Developers_of_anti_slip_compensator / Mbed 2 deprecated WIPV

Dependencies:   CURRENT_CONTROL IIR LSM9DS0 MEDIAN_FILTER PID QEI RF24 SENSOR_FUSION mbed

main.cpp

Committer:
adam_z
Date:
2016-04-28
Revision:
5:842372be775c
Parent:
4:a2d38818c4e7
Child:
6:5bd08053e95c

File content as of revision 5:842372be775c:

#include "mbed.h"
#include "PID.h"
#include "LSM9DS0.h"
#include "QEI.h"
#include "CURRENT_CONTROL.h"
#include "SENSOR_FUSION.h"

#define Ts 0.001
#define pi 3.14159

LSM9DS0 sensor(SPI_MODE, D9, D6);
Serial pc(SERIAL_TX, SERIAL_RX);

Ticker WIPVTimer;
void WIPVTimerInterrupt();
float saturation(float input, float limit_H, float limit_L);
void SensorAcquisition(float * data, float samplingTime);

//MOTOR L == MOTOR 1;  MOTOR R = MOTOR 2
CURRENT_CONTROL motorCur_L(PC_3, D8,  A3,CURRENT_CONTROL::PWM2,400, 900.0,0.0,Ts);
CURRENT_CONTROL motorCur_R(PC_2, D7, D11,CURRENT_CONTROL::PWM1,400, 900.0,0.0,Ts);

QEI wheel_L(D13, D12, NC, 280, 50, Ts, QEI::X4_ENCODING);
QEI wheel_R(A1,  A2,  NC, 280, 50, Ts, QEI::X4_ENCODING);


PID balancingPD(20,0.00,0.0,Ts);
LPF sensorFilter(Ts);






int tim_counter = 0;
float tim = 0.0;
float amp = 0.3;
float omega = 6.0;
float curCmd_L =0.0, curCmd_R =0.0;


int main()
{

    pc.baud(250000);
    if( sensor.begin() != 0 ) {
        pc.printf("Problem starting the sensor with CS @ Pin D6.\r\n");
    } else {
        pc.printf("Sensor with CS @ Pin D9&D6 started.\r\n");
    }
    sensor.setGyroOffset(38,-24,-106);
    sensor.setAccelOffset(-793,-511,300);

    motorCur_L.SetParams(3.3*8/0.6, 1.050*0.163, 0.04348);
    motorCur_R.SetParams(3.3*8/0.6, 1.187*0.137, 0.04348);

    WIPVTimer.attach_us(WIPVTimerInterrupt, 1000.0);
    while(true) {
        //pc.printf("%5.4f\t", 10*pitch_angle);
        //pc.printf("%5.3f\n", 10*sensor.pitch*3.14159/180);
        //pc.printf("%5.3f\r\n", 10*curCmd_L);
        
        
        pc.printf("%5.3f\t", 100*curCmd_R);
        pc.printf("%5.3f\r\n", wheel_R.getAngularSpeed());
        
    }
}


void WIPVTimerInterrupt()
{
    if(tim_counter <100)tim_counter++;
    else if (tim_counter >= 100 && tim_counter <=109) {
        motorCur_L.currentOffset += motorCur_L.currentAnalogIn.read();
        motorCur_R.currentOffset += motorCur_R.currentAnalogIn.read();
        tim_counter++;
        if(tim_counter == 110) {
            motorCur_L.currentOffset = motorCur_L.currentOffset/10;
            motorCur_R.currentOffset = motorCur_R.currentOffset/10;
        }

    } else {

        /*
        int16_t data_array[6];

        data_array[0]  = sensor.readRawAccelX();
        data_array[1]  = sensor.readRawAccelY();
        data_array[2]  = sensor.readRawAccelZ();
        data_array[3]  = sensor.readRawGyroX();
        data_array[4]  = sensor.readRawGyroY();
        data_array[5]  = sensor.readRawGyroZ();

        pc.printf("%d, ", data_array[0]);
        pc.printf("%d, ", data_array[1]);
        pc.printf("%d, ", data_array[2]);
        pc.printf("%d, ", data_array[3]);
        pc.printf("%d, ", data_array[4]);
        pc.printf("%d;\r\n ", data_array[5]);
        */


        float data_array[6];//Gs and deg/s
        data_array[0]  = sensor.readFloatAccelX();
        data_array[1]  = sensor.readFloatAccelY();
        data_array[2]  = sensor.readFloatAccelZ();
        data_array[3]  = sensor.readFloatGyroX();
        data_array[4]  = sensor.readFloatGyroY();
        data_array[5]  = sensor.readFloatGyroZ();
        sensor.complementaryFilter(data_array,Ts);
        //SensorAcquisition(data_array, Ts);
        
        //*****wheel speed calculation*****//
        wheel_L.Calculate();
        wheel_R.Calculate();
        
        
        
        
        balancingPD.Compute(0.0, sensor.pitch*3.14159/180);
        curCmd_R = sensorFilter.filter(saturation(0.5*( -balancingPD.output + 0.002*data_array[5]),1.0, -1.0),10);
        //*************current control********//
        tim += Ts;
        if(tim >= 4*pi/omega)tim = 0.0;
        //curCmd_R = amp*sin(omega*tim); //current command
        //curCmd_L = 0.8;
        
        //motorCur_R.SetPWMDuty(0.75);
        
        motorCur_L.Control(-curCmd_R + 0.002*data_array[4], wheel_L.getAngularSpeed());
        motorCur_R.Control(curCmd_R  + 0.002*data_array[4], wheel_R.getAngularSpeed());
        
        
    }


}


float saturation(float input, float limit_H, float limit_L)
{
    float output;
    if(input >= limit_H)output = limit_H;
    else if (input <= limit_L)output = limit_L;
    else output = input;
    return output;
}


void SensorAcquisition(float * data, float samplingTime)
{      
         
        axm =  data[0]*(-1)*9.81;//accelerometer dimension from g to m/s^2
        aym =  data[1]*(-1)*9.81;
        azm =  data[2]*(-1)*9.81; 
        u1  = data[0]*3.14159/180;      //gyroscope :deg/s to rad/s
        u2  = data[1]*3.14159/180;
        u3  = data[2]*3.14159/180;

        
        if(conv_init <= 3)
        {         
        axm_f_old = axm;
        aym_f_old = aym;
        azm_f_old = azm;
         
        conv_init++;
        }
        else
        {
            pitch_fusion(axm,  aym,azm,u3,u2,20, samplingTime);
            roll_fusion(axm,   aym,azm,u3,u1,20, samplingTime);
            x3_hat_estimat(axm,aym,azm,u2,u1,20, samplingTime);   
        }      
       
}