Developers_of_anti_slip_compensator / Mbed 2 deprecated WIPV

Dependencies:   CURRENT_CONTROL IIR LSM9DS0 MEDIAN_FILTER PID QEI RF24 SENSOR_FUSION mbed

Revision:
6:5bd08053e95c
Parent:
5:842372be775c
Child:
7:f33a935eb77a
--- a/main.cpp	Thu Apr 28 09:39:39 2016 +0000
+++ b/main.cpp	Tue May 03 08:05:30 2016 +0000
@@ -10,23 +10,27 @@
 
 LSM9DS0 sensor(SPI_MODE, D9, D6);
 Serial pc(SERIAL_TX, SERIAL_RX);
+Serial blueTooth(D10, D2);
 
 Ticker WIPVTimer;
 void WIPVTimerInterrupt();
 float saturation(float input, float limit_H, float limit_L);
 void SensorAcquisition(float * data, float samplingTime);
+void SerialRx();
 
 //MOTOR L == MOTOR 1;  MOTOR R = MOTOR 2
 CURRENT_CONTROL motorCur_L(PC_3, D8,  A3,CURRENT_CONTROL::PWM2,400, 900.0,0.0,Ts);
 CURRENT_CONTROL motorCur_R(PC_2, D7, D11,CURRENT_CONTROL::PWM1,400, 900.0,0.0,Ts);
 
-QEI wheel_L(D13, D12, NC, 280, 50, Ts, QEI::X4_ENCODING);
-QEI wheel_R(A1,  A2,  NC, 280, 50, Ts, QEI::X4_ENCODING);
+QEI wheel_L(D13, D12, NC, 280, 200, Ts, QEI::X4_ENCODING);
+QEI wheel_R(A1,  A2,  NC, 280, 200, Ts, QEI::X4_ENCODING);
 
 
 PID balancingPD(20,0.00,0.0,Ts);
-LPF sensorFilter(Ts);
-
+LPF sensorFilter1(Ts);
+LPF sensorFilter2(Ts);
+LPF sensorFilter3(Ts);
+LPF sensorFilter4(Ts);
 
 
 
@@ -39,10 +43,27 @@
 float curCmd_L =0.0, curCmd_R =0.0;
 
 
+
+float state[4] = {0.0, 0.0, 0.0, 0.0};
+float ref[4] = {0.0, 0.0, 0.0, 0.0};
+
+float torque_L = 0.0, torque_R = 0.0;
+float KL[4] = {-0.7057 ,  -0.0733 ,  -0.0085 ,  -0.0300};
+float KR[4] = {-0.7057 ,  -0.0733 ,  -0.0300 ,  -0.0085};
+
+float Km_L = 1.050*0.163;
+float Km_R = 1.187*0.137;
+
+float yawRate = 0.0;
+
+float velocityCmd[2] = {0.0, 0.0};
+unsigned int accelerateFlag = 0;
+
 int main()
 {
 
     pc.baud(250000);
+    blueTooth.baud(230400);
     if( sensor.begin() != 0 ) {
         pc.printf("Problem starting the sensor with CS @ Pin D6.\r\n");
     } else {
@@ -51,19 +72,20 @@
     sensor.setGyroOffset(38,-24,-106);
     sensor.setAccelOffset(-793,-511,300);
 
-    motorCur_L.SetParams(3.3*8/0.6, 1.050*0.163, 0.04348);
-    motorCur_R.SetParams(3.3*8/0.6, 1.187*0.137, 0.04348);
+    motorCur_L.SetParams(3.3*8/0.6, Km_L, 0.04348);
+    motorCur_R.SetParams(3.3*8/0.6, Km_R, 0.04348);
 
     WIPVTimer.attach_us(WIPVTimerInterrupt, 1000.0);
+    blueTooth.attach(&SerialRx, Serial::RxIrq);
     while(true) {
         //pc.printf("%5.4f\t", 10*pitch_angle);
         //pc.printf("%5.3f\n", 10*sensor.pitch*3.14159/180);
         //pc.printf("%5.3f\r\n", 10*curCmd_L);
-        
-        
-        pc.printf("%5.3f\t", 100*curCmd_R);
-        pc.printf("%5.3f\r\n", wheel_R.getAngularSpeed());
-        
+
+
+        pc.printf("%5.3f\t",   10*yawRate);
+        pc.printf("%5.3f\r\n", velocityCmd[1]);
+
     }
 }
 
