e3d3d330c84d 69 int positiontest = 0;
reritter 1:e3d3d330c84d 70 int test = 9;
reritter 1:e3d3d330c84d 71 std::vector<double> delaytest(test);
reritter 1:e3d3d330c84d 72
reritter 1:e3d3d330c84d 73
reritter 1:e3d3d330c84d 74 AnalogIn mic1(A0);
reritter 1:e3d3d330c84d 75 AnalogIn mic2(A1);
reritter 1:e3d3d330c84d 76 AnalogIn mic3(A2);
reritter 1:e3d3d330c84d 77 DHT sensor(A3, DHT11);
reritter 1:e3d3d330c84d 78
reritter 1:e3d3d330c84d 79 //TIMER
reritter 1:e3d3d330c84d 80 Timer t;
reritter 1:e3d3d330c84d 81
reritter 1:e3d3d330c84d 82 //led can be used for status
reritter 1:e3d3d330c84d 83 DigitalOut led1(LED1);
reritter 1:e3d3d330c84d 84
reritter 1:e3d3d330c84d 85
reritter 1:e3d3d330c84d 86 //----------FUNCTIONS HERE
reritter 1:e3d3d330c84d 87 //Calculating distance between sound and camera
reritter 1:e3d3d330c84d 88 double calcDist(double t, double v)
reritter 1:e3d3d330c84d 89 {
reritter 1:e3d3d330c84d 90 double s = t*v;
reritter 1:e3d3d330c84d 91 return s;
reritter 1:e3d3d330c84d 92 }
reritter 1:e3d3d330c84d 93
reritter 1:e3d3d330c84d 94 //Calculating angle in radians, D distance between mic1 and mic2
reritter 1:e3d3d330c84d 95 double calcAng(double s, double D)
reritter 1:e3d3d330c84d 96 {
reritter 1:e3d3d330c84d 97 return asin(s/D) + PI/2;
reritter 1:e3d3d330c84d 98 }
reritter 1:e3d3d330c84d 99
reritter 1:e3d3d330c84d 100 //Assuming the input value is temp as a number in degrees celcius and humidity as procent
reritter 1:e3d3d330c84d 101 double calcSoundSpeed(double temp, double hum)
reritter 1:e3d3d330c84d 102 {
reritter 1:e3d3d330c84d 103 //Calculations were done in Matlab
reritter 1:e3d3d330c84d 104 double speed = 331.1190 + 0.6016*temp + 0.0126*hum;
reritter 1:e3d3d330c84d 105 return speed;
reritter 1:e3d3d330c84d 106 }
reritter 1:e3d3d330c84d 107
reritter 1:e3d3d330c84d 108 //translate angle to number for camera
reritter 1:e3d3d330c84d 109 string convertAngToCamNbr(double ang)
reritter 1:e3d3d330c84d 110 {
reritter 1:e3d3d330c84d 111 ang = ang*(180 / PI) + 45; //radianer till grader
reritter 1:e3d3d330c84d 112 double angValues = 270;
reritter 1:e3d3d330c84d 113 int stepValues = 50000;
reritter 1:e3d3d330c84d 114 string tiltNumber = " 18000"; //hårdkodat Camera Pan värde
reritter 1:e3d3d330c84d 115
reritter 1:e3d3d330c84d 116 double oneAng = stepValues/angValues;
reritter 1:e3d3d330c84d 117 double cameraAngNumber = ang*oneAng;
reritter 1:e3d3d330c84d 118 int panInt = (int)(cameraAngNumber); //double to int
reritter 1:e3d3d330c84d 119 //int to string
reritter 1:e3d3d330c84d 120 string panNumber;
reritter 1:e3d3d330c84d 121 ostringstream convert;
reritter 1:e3d3d330c84d 122 convert << panInt;
reritter 1:e3d3d330c84d 123 panNumber = convert.str();
reritter 1:e3d3d330c84d 124
reritter 1:e3d3d330c84d 125 string send = panNumber + tiltNumber;
reritter 1:e3d3d330c84d 126 return send;
reritter 1:e3d3d330c84d 127 }
reritter 1:e3d3d330c84d 128
reritter 1:e3d3d330c84d 129
reritter 1:e3d3d330c84d 130 //calc time delay by finding peak values in 2 vectors
reritter 1:e3d3d330c84d 131 //channel = 1 or 2
reritter 1:e3d3d330c84d 132 int FindPeak(int channel)
reritter 1:e3d3d330c84d 133 {
reritter 1:e3d3d330c84d 134 std::vector<double> channel_curr(captureLength); //temporary vector with channel voltage values
