zzz
Diff: OneWire.h
- Revision:
- 14:2d0b5e0f0aed
- Parent:
- 13:016b84669050
--- a/OneWire.h Thu Apr 04 20:46:58 2019 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,189 +0,0 @@ -#ifndef OneWire_h -#define OneWire_h - -#include <inttypes.h> -#include <mbed.h> - -#if defined(TARGET_STM) - #define MODE() output(); \ - mode(OpenDrain) - #define OUTPUT() // configured as output in the constructor and stays like that forever -#if defined(TARGET_STM32L072xx) - #define PORT ((GPIO_TypeDef *)(GPIOA_BASE + 0x0400 * STM_PORT(gpio.pin))) - #define PINMASK (1 << STM_PIN(gpio.pin)) - #define INPUT() (PORT->MODER &= ~(GPIO_MODER_MODE0_0 << (STM_PIN(gpio.pin) * 2))) - #define READ() ((PORT->IDR & gpio.mask) != 0) - #define WRITE(x) (x == 1 ? PORT->BSRR = PINMASK : PORT->BRR = PINMASK) -#else - #define INPUT() (*gpio.reg_set = gpio.mask) // write 1 to open drain - #define READ() ((*gpio.reg_in & gpio.mask) != 0) - #define WRITE(x) write(x) -#endif -#else - #define MODE() mode(PullUp) - #define INPUT() input() - #define OUTPUT() output() - #define READ() read() - #define WRITE(x) write(x) -#endif - -#ifdef TARGET_NORDIC -//NORDIC targets (NRF) use software delays since their ticker uses a 32kHz clock - static uint32_t loops_per_us = 0; - - #define INIT_WAIT init_soft_delay() - #define WAIT_US(x) for(int cnt = 0; cnt < (x * loops_per_us) >> 5; cnt++) {__NOP(); __NOP(); __NOP();} - -void init_soft_delay( void ) { - if (loops_per_us == 0) { - loops_per_us = 1; - Timer timey; - timey.start(); - ONEWIRE_DELAY_US(320000); - timey.stop(); - loops_per_us = (320000 + timey.read_us() / 2) / timey.read_us(); - } -} -#else - #define INIT_WAIT - #define WAIT_US(x) wait_us(x) -#endif - -// You can exclude certain features from OneWire. In theory, this -// might save some space. In practice, the compiler automatically -// removes unused code (technically, the linker, using -fdata-sections -// and -ffunction-sections when compiling, and Wl,--gc-sections -// when linking), so most of these will not result in any code size -// reduction. Well, unless you try to use the missing features -// and redesign your program to not need them! ONEWIRE_CRC8_TABLE -// is the exception, because it selects a fast but large algorithm -// or a small but slow algorithm. - -// you can exclude onewire_search by defining that to 0 -#ifndef ONEWIRE_SEARCH -#define ONEWIRE_SEARCH 1 -#endif - -// You can exclude CRC checks altogether by defining this to 0 -#ifndef ONEWIRE_CRC -#define ONEWIRE_CRC 1 -#endif - -class OneWire : public DigitalInOut -{ - Timer timer; - -#if ONEWIRE_SEARCH - // global search state - unsigned char ROM_NO[8]; - uint8_t LastDiscrepancy; - uint8_t LastFamilyDiscrepancy; - uint8_t LastDeviceFlag; -#endif - -public: - OneWire(PinName pin); - - // Perform a 1-Wire reset cycle. Returns 1 if a device responds - // with a presence pulse. Returns 0 if there is no device or the - // bus is shorted or otherwise held low for more than 250uS - uint8_t reset(void); - - // Issue a 1-Wire rom select command, you do the reset first. - void select(const uint8_t rom[8]); - - // Issue a 1-Wire rom skip command, to address all on bus. - void skip(void); - - // Write a byte. If 'power' is one then the wire is held high at - // the end for parasitically powered devices. You are responsible - // for eventually depowering it by calling depower() or doing - // another read or write. - void write_byte(uint8_t v, uint8_t power = 0); - - void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0); - - // Read a byte. - uint8_t read_byte(void); - - void read_bytes(uint8_t *buf, uint16_t count); - - // Write a bit. The bus is always left powered at the end, see - // note in write() about that. - void write_bit(uint8_t v); - - // Read a bit. - uint8_t read_bit(void); - - // Stop forcing power onto the bus. You only need to do this if - // you used the 'power' flag to write() or used a write_bit() call - // and aren't about to do another read or write. You would rather - // not leave this powered if you don't have to, just in case - // someone shorts your bus. - void depower(void); - -#if ONEWIRE_SEARCH - // Clear the search state so that if will start from the beginning again. - void reset_search(); - - // Setup the search to find the device type 'family_code' on the next call - // to search(*newAddr) if it is present. - void target_search(uint8_t family_code); - - // Look for the next device. Returns 1 if a new address has been - // returned. A zero might mean that the bus is shorted, there are - // no devices, or you have already retrieved all of them. It - // might be a good idea to check the CRC to make sure you didn't - // get garbage. The order is deterministic. You will always get - // the same devices in the same order. - uint8_t search(uint8_t *newAddr); -#endif - -#if ONEWIRE_CRC - // Compute a Dallas Semiconductor 8 bit CRC, these are used in the - // ROM and scratchpad registers. - static uint8_t crc8(const uint8_t *addr, uint8_t len); - -#if ONEWIRE_CRC16 - // Compute the 1-Wire CRC16 and compare it against the received CRC. - // Example usage (reading a DS2408): - // // Put everything in a buffer so we can compute the CRC easily. - // uint8_t buf[13]; - // buf[0] = 0xF0; // Read PIO Registers - // buf[1] = 0x88; // LSB address - // buf[2] = 0x00; // MSB address - // WriteBytes(net, buf, 3); // Write 3 cmd bytes - // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 - // if (!CheckCRC16(buf, 11, &buf[11])) { - // // Handle error. - // } - // - // @param input - Array of bytes to checksum. - // @param len - How many bytes to use. - // @param inverted_crc - The two CRC16 bytes in the received data. - // This should just point into the received data, - // *not* at a 16-bit integer. - // @param crc - The crc starting value (optional) - // @return True, iff the CRC matches. - static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0); - - // Compute a Dallas Semiconductor 16 bit CRC. This is required to check - // the integrity of data received from many 1-Wire devices. Note that the - // CRC computed here is *not* what you'll get from the 1-Wire network, - // for two reasons: - // 1) The CRC is transmitted bitwise inverted. - // 2) Depending on the endian-ness of your processor, the binary - // representation of the two-byte return value may have a different - // byte order than the two bytes you get from 1-Wire. - // @param input - Array of bytes to checksum. - // @param len - How many bytes to use. - // @param crc - The crc starting value (optional) - // @return The CRC16, as defined by Dallas Semiconductor. - static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0); -#endif -#endif -}; - -#endif - -