Programme carte strategie (disco)
Dependencies: mbed SerialHalfDuplex SDFileSystem DISCO-F469NI_portrait liaison_Bluetooth ident_crac
Strategie/Strategie.cpp
- Committer:
- Sitkah
- Date:
- 2018-05-03
- Revision:
- 37:fca332b64b42
- Parent:
- 36:6dd30780bd8e
- Child:
- 38:76f886a1c8e6
File content as of revision 37:fca332b64b42:
#include "global.h" #include <string.h> #include <sstream> //#include "StrategieManager.h" #define M_PI 3.14159265358979323846 #define VERT 0xFF00FF00 #define ROUGE 0xFFFF0000 #define BLEU 0xFF0000FF #define JAUNE 0xFFFEFE00 #define BLANC 0xFF000000 #define ORANGE 0xFFFFA500 #define NOIR 0xFF000000 #define DIY_GREY 0xFFDFDFDF char tableau_aff[10][50]; char tableau_etat[22][50]= { "Check_carte_screen", "Check_carte_screen_wait_ack", "Check_cartes", "Check_cartes_wait_ack", "Wait_force", "Config", "Game_init", "Game_wait_for_jack", "Game_start", "Game_next_instruction", "Game_instruction", "Game_wait_ack", "Game_jump_time", "Game_jump_config", "Game_jump_position", "Game_wait_end_instruction", "Warning_timeout", "Waring_end_balise_wait", "Warning_end_last_instruction", "Warning_switch_strategie", "End", "End_loop", }; int waitingAckID_FIN; int waitingAckFrom_FIN; Ticker ticker; TS_DISCO_F469NI ts; LCD_DISCO_F469NI lcd; TS_StateTypeDef TS_State; Ticker chrono; Timeout AffTime; Timer timer; Timer cartesCheker;//Le timer pour le timeout de la vérification des cartes Timer gameTimer; Timer debugetatTimer; Timer timeoutWarning; Timer timeoutWarningWaitEnd; Timeout chronoEnd;//permet d'envoyer la trame CAN pour la fin unsigned char screenChecktry = 0; unsigned char test[32] = {32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32}; char counter = 0; char check; char Jack = 1; int flag = 0, flag_strat = 0, flag_timer; char Ack_strat = 0; signed char Strat = 0; signed char FIFO_lecture=0;//Position du fifo de lecture des messages CAN signed short x_robot,y_robot,theta_robot;//La position du robot signed short target_x_robot, target_y_robot, target_theta_robot; E_InstructionType actionPrecedente; signed short start_move_x,start_move_y,start_move_theta;//La position du robot lors du début d'un mouvement, utilisé pour reprendre le mouvement apres stop balise //unsigned char FIFO_ecriture=0; //Position du fifo pour la reception CAN int flagSendCan=1; unsigned char Cote = 0; //0 -> VERT | 1 -> jaune unsigned short angleRecalage = 0; unsigned char checkCurrent = 0; unsigned char countAliveCard = 0; unsigned char ligne=0; float angle_moyen_balise_IR = 0.0; signed char Strategie = 0; //N° de la strategie (1-10) unsigned char ModeDemo = 0; // Si à 1, indique que l'on est dans le mode demo unsigned char countRobotNear = 0;//Le nombre de robot à proximité unsigned char ingnorBaliseOnce = 0; unsigned char ingnorInversionOnce = 0;//Pour ignorer l'inversion des instruction une fois struct S_Instruction instruction; char couleur1, couleur2, couleur3; float cptf; int cpt,cpt1; typedef enum {INIT, ATT, CHOIX, DEMO, TEST_TELEMETRE, TEST_CAPTEURS, TEST_SERVO, TEST_TIR, DEMO_IMMEUBLE,DEMO_TRIEUR, SELECT_SIDE, TACTIQUE, DETAILS,LECTURE, LAUNCH, AFF_WAIT_JACK, WAIT_JACK, COMPTEUR, FIN} T_etat; T_etat etat = INIT; E_stratGameEtat gameEtat = ETAT_CHECK_CARTES; E_stratGameEtat lastEtat = ETAT_CHECK_CARTES; /////////////////DEFINITION DES BOUTONS//////////////////// Button COTE_VERT(0, 25, 400, 300, "VERT"); Button COTE_ORANGE(0, 350, 400, 300, "ORANGE"); Button RETOUR (0, 680, 400, 110, "--Precedent--"); Button LANCER (0, 200, 400, 200, "--LANCER--"); Button CHECK (0, 420, 400, 200, "Valider"); Button MATCH (0, 50, 400, 320, "Match"); Button DEMONSTRATION (0, 400, 400, 320, "Demo"); Button TEST_HERKULEX(0, 25, 400, 100, "Test servos"); Button TEST_LASER(0, 135, 400, 100, "Test telemetre"); Button TEST_COULEURS(0,245,400,100,"Test capteurs"); Button TEST_TIR_BALLE(0,355,400,100,"Test Lanceur"); Button TEST_IMMEUBLE(0,465,400,100,"Test immeuble"); Button TEST_TRIEUR(0,575,400,100,"Test aiguilleur"); Button TIR_CHATEAU(0, 25, 400, 100, "Tir chateau"); Button EPURATION(0, 150, 400, 100, "epuration"); Button LANCEUR_ON(0,275,400,100,"allumer le lanceur"); Button LANCEUR_OFF(0,400,400,100,"eteindre le lanceur"); Button ABAISSE_BLOC(0, 25, 400, 100, "Ramasser blocs"); Button RELEVE_BLOC(0, 135, 400, 100, "lacher blocs"); Button BRAS_ABEILLE_ON(0,245,400,100,"bras abeille"); Button BRAS_ABEILLE_OFF(0,355,400,100,"baisser bras abeille"); Button INTERRUPTEUR_ON(0,465,400,100,"baisser bras interrupt"); Button INTERRUPTEUR_OFF(0,575,400,100,"baisser bras interrupt"); Button FORCE_LAUNCH(0, 50, 400, 320, "Force Launch"); Button TRI(0, 25, 400, 100, "Test tri"); Button AIGUILLEUR_D(0, 150, 400, 100, "aiguilleur droite"); Button AIGUILLEUR_G(0,275,400,100,"aiguilleur gauche"); Button AIGUILLEUR_CTRE(0,400,400,100,"aiguilleur centre"); Button SUIVANT(0,380,200,100,"Suivant"); Button COLOR_ORANGE (0, 230, 190, 110,""); Button COLOR_JAUNE (210, 230, 190, 110,""); Button COLOR_VERT (0, 350, 190, 110,""); Button COLOR_BLEU (210, 350, 190, 110,""); Button COLOR_NOIR (105, 470, 190, 