
- This code combines steering and driving in one ticker - Fault check is in a ticker instead of while loop
main.cpp
- Committer:
- aalawfi
- Date:
- 2021-10-25
- Revision:
- 9:5f032ca6c9b5
- Parent:
- 8:e4a147850ba4
File content as of revision 9:5f032ca6c9b5:
#include "mbed.h" #include "driving.h" #include "steering_header.h" #include "steering_methods.h" #include "state_control.h" #include "MMA8451Q.h" #include <iostream> #include "bluetooth.h" #define MMA8451_I2C_ADDRESS (0x1d<<1) Serial pc(USBTX, USBRX); // tx, rx PinName const SDA = PTE25; PinName const SCL = PTE24; MMA8451Q acc(SDA, SCL, MMA8451_I2C_ADDRESS); Ticker motorLoop; Ticker fault_detector; Ticker controlUpdate; Timer t; void PID (void) { PI(); steering_control(); }; int main() { state_update(); controlUpdate.attach(&PID, TI); fault_detector.attach(&fault_check, 0.02); //Delcare Onboard LED with blue color DigitalOut led_b(LED_BLUE); //Set the period of the servo motor control signal servo_motor_pwm.period(1/SERVO_MOTOR_FREQ); motorLeft.period(1/freq); motorRight.period(1/freq); //Center the servo motor servo_motor_pwm.write(CENTER_DUTY_CYCLE); //Start the control systm using a Ticker object // steering_control_ticker.attach(&steering_control, TI); // motorLoop.attach(&PI,TI); //bt.attach(&btReceive); // call landmark_counter wjen a landmark is detected left_landmark_sensor.rise(&landmark_counter); right_landmark_sensor.rise(&landmark_counter); // update status when the button is pressed stop_button.rise(&state_update); run_button.rise(&state_update); wait_button.rise(&state_update); bt.baud(BLUETOOTHBAUDRATE); //Sets the communication rate of the micro-controller to the Bluetooth module. pc.printf("Hello World!\n"); bt.printf("Hello World!\n"); t.start(); float time = t.read(); //prints the string to the Tera-Term Console using the Bluetooth object ‘bt’. while(1) { pc.printf("\n\n"); pc.printf("\r\nSteering enabled? : %d",steering_enabled); pc.printf("\r\nCurrent duty cycle : %f ", current_duty_cycle); pc.printf("\r\nLeft duty cycle : %f ", left_distance_sensor.read()); pc.printf("\r\nRight voltage : %f" , right_distance_sensor.read()); pc.printf("\r\nCurrent duty cycle : %f ", current_duty_cycle); fault_check(); //wait(0.5); //commented out the wait bc it slows down the fault_check, and it breaks the analogIn readings for the driving input //the driving input ticker is faster than the analog.read() function, so all analog.read() methods must be in the main loop switch(current_state ){ case STOP : pc.printf("\r\nCurrent state is stop"); break; case RUN: pc.printf("\r\nCurrent state is RUN"); break; case WAIT : pc.printf("\r\nCurrent state is WAIT"); break; }; switch(fault_type) { case CLEAR : pc.printf("\r\nFault: CLEAR"); break; case OFF_TRACK: pc.printf("\r\nFault: OFF TRACK"); break; case BUMPER : pc.printf("\r\nFault: OBSTACLE"); break; case LOW_VOLTAGE : pc.printf("Fault: LOW VOLTAGE"); break; } x = abs(acc.getAccX()); pot1Voltage = pot1 * 3.3f; //dutyCycleLeft = (pot1 * fullBatScalar); //dutyCycleRight = (pot1 * fullBatScalar); //speedLeft = (speedSensorLeft * speedSensorScalar); //speedRight = (speedSensorRight * speedSensorScalar); speedLeftVolt = (speedSensorLeft * 3.3f); speedRightVolt = (speedSensorRight * 3.3f); bt.printf("Duty Cycle = %1.2f ", dutyCycleLeft); bt.printf("Speed (V) L,R = %1.2f", speedLeftVolt); bt.printf(", %1.2f ", speedRightVolt); bt.printf("Error L,R: %5.2f", errorLeft); bt.printf(", %5.2f ", errorRight); bt.printf("ErrorArea: %1.2f ", errorAreaLeft); bt.printf("Output: %1.2f ", controllerOutputLeft); bt.printf("Batt Voltage: %1.2f \n",avgCellVoltage); //setpointLeft = pot1; //setpointRight = pot1; if (t.read() > 5){ setpointLeft = 0.0; setpointRight = 0.0; } if (t.read_ms() > 5100){ setpointLeft = 0.2; setpointRight = 0.2; } if (newData){ newData = false; // bt.printf("Got %c %3i\n",newInputChar, newInputInt); if (newInputChar == 'L') setpointLeft = (newInputInt / 100.0f); if (newInputChar == 'R') setpointRight = (newInputInt / 100.0f); //wait(0.1); } } }