zzz
Revision 14:2d0b5e0f0aed, committed 2020-08-26
- Comitter:
- mauuuuul
- Date:
- Wed Aug 26 19:44:50 2020 +0000
- Parent:
- 13:016b84669050
- Commit message:
- zzzz
Changed in this revision
--- a/OneWire.cpp Thu Apr 04 20:46:58 2019 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,506 +0,0 @@ -/* -Copyright (c) 2007, Jim Studt (original old version - many contributors since) - -The latest version of this library may be found at: - http://www.pjrc.com/teensy/td_libs_Onehtml - -OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since -January 2010. At the time, it was in need of many bug fixes, but had -been abandoned the original author (Jim Studt). None of the known -contributors were interested in maintaining One Paul typically -works on OneWire every 6 to 12 months. Patches usually wait that -long. If anyone is interested in more actively maintaining OneWire, -please contact Paul. - -Version 2.2: - Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com - Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030 - Fix DS18B20 example negative temperature - Fix DS18B20 example's low res modes, Ken Butcher - Improve reset timing, Mark Tillotson - Add const qualifiers, Bertrik Sikken - Add initial value input to crc16, Bertrik Sikken - Add target_search() function, Scott Roberts - -Version 2.1: - Arduino 1.0 compatibility, Paul Stoffregen - Improve temperature example, Paul Stoffregen - DS250x_PROM example, Guillermo Lovato - PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com - Improvements from Glenn Trewitt: - - crc16() now works - - check_crc16() does all of calculation/checking work. - - Added read_bytes() and write_bytes(), to reduce tedious loops. - - Added ds2408 example. - Delete very old, out-of-date readme file (info is here) - -Version 2.0: Modifications by Paul Stoffregen, January 2010: -http://www.pjrc.com/teensy/td_libs_Onehtml - Search fix from Robin James - http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 - Use direct optimized I/O in all cases - Disable interrupts during timing critical sections - (this solves many random communication errors) - Disable interrupts during read-modify-write I/O - Reduce RAM consumption by eliminating unnecessary - variables and trimming many to 8 bits - Optimize both crc8 - table version moved to flash - -Modified to work with larger numbers of devices - avoids loop. -Tested in Arduino 11 alpha with 12 sensors. -26 Sept 2008 -- Robin James -http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 - -Updated to work with arduino-0008 and to include skip() as of -2007/07/06. --RJL20 - -Modified to calculate the 8-bit CRC directly, avoiding the need for -the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010 --- Tom Pollard, Jan 23, 2008 - -Jim Studt's original library was modified by Josh Larios. - -Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008 - -Permission is hereby granted, free of charge, to any person obtaining -a copy of this software and associated documentation files (the -"Software"), to deal in the Software without restriction, including -without limitation the rights to use, copy, modify, merge, publish, -distribute, sublicense, and/or sell copies of the Software, and to -permit persons to whom the Software is furnished to do so, subject to -the following conditions: - -The above copyright notice and this permission notice shall be -included in all copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE -LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - -Much of the code was inspired by Derek Yerger's code, though I don't -think much of that remains. In any event that was.. - (copyleft) 2006 by Derek Yerger - Free to distribute freely. - -The CRC code was excerpted and inspired by the Dallas Semiconductor -sample code bearing this