110,""); //////////////////////////////////////////////////////////// void SendRawId (unsigned short id); void SelectionStrat (unsigned char numeroStrat); void Setflag(void); void can2Rx_ISR(void); signed char Bouton_Strat (void); void print_segment(int nombre, int decalage); void affichage_compteur (int nombre); void effacer_segment(long couleur); unsigned short telemetreDistance=0; unsigned short telemetreDistance_avant_gauche=0; unsigned short telemetreDistance_avant_droite=0; unsigned short telemetreDistance_arriere_gauche=0; unsigned short telemetreDistance_arriere_droite=0; #ifdef ROBOT_BIG unsigned short id_check[NOMBRE_CARTES]= {CHECK_MOTEUR,CHECK_BALISE,CHECK_ACTIONNEURS_AVANT,CHECK_ACTIONNEURS_ARRIERE}; unsigned short id_alive[NOMBRE_CARTES]= {ALIVE_MOTEUR,ALIVE_BALISE,ALIVE_ACTIONNEURS_AVANT,ALIVE_ACTIONNEURS_ARRIERE}; InterruptIn jack(PG_11); // entrée analogique en interruption pour le jack #else unsigned short id_check[NOMBRE_CARTES]= {CHECK_MOTEUR}; unsigned short id_alive[NOMBRE_CARTES]= {ALIVE_MOTEUR}; InterruptIn jack(PG_11); // entrée analogique en interruption pour le jack #endif /****************************************************************************************/ /* FUNCTION NAME: chronometre_ISR */ /* DESCRIPTION : Interruption à la fin des 90s du match */ /****************************************************************************************/ void chronometre_ISR (void) { SendRawId(ASSERVISSEMENT_STOP);//On stope les moteurs SendRawId(GLOBAL_GAME_END);//Indication fin de match etat=FIN; gameTimer.stop();//Arret du timer #ifdef ROBOT_BIG wait_ms(2000); doFunnyAction(); #endif while(1);//On bloque la programme dans l'interruption } /****************************************************************************************/ /* FUNCTION NAME: jack_ISR */ /* DESCRIPTION : Interruption en changement d'état sur le Jack */ /****************************************************************************************/ void jack_ISR (void) { if(gameEtat == ETAT_GAME_WAIT_FOR_JACK) { gameEtat = ETAT_GAME_START;//On débute le match etat=COMPTEUR; } } /****************************************************************************************/ /* FUNCTION NAME: SelectionStrat */ /* DESCRIPTION : Affiche la Stratégie sélectionnée sur l'ihm */ /****************************************************************************************/ void SelectionStrat (unsigned char Strategie) { lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(LCD_COLOR_BLACK); switch (Strategie+1) { case 0x1 : //description de Strategie n°1 lcd.DisplayStringAt(150, 0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x2 : //description de Strategie n°2 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x3 : //description de Strategie n°3 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x4 : //description de Strategie n°4 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x5 : //description de Strategie n°5 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x6 : //description de Strategie n°5 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x7 : //description de Strategie n°5 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x8 : //description de Strategie n°5 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0x9 : //description de Strategie n°5 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; case 0xA : //description de Strategie n°5 lcd.DisplayStringAt(150,0, (uint8_t *)strat_sd[Strategie], LEFT_MODE); break; } } void Setflag(void) { flagSendCan = 1; } void affichage_var(double Var){ if(ligne==7) ligne=0; char aff[10]="toto"; sprintf(aff,"%lf ",Var); lcd.DisplayStringAt(120, LINE(5+(ligne)), (uint8_t *)aff, LEFT_MODE); ligne++; } void affichage_debug(int Var){ int i; int conv=(int)Var; SUIVANT.Draw(ROUGE, 0); for(i=0;i<9;i++){ strcpy(tableau_aff[i],""); strcpy(tableau_aff[i],tableau_aff[i+1]); } strcpy(tableau_aff[9],tableau_etat[conv]); for(i=0;i<10;i++){ lcd.SetBackColor(VERT); lcd.DisplayStringAt(0, LINE(20+i), (uint8_t *)tableau_aff[i], LEFT_MODE); } /*while(!ack_bluetooth){ //liaison_bluetooth(); } ack_bluetooth=0;*/ /*while(SUIVANT.Touched()==0); while(SUIVANT.Touched());*/ } void automate_etat_ihm(void) { int j; if (j==0){ ts.Init(lcd.GetXSize(), lcd.GetYSize()); j++; } ts.GetState(&TS_State); switch (etat) { case INIT : ts.GetState(&TS_State); canProcessRx(); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(LCD_COLOR_BLACK); lcd.Clear (LCD_COLOR_WHITE); wait(0.15); lcd.DisplayStringAt(0, 10, (uint8_t *)"Verification des cartes", LEFT_MODE); //cartes non verifiées//////////////// lcd.SetTextColor(DIY_GREY); lcd.FillRect(0,400,400,150); //carte moteur lcd.FillRect(0,600,400,150); //Balise lcd.SetTextColor(LCD_COLOR_BLACK); lcd.SetBackColor(DIY_GREY); lcd.DisplayStringAt(80, 450, (uint8_t *)"Carte Moteur", LEFT_MODE); lcd.DisplayStringAt(110,650 , (uint8_t *)"Balise", LEFT_MODE); //////////////////////////////////////// FORCE_LAUNCH.Draw(0xFFFF0000, 0); /*while(flag == 0) { ts.GetState(&TS_State); canProcessRx(); if (FORCE_LAUNCH.Touched()) { etat = CHOIX; gameEtat = ETAT_CONFIG; flag = 1; while(FORCE_LAUNCH.Touched()); } }*/ etat=ATT; break; case ATT : if (flag==1){ etat = CHOIX; gameEtat = ETAT_CONFIG; } else if (FORCE_LAUNCH.Touched()){ etat = CHOIX; gameEtat = ETAT_CONFIG; while(FORCE_LAUNCH.Touched()); } break; case CHOIX : lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(LCD_COLOR_BLACK); lcd.Clear (LCD_COLOR_WHITE); lcd.DisplayStringAt(0, LINE(0), (uint8_t *)"Match ou demonstration ?", LEFT_MODE); DEMONSTRATION.Draw(LCD_COLOR_LIGHTGREEN, 0); MATCH.Draw(0xFFF01010, 0); while(etat == CHOIX) { canProcessRx(); if(DEMONSTRATION.Touched()) { etat = DEMO; while(DEMONSTRATION.Touched()); } if(MATCH.Touched()) { etat = SELECT_SIDE; while(MATCH.Touched()); } } break; case DEMO : lcd.Clear(LCD_COLOR_WHITE); RETOUR.Draw(0xFFFF0000, 0); TEST_HERKULEX.Draw(VERT, 0); TEST_LASER.Draw(VERT, 0); TEST_COULEURS.Draw(VERT, 0); TEST_TIR_BALLE.Draw(VERT, 0); TEST_IMMEUBLE.Draw(VERT,0); TEST_TRIEUR.Draw(VERT,0); if(gameEtat == ETAT_CONFIG) {//C'est bon on a le droit de modifier les config // InversStrat = 0;//Pas d'inversion de la couleur // A changer , discussion avec l'ihm } while (etat == DEMO) { canProcessRx(); if(TEST_HERKULEX.Touched()) { //Strat = 0x10; while(TEST_HERKULEX.Touched()); CANMessage trame_Tx = CANMessage(); trame_Tx.len = 1; trame_Tx.format = CANStandard; trame_Tx.type = CANData; trame_Tx.id=CHOICE_COLOR; trame_Tx.data[0]=0x2; can2.write(trame_Tx); TEST_HERKULEX.Draw(0xFFF0F0F0, 0); etat = TEST_SERVO; lcd.Clear(LCD_COLOR_WHITE); ModeDemo=1; } else if(TEST_LASER.Touched()) { //Strat = 0x11; while(TEST_LASER.Touched()); TEST_LASER.Draw(0xFFF0F0F0, 0); etat = TEST_TELEMETRE; } else if (TEST_COULEURS.Touched()){ while(TEST_COULEURS.Touched()); TEST_LASER.Draw(0xFFF0F0F0, 0); etat =TEST_CAPTEURS ; } else if (TEST_TIR_BALLE.Touched()){ while(TEST_TIR_BALLE.Touched()); TEST_TIR_BALLE.Draw(0xFFF0F0F0, 0); etat =TEST_TIR ; lcd.Clear(LCD_COLOR_WHITE); CANMessage trame_Tx = CANMessage(); trame_Tx.len = 1; trame_Tx.format = CANStandard; trame_Tx.type = CANData; trame_Tx.id=CHOICE_COLOR; trame_Tx.data[0]=0x2; can2.write(trame_Tx); ModeDemo=1; } else if(TEST_IMMEUBLE.Touched()){ while(TEST_IMMEUBLE.Touched()); TEST_IMMEUBLE.Draw(0xFFF0F0F0, 0); etat =DEMO_IMMEUBLE; lcd.Clear(LCD_COLOR_WHITE); } else if(TEST_TRIEUR.Touched()){ while(TEST_TRIEUR.Touched()); etat=DEMO_TRIEUR; lcd.Clear(LCD_COLOR_WHITE); } if(RETOUR.Touched()) { etat = CHOIX; while(RETOUR.Touched()); } if(gameEtat == ETAT_CONFIG) {//C'est bon on a le droit de modifier les config /*if (Strat< 0x10){ // Si la strat est une strat de match, on desactive le mode demo ModeDemo = 0; } else { // sinon, on active le mode demo, utile pour la fin de la demo ModeDemo = 1; }*/ Ack_strat = 1; wait_ms(10); //tactile_printf("Strat %d, Asser desactive",Strat); } //SelectionStrat(Strategie); } break; case DEMO_TRIEUR: lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(20, LINE(2), (uint8_t *)"DEMONSTRATION COURS", LEFT_MODE); TRI.Draw(VERT, 0); AIGUILLEUR_D.Draw(VERT, 0); AIGUILLEUR_G.Draw(VERT, 0); AIGUILLEUR_CTRE.Draw(VERT, 0); while(etat==DEMO_TRIEUR){ if(RETOUR.Touched()){ while (RETOUR.Touched()); etat=DEMO; } else if(TRI.Touched()){ while (TRI.Touched()); SendRawId(AIGUILLEUR_CENTRE); wait(0.5); SendRawId(AIGUILLEUR_DROITE); wait(0.5); SendRawId(AIGUILLEUR_GAUCHE); wait(0.5); SendRawId(AIGUILLEUR_CENTRE); break; } else if(AIGUILLEUR_D.Touched()){ while (AIGUILLEUR_D.Touched()); SendRawId(AIGUILLEUR_DROITE); break; } else if(AIGUILLEUR_G.Touched()){ while (AIGUILLEUR_G.Touched()); SendRawId(AIGUILLEUR_GAUCHE); break; } else if(BRAS_ABEILLE_OFF.Touched()){ while (BRAS_ABEILLE_OFF.Touched()); SendRawId(BRAS_ABEILLE_DOWN); break; } else if(AIGUILLEUR_CTRE.Touched()){ while (AIGUILLEUR_CTRE.Touched()); SendRawId(AIGUILLEUR_CENTRE); break; } } break; case DEMO_IMMEUBLE: int color=0; lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(20, LINE(2), (uint8_t *)"Choix du code couleur", LEFT_MODE); CANMessage msgTx=CANMessage(); msgTx.id=MONTER_IMMEUBLE; // Monter immeuble msgTx.len=3; msgTx.format=CANStandard; msgTx.type=CANData; while(etat==DEMO_IMMEUBLE){ switch(color){ case 0: RETOUR.Draw(ROUGE,0); COLOR_NOIR.Draw(NOIR,1); COLOR_ORANGE.Draw(ORANGE,0); COLOR_JAUNE.Draw(JAUNE,0); COLOR_VERT.Draw(VERT,0); COLOR_BLEU.Draw(VERT,0); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(NOIR); lcd.DisplayStringAt(100, LINE(4), (uint8_t *)"COULEUR 1", LEFT_MODE); while(color==0){ if(COLOR_ORANGE.Touched()){ while(COLOR_ORANGE.Touched()); COLOR_ORANGE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=1; color++; } else if (COLOR_NOIR.Touched()){ while(COLOR_NOIR.Touched()); COLOR_NOIR.Draw(LCD_COLOR_WHITE); msgTx.data[color]=2; color++; } else if (COLOR_VERT.Touched()){ while(COLOR_VERT.Touched()); COLOR_VERT.Draw(LCD_COLOR_WHITE); msgTx.data[color]=3; color++; } else if (COLOR_JAUNE.Touched()){ while(COLOR_JAUNE.Touched()); COLOR_JAUNE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=4; color++; } else if (COLOR_BLEU.Touched()){ while(COLOR_BLEU.Touched()); COLOR_ORANGE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=5; color++; } } break; case 1: lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(NOIR); lcd.DisplayStringAt(100, LINE(4), (uint8_t *)"COULEUR 2", LEFT_MODE); if(COLOR_ORANGE.Touched()){ while(COLOR_ORANGE.Touched()); COLOR_ORANGE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=1; color++; } else if (COLOR_NOIR.Touched()){ while(COLOR_NOIR.Touched()); COLOR_NOIR.Draw(LCD_COLOR_WHITE); msgTx.data[color]=2; color++; } else if (COLOR_VERT.Touched()){ while(COLOR_VERT.Touched()); COLOR_VERT.Draw(LCD_COLOR_WHITE); msgTx.data[color]=3; color++; } else if (COLOR_JAUNE.Touched()){ while(COLOR_JAUNE.Touched()); COLOR_JAUNE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=4; color++; } else if (COLOR_BLEU.Touched()){ while(COLOR_BLEU.Touched()); COLOR_ORANGE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=5; color++; } break; case 2: lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(NOIR); lcd.DisplayStringAt(100, LINE(4), (uint8_t *)"COULEUR 3", LEFT_MODE); if(COLOR_ORANGE.Touched()){ while(COLOR_ORANGE.Touched()); COLOR_ORANGE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=1; color++; } else if (COLOR_NOIR.Touched()){ while(COLOR_NOIR.Touched()); COLOR_NOIR.Draw(LCD_COLOR_WHITE); msgTx.data[color]=2; color++; } else if (COLOR_VERT.Touched()){ while(COLOR_VERT.Touched()); COLOR_VERT.Draw(LCD_COLOR_WHITE); msgTx.data[color]=3; color++; } else if (COLOR_JAUNE.Touched()){ while(COLOR_JAUNE.Touched()); COLOR_JAUNE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=4; color++; } else if (COLOR_BLEU.Touched()){ while(COLOR_BLEU.Touched()); COLOR_ORANGE.Draw(LCD_COLOR_WHITE); msgTx.data[color]=5; color++; } break; case 3: lcd.Clear(LCD_COLOR_WHITE); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(NOIR); lcd.DisplayStringAt(0, LINE(4), (uint8_t *)"Immeuble en construction", LEFT_MODE); RETOUR.Draw(ROUGE,0); can2.write(msgTx); color++; break; case 4: if(RETOUR.Touched()){ while(RETOUR.Touched()); etat=DEMO; } break; } if(RETOUR.Touched()){ while(RETOUR.Touched()); etat=DEMO; } } break; case TEST_SERVO: lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(20, LINE(2), (uint8_t *)"DEMONSTRATION COURS", LEFT_MODE); ABAISSE_BLOC.Draw(VERT, 0); RELEVE_BLOC.Draw(VERT, 0); BRAS_ABEILLE_ON.Draw(VERT, 0); BRAS_ABEILLE_OFF.Draw(VERT, 0); INTERRUPTEUR_ON.Draw(VERT, 0); INTERRUPTEUR_OFF.Draw(VERT, 0); RETOUR.Draw(0xFFFF0000,0); while(etat==TEST_SERVO){ if(RETOUR.Touched()){ while (RETOUR.Touched()); etat=DEMO; } else if(ABAISSE_BLOC.Touched()){ while (ABAISSE_BLOC.Touched()); SendRawId(BAISSER_ATTRAPE_BLOC); break; } else if(RELEVE_BLOC.Touched()){ while (RELEVE_BLOC.Touched()); SendRawId(RELEVER_ATTRAPE_BLOC); break; } else if(BRAS_ABEILLE_ON.Touched()){ while (BRAS_ABEILLE_ON.Touched()); SendRawId(BRAS_ABEILLE_UP); break; } else if(BRAS_ABEILLE_OFF.Touched()){ while (BRAS_ABEILLE_OFF.Touched()); SendRawId(BRAS_ABEILLE_DOWN); break; } else if(INTERRUPTEUR_ON.Touched()){ while (INTERRUPTEUR_ON.Touched()); SendRawId(ALLUMER_PANNEAU_UP); break; } else if(INTERRUPTEUR_OFF.Touched()){ while (INTERRUPTEUR_OFF.Touched()); SendRawId(ALLUMER_PANNEAU_DOWN); break; } } break; case TEST_TIR: lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(20, LINE(2), (uint8_t *)"DEMONSTRATION COURS", LEFT_MODE); TIR_CHATEAU.Draw(VERT, 0); EPURATION.Draw(VERT, 0); LANCEUR_ON.Draw(VERT, 0); LANCEUR_OFF.Draw(VERT, 0); RETOUR.Draw(ROUGE, 0); while(etat==TEST_TIR){ if(TIR_CHATEAU.Touched()){ while (TIR_CHATEAU.Touched()); SendRawId(INCLINAISON_CHATEAU); break; } else if (EPURATION.Touched()){ while (EPURATION.Touched()); SendRawId(INCLINAISON_EPURATION); break; } else if(LANCEUR_ON.Touched()){ while (LANCEUR_ON.Touched()); CANMessage msgTx=CANMessage(); msgTx.format=CANStandard; msgTx.type=CANData; msgTx.id=LANCEMENT_MOTEUR_TIR_ON; msgTx.len=1; msgTx.data[0]=0; can2.write(msgTx); break; } else if(LANCEUR_OFF.Touched()){ while (LANCEUR_OFF.Touched()); SendRawId(LANCEMENT_MOTEUR_TIR_OFF); break; } else if (RETOUR.Touched()){ while (RETOUR.Touched()); etat=DEMO; } } break; case TEST_TELEMETRE: ModeDemo=1; lcd.Clear(LCD_COLOR_WHITE); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(20, LINE(2), (uint8_t *)"DEMONSTRATION COURS", LEFT_MODE); RETOUR.Draw(0xFFFF0000, 0); while(etat==TEST_TELEMETRE){ SendRawId(DATA_RECALAGE); wait(0.1); canProcessRx(); if(RETOUR.Touched()){ while( RETOUR.Touched()); etat=DEMO; lcd.Clear(LCD_COLOR_WHITE); } } break; case SELECT_SIDE : lcd.Clear(LCD_COLOR_WHITE); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(LCD_COLOR_BLACK); lcd.DisplayStringAt(70, LINE(0), (uint8_t *)"Choisir le cote", LEFT_MODE); COTE_VERT.Draw(VERT, 0); COTE_ORANGE.Draw(ORANGE, 0); RETOUR.Draw(LCD_COLOR_RED, 0); while (etat == SELECT_SIDE) { canProcessRx(); if(COTE_VERT.Touched()) { liaison_Tx.envoyer(0x30,3,"123"); Cote = 0x0; InversStrat = Cote; etat = TACTIQUE; CANMessage trame_Tx = CANMessage(); trame_Tx.len = 1; trame_Tx.format = CANStandard; trame_Tx.type = CANData; trame_Tx.id=CHOICE_COLOR; trame_Tx.data[0]=Cote; can2.write(trame_Tx); while(COTE_VERT.Touched()); } if(COTE_ORANGE.Touched()) { Cote = 0x1; InversStrat= Cote; etat = TACTIQUE; CANMessage trame_Tx = CANMessage(); trame_Tx.len = 1; trame_Tx.format = CANStandard; trame_Tx.type = CANData; trame_Tx.id=CHOICE_COLOR; trame_Tx.data[0]=Cote; can2.write(trame_Tx); while(COTE_ORANGE.Touched()); } if(RETOUR.Touched()) { etat = CHOIX; while(RETOUR.Touched()); } } break; case TACTIQUE : if (Cote == 0){ lcd.Clear(VERT); lcd.SetBackColor(VERT); } else if (Cote == 1){ lcd.Clear(JAUNE); lcd.SetBackColor(JAUNE); } else { lcd.Clear(VERT); lcd.SetBackColor(VERT); } lcd.SetTextColor(LCD_COLOR_BLACK); lcd.DisplayStringAt(20, LINE(0), (uint8_t *)"Choisir une strategie", LEFT_MODE); Strategie = Bouton_Strat(); // retourne valeur de Strategie si bouton strat renvoi -1 on reviens en arriere if (Strategie == -1) { etat = SELECT_SIDE; } else { etat = DETAILS; } wait(0.1); break; case DETAILS : lcd.Clear(LCD_COLOR_WHITE); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(LCD_COLOR_BLACK); CHECK.Draw(VERT); RETOUR.Draw(LCD_COLOR_RED); SelectionStrat(Strategie); while (etat == DETAILS) { canProcessRx(); if (CHECK.Touched()) { if(gameEtat == ETAT_CONFIG) { gameEtat = ETAT_GAME_INIT; etat=LECTURE; } while(CHECK.Touched()); } if(RETOUR.Touched()) { etat = TACTIQUE; while(RETOUR.Touched()); } } break; case LECTURE : break; case AFF_WAIT_JACK : lcd.Clear(BLANC); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.SetTextColor(LCD_COLOR_BLACK); if (Cote == 0){ lcd.Clear(VERT); lcd.SetBackColor(VERT); } else if (Cote == 1){ lcd.Clear(JAUNE); lcd.SetBackColor(JAUNE); } else { lcd.Clear(VERT); lcd.SetBackColor(VERT); } canProcessRx(); lcd.DisplayStringAt(0, LINE(0), (uint8_t *)"En attente du Jack", CENTER_MODE); etat=WAIT_JACK; break; case WAIT_JACK: break; case COMPTEUR: /*cptf=gameTimer.read(); lcd.SetTextColor(LCD_COLOR_BLACK); cpt=int(cptf); if(cpt != cpt1){ lcd.Clear(VERT); affichage_compteur(100-cpt); } cpt1=cpt; flag_timer=0; affichage_debug(gameEtat); lcd.SetBackColor(LCD_COLOR_WHITE); */ break; case FIN : lcd.Clear (LCD_COLOR_WHITE); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(120, 190, (uint8_t *)"LANCEMENT", LEFT_MODE); lcd.SetTextColor(LCD_COLOR_BLACK); lcd.DisplayStringAt(120, 210, (uint8_t *)"REDEMARAGE", LEFT_MODE); lcd.DisplayStringAt(120, 230, (uint8_t *)"NECESSAIRE", LEFT_MODE); while(1); // force le redemarage du robot //break; } } /****************************************************************************************/ /* FUNCTION NAME: automate_process */ /* DESCRIPTION : Automate de gestion de la stratégie du robot */ /****************************************************************************************/ void automate_process(void){ static unsigned char AX12_enchainement = 0; static unsigned char MV_enchainement = 0; signed char localData1 = 0; signed short localData2 = 0; unsigned short localData3 = 0; //signed short localData4 = 0; unsigned char localData5 = 0; if(gameTimer.read_ms() >= 99000) {//Fin du match (On autorise 2s pour déposer des éléments gameTimer.stop(); gameTimer.reset(); gameEtat = ETAT_END;//Fin du temps etat=FIN; } if(lastEtat != gameEtat || debugetatTimer.read_ms() >= 1000) { lastEtat = gameEtat; debugetatTimer.reset(); sendStratEtat((unsigned char)gameEtat, (unsigned char)actual_instruction); } switch(gameEtat) { case ETAT_CHECK_CARTES: /* Il faut faire une boucle pour verifier toutes les cartes les une apres les autres */ waitingAckFrom = id_alive[checkCurrent];//On indique que l'on attend un ack de la carte IHM SendRawId(id_check[checkCurrent]);//On demande à la carte d'indiquer ça présence screenChecktry++;//On incrèment le conteur de tentative de 1 cartesCheker.reset();//On reset le timeOut cartesCheker.start();//On lance le timer pour le timeout gameEtat = ETAT_CHECK_CARTES_WAIT_ACK; break; case ETAT_CHECK_CARTES_WAIT_ACK: /* On attend l'ack de la carte en cours de vérification */ //printf("cartesCheker = %d waitingAckFrom = %d\n",cartesCheker.read_ms(), waitingAckFrom); if(waitingAckFrom == 0) {//C'est bon la carte est en ligne cartesCheker.stop(); screenChecktry = 0; countAliveCard++; checkCurrent++; if(checkCurrent >= NOMBRE_CARTES) { printf("all card check, missing %d cards\n",(NOMBRE_CARTES-countAliveCard)); if(countAliveCard >= NOMBRE_CARTES) { gameEtat = ETAT_CONFIG; flag=1; //tactile_printf("Selection couleur et strategie"); } else { gameEtat = ETAT_WAIT_FORCE;//Passage en attente de forçage du lancement waitingAckFrom = ECRAN_ALL_CHECK; } } else gameEtat = ETAT_CHECK_CARTES; } else if(cartesCheker.read_ms () > 100) { cartesCheker.stop(); if(screenChecktry >=3) { //printf("missing card %d\n",id_check[checkCurrent]); screenChecktry = 0; checkCurrent++; if(checkCurrent >= NOMBRE_CARTES){ if(countAliveCard == NOMBRE_CARTES){ gameEtat = ETAT_CONFIG; flag=1; } else{ gameEtat = ETAT_WAIT_FORCE; waitingAckFrom = ECRAN_ALL_CHECK; } } else gameEtat = ETAT_CHECK_CARTES; } else gameEtat = ETAT_CHECK_CARTES; } break; case ETAT_WAIT_FORCE: /* Attente du forçage de la part de la carte IHM */ if(waitingAckFrom == 0) { gameEtat = ETAT_CONFIG; } break; case ETAT_CONFIG: /* Attente de l'odre de choix de mode, Il est possible de modifier la couleur et l'id de la stratégie Il est aussi possible d'envoyer les ordres de debug */ modeTelemetre = 0; break; case ETAT_GAME_INIT: //On charge la liste des instructions loadAllInstruction(Strategie);//Mise en cache de toute les instructions led3=1; SendRawId(GLOBAL_START); gameEtat = ETAT_GAME_WAIT_FOR_JACK; if (etat == TEST_TELEMETRE|| etat ==TEST_CAPTEURS || etat == TEST_SERVO || etat ==TEST_TIR || etat == DEMO_IMMEUBLE) { SendRawId(DEBUG_FAKE_JAKE); } else { etat = AFF_WAIT_JACK; } //tactile_printf("Attente du JACK."); setAsservissementEtat(1);//On réactive l'asservissement jack.mode(PullDown); // désactivation de la résistance interne du jack jack.fall(&jack_ISR); // création de l'interrupt attachée au changement d'état (front descendant) sur le jack #ifdef ROBOT_BIG //le gros robot n'a pas de recalage bordure pour ce placer au début, on lui envoit donc ça position localData2 = POSITION_DEBUT_T; localData3 = POSITION_DEBUT_Y; if(InversStrat == 1) { localData2 = 1800-localData2;//Inversion theta if(localData2 > 1800) localData2 -= 3600; else if(localData2 <= -1800) localData2 += 3600; localData3 = 3000 - POSITION_DEBUT_Y;//Inversion du Y } SetOdometrie(ODOMETRIE_BIG_POSITION, POSITION_DEBUT_X,localData3,localData2); #endif #ifdef ROBOT_SMALL localData2 = POSITION_DEBUT_T; localData3 = POSITION_DEBUT_Y; if(InversStrat == 1) { localData2 = -localData2;//Inversion theta localData3 = 3000 - POSITION_DEBUT_Y;//Inversion du Y } SetOdometrie(ODOMETRIE_SMALL_POSITION, POSITION_DEBUT_X,localData3,localData2); #endif break; case ETAT_GAME_WAIT_FOR_JACK: //On attend le jack break; case ETAT_GAME_START: gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; if (ModeDemo == 0){ chronoEnd.attach(&chronometre_ISR,100);//On lance le chrono de 90s gameTimer.start(); } gameTimer.reset(); jack.fall(NULL);//On désactive l'interruption du jack //SendRawId(GLOBAL_START); Jack=0; //à envoyer sur le CAN et en direct pour l'automate de l'ihm ou sur CANV //tactile_printf("Start");//Pas vraiment utile mais bon break; case ETAT_GAME_LOAD_NEXT_INSTRUCTION: /* Chargement de l'instruction suivante ou arret du robot si il n'y a plus d'instruction */ //printf("load next instruction\n"); if(actual_instruction >= nb_instructions || actual_instruction == 255) { gameEtat = ETAT_END; //Il n'y a plus d'instruction, fin du jeu } else { instruction = strat_instructions[actual_instruction]; //On effectue le traitement de l'instruction gameEtat = ETAT_GAME_PROCESS_INSTRUCTION; } screenChecktry = 0; ingnorInversionOnce = 0; break; case ETAT_GAME_PROCESS_INSTRUCTION: /* Traitement de l'instruction, envoie de la trame CAN */ //debug_Instruction(instruction); affichage_debug(gameEtat); actionPrecedente = instruction.order; switch(instruction.order) { case MV_COURBURE://C'est un rayon de courbure actionPrecedente = MV_COURBURE; waitingAckID = ASSERVISSEMENT_COURBURE; waitingAckFrom = ACKNOWLEDGE_MOTEUR; if(instruction.nextActionType == ENCHAINEMENT){ MV_enchainement++; localData5 = 1; } else { if(MV_enchainement > 0) { localData5 = 2; MV_enchainement = 0; } else { localData5 = 0; } } localData1 = ((instruction.direction == LEFT)?1:-1); localData2 = instruction.arg3; if(InversStrat == 1 && ingnorInversionOnce == 0) { localData1 = -localData1;//Inversion de la direction #ifdef ROBOT_BIG localData2 = -localData2; localData1 = -localData1;//Inversion de la direction #endif } BendRadius(instruction.arg1, localData2, localData1, localData5); target_theta_robot = localData2 - theta_robot; /* if(instruction.direction == LEFT){ }else{ target_theta_robot = theta_robot + localData2; }*/ break; case MV_LINE://Ligne droite waitingAckID = ASSERVISSEMENT_RECALAGE; waitingAckFrom = ACKNOWLEDGE_MOTEUR; if(instruction.nextActionType == ENCHAINEMENT) { MV_enchainement++; localData5 = 1; } else { if(MV_enchainement > 0) {//Utilisé en cas d'enchainement, localData5 = 2; MV_enchainement = 0; } else { localData5 = 0; } } #ifdef ROBOT_BIG if(InversStrat == 1 && ingnorInversionOnce == 0) { /*if (instruction.direction == FORWARD) instruction.direction = BACKWARD; else instruction.direction = FORWARD;*/ instruction.direction = ((instruction.direction == FORWARD)?BACKWARD:FORWARD); } #endif localData2 = (((instruction.direction == FORWARD)?1:-1)*instruction.arg1); GoStraight(localData2, 0, 0, localData5); target_x_robot = x_robot + localData2*cos((double)theta_robot*M_PI/1800); target_y_robot = y_robot + localData2*sin((double)theta_robot*M_PI/1800); target_theta_robot = theta_robot; break; case MV_TURN: //Rotation sur place if(instruction.direction == RELATIVE) { localData2 = instruction.arg3; } else {//C'est un rotation absolu, il faut la convertir en relative localData2 = instruction.arg3; localData2 = (localData2 - theta_robot)%3600; if(localData2 > 1800) { localData2 = localData2-3600; } } #ifdef ROBOT_SMALL if(InversStrat == 1 && ingnorInversionOnce == 0) { localData2 = -localData2; } #endif #ifdef