reritter 1:e3d3d330c84d 135
reritter 1:e3d3d330c84d 136 //if channel 1 then set current channel to channel 1
reritter 1:e3d3d330c84d 137 if (channel == 1) {
reritter 1:e3d3d330c84d 138 channel_curr = capture_1;
reritter 1:e3d3d330c84d 139 } else channel_curr = capture_2;
reritter 1:e3d3d330c84d 140
reritter 1:e3d3d330c84d 141 //reset max value & sum value
reritter 1:e3d3d330c84d 142 double valueMax = 0;
reritter 1:e3d3d330c84d 143
reritter 1:e3d3d330c84d 144 //reset array position
reritter 1:e3d3d330c84d 145 int positionOfMaxVal = 0;
reritter 1:e3d3d330c84d 146
reritter 1:e3d3d330c84d 147 //find largest value & mark that position in vectors
reritter 1:e3d3d330c84d 148 for (int position = 0; position < channel_curr.size(); position++) {
reritter 1:e3d3d330c84d 149 double val = abs(channel_curr[position]);
reritter 1:e3d3d330c84d 150 if (val > valueMax ) {
reritter 1:e3d3d330c84d 151 valueMax = val;
reritter 1:e3d3d330c84d 152 positionOfMaxVal = position;
reritter 1:e3d3d330c84d 153 }
reritter 1:e3d3d330c84d 154 }
reritter 1:e3d3d330c84d 155 return positionOfMaxVal;
reritter 1:e3d3d330c84d 156 }
reritter 1:e3d3d330c84d 157
reritter 2:4fdc0a17f6fa 158 /*Crosscorrelation code
reritter 2:4fdc0a17f6fa 159 /*TDEVector* TDE::CrossCorrelation()
reritter 2:4fdc0a17f6fa 160 {
reritter 2:4fdc0a17f6fa 161 TDEVector* res = new TDEVector(
reritter 2:4fdc0a17f6fa 162 2 * m_maxDelay + 1, {0, CalcZero});
reritter 2:4fdc0a17f6fa 163
reritter 2:4fdc0a17f6fa 164 for (DelayType = -m_maxDelay; delay <= m_maxDelay; delay++)
reritter 2:4fdc0a17f6fa 165 {
reritter 2:4fdc0a17f6fa 166 CalcType sum = 0;
reritter 2:4fdc0a17f6fa 167 for (size_t pos = 0; pos < m_datalength; pos++)
reritter 2:4fdc0a17f6fa 168 {
reritter 2:4fdc0a17f6fa 169 sum += m_channel0[pos]
reritter 2:4fdc0a17f6fa 170 * m_channel1[pos + delay + m_maxDelay];
reritter 2:4fdc0a17f6fa 171 }
reritter 2:4fdc0a17f6fa 172 res->at(delay + m_maxDelay).delay = delay;
reritter 2:4fdc0a17f6fa 173 res->at(delay + m_maxDelay).value = sum;
reritter 2:4fdc0a17f6fa 174 }
reritter 2:4fdc0a17f6fa 175 return res;
reritter 2:4fdc0a17f6fa 176 }*/
reritter 2:4fdc0a17f6fa 177
reritter 2:4fdc0a17f6fa 178
reritter 2:4fdc0a17f6fa 179
reritter 2:4fdc0a17f6fa 180
reritter 1:e3d3d330c84d 181 double FindTimeDelay(int positionOfMaxVal_1, int positionOfMaxVal_2)
reritter 1:e3d3d330c84d 182 {
reritter 1:e3d3d330c84d 183 double timemax_1 = capturestamps_1[positionOfMaxVal_1];
reritter 1:e3d3d330c84d 184 double timemax_2 = capturestamps_2[positionOfMaxVal_2];
reritter 1:e3d3d330c84d 185 double delay = timemax_1 - timemax_2;
reritter 1:e3d3d330c84d 186 return delay; //if negative near microphone 1, if positive near micropnone 2
reritter 1:e3d3d330c84d 187 }
reritter 1:e3d3d330c84d 188
reritter 1:e3d3d330c84d 189
reritter 1:e3d3d330c84d 190 //get voltage value which represents audio amplitude from microphone
reritter 1:e3d3d330c84d 191 double getAudioValue(AnalogIn micX)
reritter 1:e3d3d330c84d 192 {
reritter 1:e3d3d330c84d 193 return 1000*micX.read();
reritter 1:e3d3d330c84d 194 }
reritter 1:e3d3d330c84d 195
reritter 1:e3d3d330c84d 196
reritter 1:e3d3d330c84d 197 bool overThreshold(double micValue_1, double micValue_2)