copyright. -//--------------------------------------------------------------------------- -// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved. -// -// Permission is hereby granted, free of charge, to any person obtaining a -// copy of this software and associated documentation files (the "Software"), -// to deal in the Software without restriction, including without limitation -// the rights to use, copy, modify, merge, publish, distribute, sublicense, -// and/or sell copies of the Software, and to permit persons to whom the -// Software is furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included -// in all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES -// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, -// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -// OTHER DEALINGS IN THE SOFTWARE. -// -// Except as contained in this notice, the name of Dallas Semiconductor -// shall not be used except as stated in the Dallas Semiconductor -// Branding Policy. -//-------------------------------------------------------------------------- -*/ -#include "OneWire.h" - - -/** - * @brief Constructs a OneWire object. - * @note GPIO is configured as output and an internal pull up resistor is connected. - * But because for STM chips it takes very long time to change from output - * to input an open drain mode is used rather and the GPIO remains output forever. - * @param - * @retval - */ -OneWire::OneWire(PinName pin) : - DigitalInOut(pin) -{ - MODE(); // set mode to either OpenDrain for STM or PullUp for others - INIT_WAIT; -#if ONEWIRE_SEARCH - reset_search(); -#endif -} - -/** - * @brief Performs the onewire reset function. - * @note We will wait up to 250uS for the bus to come high, - * if it doesn't then it is broken or shorted and we return a 0; - * @param - * @retval 1 if a device asserted a presence pulse, 0 otherwise. - */ -uint8_t OneWire::reset(void) -{ - uint8_t present; - - OUTPUT(); - WRITE(0); // pull down the 1-wire bus do create reset pulse - WAIT_US(500); // wait at least 480 us - INPUT(); // release the 1-wire bus and go into receive mode - WAIT_US(90); // DS1820 waits about 15 to 60 us and generates a 60 to 240 us presence pulse - present = !READ(); // read the presence pulse - WAIT_US(420); - - return present; -} - -/** - * @brief Writes a bit. - * @note GPIO registers are used for STM chips to cut time. - * @param - * @retval - */ -void OneWire::write_bit(uint8_t v) -{ - OUTPUT(); - if (v & 1) { - WRITE(0); // drive output low - WAIT_US(1); - WRITE(1); // drive output high - WAIT_US(60); - } - else { - WRITE(0); // drive output low - WAIT_US(60); - WRITE(1); // drive output high - WAIT_US(1); - } -} - -/** - * @brief Reads a bit. - * @note GPIO registers are used for STM chips to cut time. - * @param - * @retval - */ -uint8_t OneWire::read_bit(void) -{ - const int SAMPLE_POINT = 10; - uint8_t r; - int t; - - OUTPUT(); - WRITE(0); - timer.start(); - INPUT(); - t = timer.read_us(); - if (t < SAMPLE_POINT) - WAIT_US(SAMPLE_POINT - t); - r = READ(); - timer.stop(); - timer.reset(); - WAIT_US(55); - //printf("t = %d\r\n", t); - return r; -} - -/** - * @brief Writes a byte. - * @note The writing code uses the active drivers to raise the - pin high, if you need power after the write (e.g. DS18S20 in - parasite power mode) then set 'power' to 1, otherwise the pin will - go tri-state at the end of the write to avoid heating in a short or - other mishap. - * @param - * @retval - */ -void OneWire::write_byte(uint8_t v, uint8_t power /* = 0 */ ) -{ - uint8_t bitMask; - - for (bitMask = 0x01; bitMask; bitMask <<= 1) - write_bit((bitMask & v) ? 