ROBOT_BIG if(InversStrat == 1 && ingnorInversionOnce == 0) { if(instruction.direction == RELATIVE) { localData2 = instruction.arg3; } else {//C'est un rotation absolu, il faut la convertir en relative localData2 = 1800-instruction.arg3;//Inversion theta if(localData2 > 1800) localData2 -= 3600; else if(localData2 <= -1800) localData2 += 3600; localData2 = (localData2 - theta_robot)%3600; if(localData2 > 1800) { localData2 = localData2-3600; } } } #endif waitingAckID = ASSERVISSEMENT_ROTATION; waitingAckFrom = ACKNOWLEDGE_MOTEUR; Rotate(localData2); break; case MV_XYT: if(instruction.direction == BACKWARD) { localData1 = -1; } else { localData1 = 1; } if(InversStrat == 1 && ingnorInversionOnce == 0) { localData2 = -instruction.arg3; localData3 = 3000 - instruction.arg2;//Inversion du Y } else { localData3 = instruction.arg2; localData2 = instruction.arg3; } #ifdef ROBOT_BIG if(InversStrat == 1 && ingnorInversionOnce == 0) { localData1 = -localData1; localData2 = 1800-instruction.arg3;//Inversion theta if(localData2 > 1800) localData2 -= 3600; else if(localData2 <= -1800) localData2 += 3600; } #endif GoToPosition(instruction.arg1,localData3,localData2,localData1); waitingAckID = ASSERVISSEMENT_XYT; waitingAckFrom = ACKNOWLEDGE_MOTEUR; target_x_robot = instruction.arg1; target_y_robot = localData3; target_theta_robot = localData2; break; case MV_RECALAGE: if(instruction.nextActionType == MECANIQUE) { instruction.nextActionType = WAIT; waitingAckID = ASSERVISSEMENT_RECALAGE; waitingAckFrom = ACKNOWLEDGE_MOTEUR; localData2 = (((instruction.direction == FORWARD)?1:-1)*3000);//On indique une distance de 3000 pour etre sur que le robot va ce recaler if(instruction.precision == RECALAGE_Y) { localData5 = 2; if(InversStrat == 1 && ingnorInversionOnce == 0) { localData3 = 3000 - instruction.arg1;//Inversion du Y } else { localData3 = instruction.arg1; } } else { localData5 = 1; localData3 = instruction.arg1; } GoStraight(localData2, localData5, localData3, 0); } else //CAPTEUR { SendRawId(DATA_RECALAGE); waitingAckID = RECEPTION_RECALAGE; waitingAckFrom = ACKNOWLEDGE_TELEMETRE; // On attend que les variables soient actualisé while(!(waitingAckID == 0 && waitingAckFrom == 0)) canProcessRx(); while(!(waitingAckID_FIN==0 && waitingAckFrom_FIN==0)) canProcessRx(); if(instruction.precision == RECALAGE_Y) // ((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600)) (theta_robot < 900 && theta_robot > -900) { SetOdometrie(ODOMETRIE_SMALL_POSITION, x_robot, recalageDistanceY(), theta_robot); } else if(instruction.precision == RECALAGE_X) { SetOdometrie(ODOMETRIE_SMALL_POSITION, recalageDistanceX(), y_robot, theta_robot); } else if(instruction.precision == RECALAGE_T) { SetOdometrie(ODOMETRIE_SMALL_POSITION, x_robot, y_robot, recalageAngulaireCapteur() ); } } break; case ACTION: int tempo = 0; waitingAckID= ACK_ACTION; //On veut un ack de type action waitingAckFrom = ACKNOWLEDGE_HERKULEX; //de la part des herkulex tempo = doAction(instruction.arg1,instruction.arg2,instruction.arg3); if(tempo == 1){ //L'action est spécifique if((waitingAckFrom == 0 && waitingAckID == 0) && instruction.nextActionType == ENCHAINEMENT) { actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; } else { gameEtat = ETAT_GAME_WAIT_ACK; } #ifdef ROBOT_SMALL /*actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;*/ #endif return; #ifdef ROBOT_SMALL } else if (tempo == 2) { // on est dans le cas de l'avance selon le telemetre waitingAckID = ASSERVISSEMENT_RECALAGE; waitingAckFrom = ACKNOWLEDGE_MOTEUR; localData2 = (((instruction.direction == FORWARD)?1:-1)*instruction.arg1); GoStraight(telemetreDistance, 0, 0, 0); // on reset la distance du telemetre à 0 telemetreDistance = 5000; #endif }else{ //C'est un AX12 qu'il faut bouger //AX12_setGoal(instruction.arg1,instruction.arg3/10,instruction.arg2); //AX12_enchainement++; } break; default: //Instruction inconnue, on l'ignore break; } if(instruction.nextActionType == JUMP || instruction.nextActionType == WAIT) { gameEtat = ETAT_GAME_WAIT_ACK;//Il faut attendre que la carte est bien reçu l'acknowledge screenChecktry++;//On incrèment le conteur de tentative de 1 cartesCheker.reset();//On reset le timeOut cartesCheker.start(); if(AX12_enchainement > 0) { //AX12_processChange();//Il faut lancer le déplacement des AX12 //AX12_enchainement = 0; } } else {//C'est un enchainement if(instruction.order == MV_LINE){ gameEtat = ETAT_GAME_WAIT_ACK; } else{ actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//C'est un enchainement, on charge directement l'instruction suivante } } break; case ETAT_GAME_WAIT_ACK: canProcessRx(); if(waitingAckID == 0 && waitingAckFrom == 0) {//Les ack ont été reset, c'est bon on continue //if(true) { cartesCheker.stop(); if(instruction.nextActionType == JUMP) { if(instruction.jumpAction == JUMP_POSITION) { gameEtat = ETAT_GAME_JUMP_POSITION; } else {//Pour eviter les erreurs, on dit que c'est par défaut un jump time gameEtat = ETAT_GAME_JUMP_TIME; cartesCheker.reset();//On reset le timeOut cartesCheker.start(); } } else