reritter 1:e3d3d330c84d 198 {
reritter 1:e3d3d330c84d 199 if ((micValue_1 > threshold_1) || (micValue_2 > threshold_2)) {
reritter 1:e3d3d330c84d 200 return true;
reritter 1:e3d3d330c84d 201 } else return false;
reritter 1:e3d3d330c84d 202 }
reritter 1:e3d3d330c84d 203
reritter 1:e3d3d330c84d 204 //true if voltage value in microphone is above the current threshold value
reritter 1:e3d3d330c84d 205 bool calibrateThreshold(double micValue, double currentThreshold)
reritter 1:e3d3d330c84d 206 {
reritter 1:e3d3d330c84d 207 if ( micValue > currentThreshold ) {
reritter 1:e3d3d330c84d 208 return true;
reritter 1:e3d3d330c84d 209 } else return false;
reritter 1:e3d3d330c84d 210 }
reritter 1:e3d3d330c84d 211
reritter 1:e3d3d330c84d 212
reritter 1:e3d3d330c84d 213 // main() runs in its own thread in the OS
reritter 1:e3d3d330c84d 214 int main()
reritter 1:e3d3d330c84d 215 {
reritter 1:e3d3d330c84d 216 for(int i = 0; i < test; i++) {
reritter 1:e3d3d330c84d 217 delaytest[i] = -420 + i*105;
reritter 1:e3d3d330c84d 218 }
reritter 1:e3d3d330c84d 219 t.start(); // start timer
reritter 1:e3d3d330c84d 220
reritter 1:e3d3d330c84d 221 //while (true) {
reritter 1:e3d3d330c84d 222 led1 = !led1;
reritter 1:e3d3d330c84d 223 wait(0.5);
reritter 1:e3d3d330c84d 224
reritter 1:e3d3d330c84d 225
reritter 1:e3d3d330c84d 226 //STATE MACHINE
reritter 1:e3d3d330c84d 227 STATE = IDLE;
reritter 1:e3d3d330c84d 228 //int counter = 0;
reritter 1:e3d3d330c84d 229 while (true) {
reritter 1:e3d3d330c84d 230 switch (STATE) {
reritter 1:e3d3d330c84d 231 case IDLE: //always start here
reritter 1:e3d3d330c84d 232 DebugPrintState( std::cout << "Nucleo state is IDLE: " << std::endl; );
reritter 1:e3d3d330c84d 233 Debug( wait(0.5); );
reritter 1:e3d3d330c84d 234 if (!calibratedStatus) STATE = CALIBRATE;
reritter 1:e3d3d330c84d 235 else STATE = TESTNEW;
reritter 1:e3d3d330c84d 236 break;
reritter 1:e3d3d330c84d 237
reritter 1:e3d3d330c84d 238 case CALIBRATE:
reritter 1:e3d3d330c84d 239 DebugPrintState( std::cout << "Nucleo state is CALIBRATE: " << std::endl; );
reritter 1:e3d3d330c84d 240 Debug( wait(1); );
reritter 1:e3d3d330c84d 241 //listen for X seconds to background noise, to set accurate threshold value
reritter 1:e3d3d330c84d 242 // This should be done only once when rebooting Nucleo
reritter 1:e3d3d330c84d 243 int startTime = t.read_us();
reritter 1:e3d3d330c84d 244 int offsetTime = 3000; //microseconds
reritter 1:e3d3d330c84d 245 int blinkTime = 500; //microseconds
reritter 1:e3d3d330c84d 246 while (t.read_us() < (startTime + offsetTime) ) {
reritter 1:e3d3d330c84d 247 double micValue_1 = getAudioValue(mic1);
reritter 1:e3d3d330c84d 248 if ( calibrateThreshold(micValue_1, threshold_1) ) {
reritter 1:e3d3d330c84d 249 threshold_1 = micValue_1; //threshold value updated
reritter 1:e3d3d330c84d 250 }
reritter 1:e3d3d330c84d 251 double micValue_2 = getAudioValue(mic2);
reritter 1:e3d3d330c84d 252 if ( calibrateThreshold(micValue_2, threshold_2) ) {
reritter 1:e3d3d330c84d 253 threshold_2 = micValue_2; //threshold value updated
reritter 1:e3d3d330c84d 254 }
reritter 1:e3d3d330c84d 255 //make LED blink every 500 ms
reritter 1:e3d3d330c84d 256 if ( t.read_us() > (startTime + blinkTime) ) {