1 : 0); - if (!power) - INPUT(); -} - -/** - * @brief Writes bytes. - * @note - * @param - * @retval - */ -void OneWire::write_bytes(const uint8_t* buf, uint16_t count, bool power /* = 0 */ ) -{ - for (uint16_t i = 0; i < count; i++) - write_byte(buf[i]); - if (!power) - INPUT(); -} - -/** - * @brief Reads a byte. - * @note - * @param - * @retval - */ -uint8_t OneWire::read_byte() -{ - uint8_t bitMask; - uint8_t r = 0; - - for (bitMask = 0x01; bitMask; bitMask <<= 1) { - if (read_bit()) - r |= bitMask; - } - - return r; -} - -/** - * @brief Reads bytes. - * @note - * @param - * @retval - */ -void OneWire::read_bytes(uint8_t* buf, uint16_t count) -{ - for (uint16_t i = 0; i < count; i++) - buf[i] = read_byte(); -} - -/** - * @brief Selects ROM. - * @note - * @param - * @retval - */ -void OneWire::select(const uint8_t rom[8]) -{ - uint8_t i; - - write_byte(0x55); // Choose ROM - for (i = 0; i < 8; i++) - write_byte(rom[i]); -} - -/** - * @brief Skips ROM select. - * @note - * @param - * @retval - */ -void OneWire::skip() -{ - write_byte(0xCC); // Skip ROM -} - -/** - * @brief Unpowers the chip. - * @note - * @param - * @retval - */ -void OneWire::depower() -{ - INPUT(); -} - -#if ONEWIRE_SEARCH -// - -/** - * @brief Resets the search state. - * @note We need to use this function to start a search again from the beginning. - * We do not need to do it for the first search, though we could. - * @param - * @retval - */ -void OneWire::reset_search() -{ - // reset the search state - LastDiscrepancy = 0; - LastDeviceFlag = false; - LastFamilyDiscrepancy = 0; - for (int i = 7;; i--) { - ROM_NO[i] = 0; - if (i == 0) - break; - } -} - -/** - * @brief Sets the search state to find SearchFamily type devices. - * @note - * @param - * @retval - */ -void OneWire::target_search(uint8_t family_code) -{ - // set the search state to find SearchFamily type devices - ROM_NO[0] = family_code; - for (uint8_t i = 1; i < 8; i++) - ROM_NO[i] = 0; - LastDiscrepancy = 64; - LastFamilyDiscrepancy = 0; - LastDeviceFlag = false; -} - -/** - * @brief Performs a search. - * @note Perform a search. If this function returns a '1' then it has - enumerated the next device and you may retrieve the ROM from the - OneWire::address variable. If there are no devices, no further - devices, or something horrible happens in the middle of the - enumeration then a 0 is returned. If a new device is found then - its address is copied to newAddr. Use OneWire::reset_search() to - start over. - - --- Replaced by the one from the Dallas Semiconductor web site --- - ------------------------------------------------------------------------- - Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing - search state. - * @param - * @retval true : device found, ROM number in ROM_NO buffer - * false : device not found, end of search - */ -uint8_t OneWire::search(uint8_t* newAddr) -{ - uint8_t id_bit_number; - uint8_t last_zero, rom_byte_number, search_result; - uint8_t id_bit, cmp_id_bit; - - unsigned char rom_byte_mask, search_direction; - - // initialize for search - id_bit_number = 1; - last_zero = 0; - rom_byte_number = 0; - rom_byte_mask = 1; - search_result = 0; - - // if the last call was not the last one - if (!LastDeviceFlag) { - // 1-Wire reset - if (!reset()) { - // reset the search - LastDiscrepancy = 0; - LastDeviceFlag = false; - LastFamilyDiscrepancy = 0; - return false; - } - - // issue the search command - write_byte(0xF0); - - // loop to do the search - do { - // read a bit and its complement - id_bit = read_bit(); - cmp_id_bit = read_bit(); - - // check for no devices on 1-wire - if ((id_bit == 1) && (cmp_id_bit == 1)) - break; - else { - // all devices coupled have 0 or 1 - if (id_bit != cmp_id_bit) - search_direction = id_bit; // bit write value for search - else { - // if this discrepancy if before the Last Discrepancy - // on a previous next then pick the same as last time - if (id_bit_number < LastDiscrepancy) - search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0); - else - // if equal to last pick 1, if not then pick 0 - search_direction = (id_bit_number == LastDiscrepancy); - - // if 0 was picked then record its position in LastZero - if (search_direction == 0) { - last_zero = id_bit_number; - - // check for Last discrepancy in family - if (last_zero < 9) - LastFamilyDiscrepancy = last_zero; - } - } - - // set or clear the bit in the ROM byte rom_byte_number - // with mask rom_byte_mask - if (search_direction == 1) - ROM_NO[rom_byte_number] |= rom_byte_mask; - else - ROM_NO[rom_byte_number] &= ~rom_byte_mask; - - // serial number search direction write bit - write_bit(search_direction); - - // increment the byte counter id_bit_number - // and shift the mask rom_byte_mask - id_bit_number++; - rom_byte_mask <<= 1; - - // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask - if (rom_byte_mask == 0) { - rom_byte_number++; - rom_byte_mask = 1; - } - } - } while (rom_byte_number < 8); - // loop until through all ROM bytes 0-7 - // if the search was successful then - if (!(id_bit_number < 65)) { - // search successful so set LastDiscrepancy,LastDeviceFlag,search_result - LastDiscrepancy = last_zero; - - // check for last device - if (LastDiscrepancy == 0) - LastDeviceFlag = true; - - search_result = true; - } - } - - // if no device found then reset counters so next 'search' will be like a first - if (!search_result || !ROM_NO[0]) { - LastDiscrepancy = 0; - LastDeviceFlag = false; - LastFamilyDiscrepancy = 0; - search_result = false; - } - - for (int i = 0; i < 8; i++) - newAddr[i] = ROM_NO[i]; - return search_result; -} -#endif -// -#if ONEWIRE_CRC -// -/** - * @brief Computes a Dallas Semiconductor 8 bit CRC directly. - * @note The 1-Wire CRC scheme is described in Maxim Application Note 27: - "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" - * @param - * @retval - */ -uint8_t OneWire::crc8(const uint8_t* addr, uint8_t len) -{ - uint8_t crc = 0; - - while (len--) { - uint8_t inbyte = *addr++; - for (uint8_t i = 8; i; i--) { - uint8_t mix = (crc ^ inbyte) & 0x01; - crc >>= 1; - if (mix) - crc ^= 0x8C; - inbyte >>= 1; - } - } - - return crc; -} -#endif
--- a/OneWire.h Thu Apr 04 20:46:58 2019 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,189 +0,0 @@ -#ifndef OneWire_h -#define OneWire_h - -#include <inttypes.h> -#include <mbed.h> - -#if defined(TARGET_STM) - #define MODE() output(); \ - mode(OpenDrain) - #define OUTPUT() // configured as output in the constructor and stays like that forever -#if defined(TARGET_STM32L072xx) - #define PORT ((GPIO_TypeDef *)(GPIOA_BASE + 0x0400 * STM_PORT(gpio.pin))) - #define PINMASK (1 << STM_PIN(gpio.pin)) - #define INPUT() (PORT->MODER &= ~(GPIO_MODER_MODE0_0 << (STM_PIN(gpio.pin) * 2))) - #define READ() ((PORT->IDR & gpio.mask) != 0) - #define WRITE(x) (x == 1 ? PORT->BSRR = PINMASK : PORT->BRR = PINMASK) -#else - #define INPUT() (*gpio.reg_set = gpio.mask) // write 1 to open drain - #define READ() ((*gpio.reg_in & gpio.mask) != 0) - #define WRITE(x) write(x) -#endif -#else - #define MODE() mode(PullUp) - #define INPUT() input() - #define OUTPUT() output() - #define READ() read() - #define WRITE(x) write(x) -#endif - -#ifdef TARGET_NORDIC -//NORDIC targets (NRF) use software delays since their ticker uses a 32kHz clock - static uint32_t loops_per_us = 0; - - #define INIT_WAIT init_soft_delay() - #define WAIT_US(x) for(int cnt = 0; cnt < (x * loops_per_us) >> 5; cnt++) {__NOP(); __NOP(); __NOP();} - -void init_soft_delay( void ) { - if (loops_per_us == 0) { - loops_per_us = 1; - Timer timey; - timey.start(); - ONEWIRE_DELAY_US(320000); - timey.stop(); - loops_per_us = (320000 + timey.read_us() / 2) / timey.read_us(); - } -} -#else - #define INIT_WAIT - #define WAIT_US(x) wait_us(x) -#endif - -// You can exclude certain features from OneWire. In theory, this -// might save some space. In practice, the compiler automatically -// removes unused code (technically, the linker, using -fdata-sections -// and -ffunction-sections when compiling, and Wl,--gc-sections -// when linking), so most of these will not result in any code size -// reduction. Well, unless you try to use the missing features -// and redesign your program to not need them! ONEWIRE_CRC8_TABLE -// is the exception, because it selects a fast but large algorithm -// or a small but slow algorithm. - -// you can exclude onewire_search by defining that to 0 -#ifndef ONEWIRE_SEARCH -#define ONEWIRE_SEARCH 1 -#endif - -// You can exclude CRC checks altogether by defining this to 0 -#ifndef ONEWIRE_CRC -#define ONEWIRE_CRC 1 -#endif - -class OneWire : public DigitalInOut -{ - Timer timer; - -#if ONEWIRE_SEARCH - // global search state - unsigned char ROM_NO[8]; - uint8_t LastDiscrepancy; - uint8_t LastFamilyDiscrepancy; - uint8_t LastDeviceFlag; -#endif - -public: - OneWire(PinName pin); - - // Perform a 1-Wire reset cycle. Returns 1 if a device responds - // with a presence pulse. Returns 0 if there is no device or the - // bus is shorted or otherwise held low for more than 250uS - uint8_t reset(void); - - // Issue a 1-Wire rom select command, you do the reset first. - void select(const uint8_t rom[8]); - - // Issue a 1-Wire rom skip command, to address all on bus. - void skip(void); - - // Write a byte. If 'power' is one then the wire is held high at - // the end for parasitically powered devices. You are responsible - // for eventually depowering it by calling depower() or doing - // another read or write. - void write_byte(uint8_t v, uint8_t power = 0); - - void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0); - - // Read a byte. - uint8_t read_byte(void); - - void read_bytes(uint8_t *buf, uint16_t count); - - // Write a bit. The bus is always left powered at the end, see - // note in write() about that. - void write_bit(uint8_t v); - - // Read a bit. - uint8_t read_bit(void); - - // Stop forcing power onto the bus. You only need to do this if - // you used the 'power' flag to write() or used a write_bit() call - // and aren't about to do another read or write. You would rather - // not leave this powered if you don't have to, just in case - // someone shorts your bus. - void depower(void); - -#if ONEWIRE_SEARCH - // Clear the search state so that if will start from the beginning again. - void reset_search(); - - // Setup the search to find the device type 'family_code' on the next call - // to search(*newAddr) if it is present. - void target_search(uint8_t family_code); - - // Look for the next device. Returns 1 if a new address has been - // returned. A zero might mean that the bus is shorted, there are - // no devices, or you have already retrieved all of them. It - // might be a good idea to check the CRC to make sure you didn't - // get garbage. The order is deterministic. You will always get - // the same devices in the same order. - uint8_t search(uint8_t *newAddr); -#endif - -#if ONEWIRE_CRC - // Compute a Dallas Semiconductor 8 bit CRC, these are used in the - // ROM and scratchpad registers. - static uint8_t crc8(const uint8_t *addr, uint8_t len); - -#if ONEWIRE_CRC16 - // Compute the 1-Wire CRC16 and compare it against the received CRC. - // Example usage (reading a DS2408): - // // Put everything in a buffer so we can compute the CRC easily. - // uint8_t buf[13]; - // buf[0] = 0xF0; // Read PIO Registers - // buf[1] = 0x88; // LSB address - // buf[2] = 0x00; // MSB address - // WriteBytes(net, buf, 3); // Write 3 cmd bytes - // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 - // if (!CheckCRC16(buf, 11, &buf[11])) { - // // Handle error. - // } - // - // @param input - Array of bytes to checksum. - // @param len - How many bytes to use. - // @param inverted_crc - The two CRC16 bytes in the received data. - // This should just point into the received data, - // *not* at a 16-bit integer. - // @param crc - The crc starting value (optional) - // @return True, iff the CRC matches. - static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0); - - // Compute a Dallas