@@ -110,34 +132,101 @@
         data_array[5]  = sensor.readFloatGyroZ();
         sensor.complementaryFilter(data_array,Ts);
         //SensorAcquisition(data_array, Ts);
-        
-        //*****wheel speed calculation*****//
+
+        //===============wheel speed calculation============//
         wheel_L.Calculate();
         wheel_R.Calculate();
-        
-        
-        
-        
-        balancingPD.Compute(0.0, sensor.pitch*3.14159/180);
-        curCmd_R = sensorFilter.filter(saturation(0.5*( -balancingPD.output + 0.002*data_array[5]),1.0, -1.0),10);
-        //*************current control********//
-        tim += Ts;
-        if(tim >= 4*pi/omega)tim = 0.0;
-        //curCmd_R = amp*sin(omega*tim); //current command
-        //curCmd_L = 0.8;
-        
-        //motorCur_R.SetPWMDuty(0.75);
-        
-        motorCur_L.Control(-curCmd_R + 0.002*data_array[4], wheel_L.getAngularSpeed());
-        motorCur_R.Control(curCmd_R  + 0.002*data_array[4], wheel_R.getAngularSpeed());
-        
-        
+
+        /////////////Balancing Control/////////////////////////
+        //SI dimension
+        state[0] = sensor.pitch*3.14159/180.0;
+        state[1] = sensorFilter1.filter(data_array[5]*3.14159/180.0, 10.0);
+        state[2] = sensorFilter2.filter(wheel_L.getAngularSpeed(),60.0);
+        state[3] = -sensorFilter3.filter(wheel_R.getAngularSpeed(),60.0);
+
+        if(accelerateFlag == 1) {
+            if(velocityCmd[0]>=7 || velocityCmd[1]>=7)accelerateFlag = 0;
+            else {
+                velocityCmd[0] += 0.004;
+                velocityCmd[1] += 0.004;
+            }
+        }
+
+        ref[2] = velocityCmd[0];
+        ref[3] = velocityCmd[1];
+
+        yawRate = sensorFilter4.filter(data_array[4],10);
+
+
+        torque_L =  (KL[0]*(state[0] - ref[0])+KL[1]*(state[1] - ref[1])+KL[2]*(state[2] - ref[2])+KL[3]*(state[3]-ref[3]));
+        torque_R = -(KR[0]*(state[0] - ref[0])+KR[1]*(state[1] - ref[1])+KR[2]*(state[2] - ref[2])+KR[3]*(state[3]-ref[3]));
+
+        motorCur_L.Control(saturation(torque_L/Km_L + 0.008*yawRate,1.2,-1.2), state[2]);
+        motorCur_R.Control(saturation(torque_R/Km_R + 0.008*yawRate,1.2,-1.2), -state[3]);
+
+        //motorCur_L.SetPWMDuty(0.68);
+        //motorCur_R.SetPWMDuty(0.5 - 0.15);
+        /*  //PD Balancing Control
+                balancingPD.Compute(0.0, sensor.pitch*3.14159/180);
+                curCmd_R = sensorFilter.filter(saturation(0.5*( -balancingPD.output + 0.002*data_array[5]),1.0, -1.0),10);
+                //======================current control=========================//
+                tim += Ts;
+                if(tim >= 4*pi/omega)tim = 0.0;
+                //curCmd_R = amp*sin(omega*tim); //current command
+                //curCmd_L = 0.8;
+
+                motorCur_R.SetPWMDuty(0.75);
+
+                motorCur_L.Control(-curCmd_R + 0.002*data_array[4], wheel_L.getAngularSpeed());
+                motorCur_R.Control(curCmd_R  + 0.002*data_array[4], wheel_R.getAngularSpeed());
+        */
+
     }
 
 
 }
 
 
+void SerialRx()
+{
+    while(blueTooth.readable()) {
+        char charRx = blueTooth.getc();
+        switch(charRx) {
+            case 'w'://forward
+                velocityCmd[0] = 2.5;
+                velocityCmd[1] = 2.5;
+                accelerateFlag = 0;
+                break;
+            case 's'://backward
+                velocityCmd[0] = -3.0;
+                velocityCmd[1] = -3.0;
+                accelerateFlag = 0;
+                break;
+            case 'a'://turn left
+                velocityCmd[0] = -4.0;
+                velocityCmd[1] = 4.0;
+                accelerateFlag = 0;
+                break;
+            case 'd'://turn right
+                velocityCmd[0] = 4.0;
+                velocityCmd[1] = -4.0;
+                accelerateFlag = 0;
+                break;
+            case 'x'://stop
+                velocityCmd[0] = 0.0;
+                velocityCmd[1] = 0.0;
+                accelerateFlag = 0;
+                break;
+                
+            case 'q'://accelerate
+                accelerateFlag = 1;
+                break;
+        }
+    }
+}
+
+
+
 float saturation(float input, float limit_H, float limit_L)
 {
     float output;
@@ -149,30 +238,27 @@
 
 
 void SensorAcquisition(float * data, float samplingTime)
-{      
-         
-        axm =  data[0]*(-1)*9.81;//accelerometer dimension from g to m/s^2
-        aym =  data[1]*(-1)*9.81;
-        azm =  data[2]*(-1)*9.81; 
-        u1  = data[0]*3.14159/180;      //gyroscope :deg/s to rad/s
-        u2  = data[1]*3.14159/180;
-        u3  = data[2]*3.14159/180;
+{
 
-        
-        if(conv_init <= 3)
-        {         
+    axm =  data[0]*(-1)*9.81;//accelerometer dimension from g to m/s^2
+    aym =  data[1]*(-1)*9.81;
+    azm =  data[2]*(-1)*9.81;
+    u1  = data[0]*3.14159/180;      //gyroscope :deg/s to rad/s
+    u2  = data[1]*3.14159/180;
+    u3  = data[2]*3.14159/180;
+
+
+    if(conv_init <= 3) {
         axm_f_old = axm;
         aym_f_old = aym;
         azm_f_old = azm;
-         
+
         conv_init++;
-        }
-        else
-        {
-            pitch_fusion(axm,  aym,azm,u3,u2,20, samplingTime);
-            roll_fusion(axm,   aym,azm,u3,u1,20, samplingTime);
-            x3_hat_estimat(axm,aym,azm,u2,u1,20, samplingTime);   
-        }      
-       
+    } else {
+        pitch_fusion(axm,  aym,azm,u3,u2,20, samplingTime);
+        roll_fusion(axm,   aym,azm,u3,u1,20, samplingTime);
+        x3_hat_estimat(axm,aym,azm,u2,u1,20, samplingTime);
+    }
+
 }