reritter 1:e3d3d330c84d 257 led1 = !led1;
reritter 1:e3d3d330c84d 258 blinkTime = blinkTime + 500;
reritter 1:e3d3d330c84d 259 }
reritter 1:e3d3d330c84d 260 }
reritter 1:e3d3d330c84d 261 threshold_1 = threshold_2 + threshold_adjust;
reritter 1:e3d3d330c84d 262 threshold_2 = threshold_2 + threshold_adjust;
reritter 1:e3d3d330c84d 263
reritter 1:e3d3d330c84d 264 //Calibrate temp and hum
reritter 1:e3d3d330c84d 265 if(checkTemp){
reritter 1:e3d3d330c84d 266 bool done = false;
reritter 1:e3d3d330c84d 267 while(!done) {
reritter 1:e3d3d330c84d 268 if(sensor.readData() == 0) {
reritter 1:e3d3d330c84d 269 temp = sensor.ReadTemperature(CELCIUS);
reritter 1:e3d3d330c84d 270 hum = sensor.ReadHumidity();
reritter 1:e3d3d330c84d 271 DebugPrintState(std::cout << "Temp: " << temp << "Degrees Celcius" <<std::endl; );
reritter 1:e3d3d330c84d 272 DebugPrintState(std::cout << "Hum: " << temp << "%" <<std::endl; );
reritter 1:e3d3d330c84d 273 done = true;
reritter 1:e3d3d330c84d 274 }
reritter 1:e3d3d330c84d 275 }
reritter 1:e3d3d330c84d 276 }
reritter 1:e3d3d330c84d 277
reritter 1:e3d3d330c84d 278 calibratedStatus = true;
reritter 1:e3d3d330c84d 279 STATE = TESTNEW; //next state
reritter 1:e3d3d330c84d 280 break;
reritter 1:e3d3d330c84d 281
reritter 1:e3d3d330c84d 282 case TESTNEW:
reritter 1:e3d3d330c84d 283 DebugPrintState( std::cout << "Nucleo state is TESTNEW: " << std::endl; );
reritter 1:e3d3d330c84d 284 int i = 0;
reritter 1:e3d3d330c84d 285 bool quit = false;
reritter 1:e3d3d330c84d 286 while(!quit) {
reritter 1:e3d3d330c84d 287 channel_1[i] = getAudioValue(mic1);
reritter 1:e3d3d330c84d 288 timestamps_1[i] = t.read_us();
reritter 1:e3d3d330c84d 289 channel_2[i] = getAudioValue(mic2);
reritter 1:e3d3d330c84d 290 timestamps_2[i] = t.read_us();
reritter 1:e3d3d330c84d 291 if(overThreshold(channel_1[i], channel_2[i]) == true) {
reritter 1:e3d3d330c84d 292 capture_1[0] = channel_1[i];
reritter 1:e3d3d330c84d 293 capturestamps_1[0] = timestamps_1[i];
reritter 1:e3d3d330c84d 294 capture_2[0] = channel_2[i];
reritter 1:e3d3d330c84d 295 capturestamps_2[0] = timestamps_2[i];
reritter 1:e3d3d330c84d 296 for(int i = 1; i < captureLength; i++) {
reritter 1:e3d3d330c84d 297 capture_1[i] = getAudioValue(mic1);
reritter 1:e3d3d330c84d 298 capturestamps_1[i] = t.read_us();
reritter 1:e3d3d330c84d 299 capture_2[i] = getAudioValue(mic2);
reritter 1:e3d3d330c84d 300 capturestamps_2[i] = t.read_us();
reritter 1:e3d3d330c84d 301 }
reritter 1:e3d3d330c84d 302 quit = true;
reritter 1:e3d3d330c84d 303 }
reritter 1:e3d3d330c84d 304 if(i < dataLength) {
reritter 1:e3d3d330c84d 305 i++;
reritter 1:e3d3d330c84d 306 } else {
reritter 1:e3d3d330c84d 307 i = 0;
reritter 1:e3d3d330c84d 308 }
reritter 1:e3d3d330c84d 309 }
reritter 1:e3d3d330c84d 310 STATE = CALC;
reritter 1:e3d3d330c84d 311 break;
reritter 1:e3d3d330c84d 312
reritter 1:e3d3d330c84d 313
reritter 1:e3d3d330c84d 314 case CALC:
reritter 1:e3d3d330c84d 315 DebugPrintState( std::cout << "Nucleo state is CALC: " << std::endl; );
reritter 1:e3d3d330c84d 316 //Debug( wait(0.5); );
reritter 1:e3d3d330c84d 317
reritter 1:e3d3d330c84d 318 int positionOfMaxVal_1 = FindPeak(1);
reritter 1:e3d3d330c84d 319 int positionOfMaxVal_2 = FindPeak(2);