Semiconductor 16 bit CRC. This is required to check - // the integrity of data received from many 1-Wire devices. Note that the - // CRC computed here is *not* what you'll get from the 1-Wire network, - // for two reasons: - // 1) The CRC is transmitted bitwise inverted. - // 2) Depending on the endian-ness of your processor, the binary - // representation of the two-byte return value may have a different - // byte order than the two bytes you get from 1-Wire. - // @param input - Array of bytes to checksum. - // @param len - How many bytes to use. - // @param crc - The crc starting value (optional) - // @return The CRC16, as defined by Dallas Semiconductor. - static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0); -#endif -#endif -}; - -#endif - -
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/iButton.cpp Wed Aug 26 19:44:50 2020 +0000 @@ -0,0 +1,141 @@ +#include "iButton.h" + +extern Serial dbg; + +iButton::iButton(PinName IO) : io(IO) +{ +} + +iButton::~iButton() +{ +} + +void iButton::OneWireReset(void) +{ + io.output(); + io = 0; + wait_us(500); + io.input(); + wait_us(500); +} + +void iButton::OneWireOutByte(unsigned char data) +{ + for (int n = 8;n!=0; n--) + { + if ((data & 0x01) == 1) + { + io.output(); + io = 0; + wait_us(5); + io.input(); + wait_us(60); + } + else + { + io.output(); + wait_us(60); + io.input(); + } + data = data >> 1; + } +} + +unsigned char iButton::OneWireReadByte(void) +{ + unsigned char d = 0; + unsigned char b; + for (int n = 0; n<8; n++) + { + io.output(); + io = 0; + wait_us(5); + io.input(); + wait_us(5); + b = io; + wait_us(50); + d = (d >> 1) | (b << 7); + } + return d; +} + +void iButton::ResetData() +{ + detect.family = 0; + detect.serial.clear(); + detect.crc = 0; + detect.valid = false; +} + +void iButton::DetectiButton(void) +{ + unsigned char crc = 0; + + OneWireReset(); + OneWireOutByte(0x33); + + ResetData(); + + detect.family = OneWireReadByte(); + crc = crc8(crc, detect.family); + if (detect.family == 0x00 || detect.family == 0xFF) + { + detect.valid = false; + return; + } + + for (int i = 0; i <6; i++) + { +// detect.serial[i] = OneWireReadByte(); + detect.serial.push_back(OneWireReadByte()); + crc = crc8(crc, detect.serial[i]); + } + detect.crc = OneWireReadByte(); + if (crc == detect.crc) + { + detect.valid = true; + } + //dbg.printf("[Detect Ibutton]\r\n"); + return; +} + +std::string conv(const unsigned char &val) +{ + char st[5]; + sprintf(st,"%02X",val); + return st; +} + +bool iButton::IsTaping(void) +{ + return detect.valid; +} + +std::string iButton::GetData(void) +{ + size_t sz = detect.serial.size(); + string ret = ""; + + for(int i=sz-1; i>=0; i--) + { + ret += conv(detect.serial[i]); + } + return ret; +} + +unsigned char iButton::crc8(unsigned char crc, unsigned char data) +{ + crc = crc ^ data; + for (int i = 0; i < 8; i++) + { + if (crc & 0x01) + { + crc = (crc >> 1) ^ 0x8C; + } + else + { + crc >>= 1; + } + } + return crc; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/iButton.h Wed Aug 26 19:44:50 2020 +0000 @@ -0,0 +1,48 @@ +#ifndef I_BUTTON_H +#define I_BUTTON_H + +#include "mbed.h" +#include <string> +#include <vector> + +//typedef struct +//{ +// unsigned char family; +// unsigned char serial[6]; +// unsigned char crc; +// unsigned char valid; +//} ibuttonvalue; +class ibuttonvalue +{ +public: + unsigned char family; + std::vector<unsigned char> serial; + unsigned char crc; + bool valid; +}; + +class iButton +{ +public: + + iButton(PinName IO); + ~iButton(); + + void OneWireReset(void); + void OneWireOutByte(unsigned char data); + unsigned char OneWireReadByte(void); + void DetectiButton(void); + std::string GetData(void); + bool IsTaping(void); + +private: + DigitalInOut io; + ibuttonvalue detect; + unsigned char CrcTemp; + + unsigned char crc8(unsigned char crc, unsigned char data); + void ResetData(); + +}; + +#endif // I_BUTTON_H