reritter 1:e3d3d330c84d 320 //run functions
reritter 1:e3d3d330c84d 321 double timedelay = FindTimeDelay(positionOfMaxVal_1, positionOfMaxVal_2); //microseceonds
reritter 1:e3d3d330c84d 322 if(abs(timedelay) > micDist/calcSoundSpeed(temp, hum)){
reritter 1:e3d3d330c84d 323 STATE = CALC_ERROR;
reritter 1:e3d3d330c84d 324 break;
reritter 1:e3d3d330c84d 325 }
reritter 1:e3d3d330c84d 326 double speed = calcSoundSpeed(temp, hum); //meters per second
reritter 1:e3d3d330c84d 327 double distance = calcDist(timedelay/1000000, speed); //input converted to meters
reritter 1:e3d3d330c84d 328 double angle = calcAng((double)distance, micDist); //0,15m = 15cm = 150mm, double type cast because of asin function in angle calculation
reritter 1:e3d3d330c84d 329 //go to state SEND if no calc_error
reritter 1:e3d3d330c84d 330
reritter 1:e3d3d330c84d 331 Debug(
reritter 1:e3d3d330c84d 332 std::cout << "max position for channel 1: " << positionOfMaxVal_1+1 << std::endl;
reritter 1:e3d3d330c84d 333 std::cout << "max position for channel 2: " << positionOfMaxVal_2+1 << std::endl;
reritter 1:e3d3d330c84d 334 std::cout << "run FindPeak, delay is: " << timedelay << "microseconds" << std::endl;
reritter 1:e3d3d330c84d 335 std::cout << "run calcDist, delta s is: " << distance << " millimeters" << std::endl;
reritter 1:e3d3d330c84d 336 std::cout << "run calcAngle, angle is: " << angle << " radians" << std::endl;
reritter 1:e3d3d330c84d 337 std::cout << "run calcAngle, angle is: " << angle*(180 / PI) << " degrees" << std::endl;
reritter 1:e3d3d330c84d 338 std::cout << "run convertAngToCamNbr, coordinates: "<< convertAngToCamNbr(angle)<<std::endl; //return "panNumber tiltNumber";
reritter 1:e3d3d330c84d 339 );
reritter 1:e3d3d330c84d 340 if (angle > (3 * PI )/2 || angle < 0 ) { //vinkel larger than 270 eller minde än noll
reritter 1:e3d3d330c84d 341 STATE = CALC_ERROR;
reritter 1:e3d3d330c84d 342 } else {
reritter 1:e3d3d330c84d 343 STATE = SEND;
reritter 1:e3d3d330c84d 344 }
reritter 1:e3d3d330c84d 345 break;
reritter 1:e3d3d330c84d 346
reritter 1:e3d3d330c84d 347 case CALC_ERROR:
reritter 1:e3d3d330c84d 348 DebugPrintState( std::cout << "Nucleo state is CALC_ERROR: " << std::endl; );
reritter 1:e3d3d330c84d 349 Debug( wait(0.5); );
reritter 1:e3d3d330c84d 350 //error message
reritter 1:e3d3d330c84d 351 std::cout << "Error. angle not within limits 0 -270 degrees" << std::endl;
reritter 1:e3d3d330c84d 352 //nollställ vektorer, , stoppa klockan , osv
reritter 1:e3d3d330c84d 353 STATE = TESTNEW;
reritter 1:e3d3d330c84d 354 break;
reritter 1:e3d3d330c84d 355
reritter 1:e3d3d330c84d 356 case SEND:
reritter 1:e3d3d330c84d 357 DebugPrintState( std::cout << "Nucleo state is SEND: " << std::endl; );
reritter 1:e3d3d330c84d 358 Debug( wait(0.5); );
reritter 1:e3d3d330c84d 359 // send coordinates to serial port to camera
reritter 1:e3d3d330c84d 360 std::cout<<convertAngToCamNbr(angle)<<std::endl; //return "panNumber tiltNumber";
reritter 1:e3d3d330c84d 361 Debug( wait(0.5); );
reritter 1:e3d3d330c84d 362 STATE = IDLE;
reritter 1:e3d3d330c84d 363 wait(5);
reritter 1:e3d3d330c84d 364 break;
reritter 1:e3d3d330c84d 365 }
reritter 1:e3d3d330c84d 366 }
reritter 1:e3d3d330c84d 367 }
reritter 1:e3d3d330c84d 368