if(instruction.nextActionType == WAIT) { ///Actualisation des waiting ack afin d'attendre la fin des actions gameEtat = ETAT_GAME_WAIT_END_INSTRUCTION; switch(instruction.order) { case MV_COURBURE: waitingAckID_FIN = ASSERVISSEMENT_COURBURE; waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR; break; case MV_LINE: waitingAckID_FIN = ASSERVISSEMENT_RECALAGE; waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR; break; case MV_TURN: waitingAckID_FIN = ASSERVISSEMENT_ROTATION; waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR; break; case MV_XYT: waitingAckID_FIN = ASSERVISSEMENT_XYT; waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR; break; case MV_RECALAGE: waitingAckID_FIN = ASSERVISSEMENT_RECALAGE; waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR; break; case ACTION: if (modeTelemetre == 0){ if (telemetreDistance == 0){ waitingAckID_FIN = ACK_FIN_ACTION;// ack de type action waitingAckFrom_FIN = ACKNOWLEDGE_HERKULEX; //de la part des herkulex/actionneurs }else if(telemetreDistance == 5000){ // on est dans le cas ou l'on fait une ligne suivant la distance du telemetre waitingAckID_FIN = ASSERVISSEMENT_RECALAGE; waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR; telemetreDistance = 0; } }else{ // si on attend la reponse du telemetre //modeTelemetre = 1; waitingAckID_FIN = OBJET_SUR_TABLE; waitingAckFrom_FIN = 0; } break; default: break; } } else { gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante } } else if(cartesCheker.read_ms () > 1000){ cartesCheker.stop(); if(screenChecktry >=2) {//La carte n'a pas reçus l'information, on passe à l'instruction d'erreur actual_instruction = instruction.nextLineError; gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; } else { gameEtat = ETAT_GAME_PROCESS_INSTRUCTION;//On retourne dans l'etat d'envois de l'instruction } } break; case ETAT_GAME_JUMP_TIME: if(cartesCheker.read_ms () >= instruction.JumpTimeOrX) { cartesCheker.stop();//On arrete le timer actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//On charge l'instruction suivante } break; case ETAT_GAME_JUMP_CONFIG: signed int depasX = 1, depasY = 1; // servent à indiquer le sens de dépassement des coordonnées // 1 si l'instruction est plus grande que la position du robot // -1 si l'instruction est plus petite que la position du robot // 0 si l'instruction et position du robot sont proche de moins de 1cm if (abs(x_robot-instruction.JumpTimeOrX)<10){ depasX = 0; }else if(x_robot > instruction.JumpTimeOrX){ depasX = -1; } if(abs(y_robot-instruction.JumpY)<10){ depasY = 0; }else if(y_robot > instruction.JumpY){ depasY = -1; } gameEtat = ETAT_GAME_JUMP_POSITION; break; case ETAT_GAME_JUMP_POSITION: bool Xok = false, Yok = false; if (depasX == 0){ Xok = true; }else if ((instruction.JumpTimeOrX - x_robot)*depasX < -5){ Xok = true; } if (depasY == 0){ Yok = true; }else if ((instruction.JumpY - y_robot)*depasY < -5){ Yok = true; } // on teste si les deux coordonnées ont été dépassées, si oui on lance l'instruction suivante if (Xok && Yok){ actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//On charge l'instruction suivante } break; case ETAT_GAME_WAIT_END_INSTRUCTION: canProcessRx(); if(waitingAckID_FIN == 0 && waitingAckFrom_FIN ==0) {//On attend que la carte nous indique que l'instruction est terminée actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//On charge l'instruction suivante } break; case ETAT_WARNING_TIMEOUT://Attente de la trame fin de danger ou du timeout de 2s if(timeoutWarning.read_ms() >= BALISE_TIMEOUT)//ça fait plus de 2s, il faut changer de stratégie { gameEtat = ETAT_EVITEMENT; } break; case ETAT_WARING_END_BALISE_WAIT://Attente d'une seconde apres la fin d'un End Balise pour etre sur que c'est bon if(timeoutWarningWaitEnd.read_ms() >= 1000) {//c'est bon, on repart //actual_instruction = instruction.nextLineError; gameEtat = ETAT_WARNING_END_LAST_INSTRUCTION; } break; case ETAT_WARNING_END_LAST_INSTRUCTION://trouver le meilleur moyen de reprendre l'instruction en cours /* #ifdef ROBOT_BIG actual_instruction = instruction.nextLineError;// 2 //Modification directe... c'est pas bien mais ça marchait pour le match 5 gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; #else actual_instruction = instruction.nextLineError; gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; #endif gameEtat = ETAT_END;*/ switch(actionPrecedente){ case MV_LINE: if(instruction.direction == BACKWARD) { localData1 = -1; } else { localData1 = 1; } GoToPosition(target_x_robot,target_y_robot,target_theta_robot,localData1); debugXYTTarget(target_x_robot,target_y_robot,target_theta_robot); waitingAckID = ASSERVISSEMENT_XYT; waitingAckFrom = ACKNOWLEDGE_MOTEUR; gameEtat = ETAT_GAME_WAIT_ACK; instruction.order = MV_XYT; instruction.arg1 = target_x_robot; instruction.arg2 = target_y_robot; instruction.arg3 = target_theta_robot; instruction.direction = (localData1)?FORWARD:BACKWARD; ingnorInversionOnce = 1;//Pour éviter que l'ago recalcul l'inversion return; case MV_XYT: gameEtat = ETAT_GAME_PROCESS_INSTRUCTION; ///////cv break; case MV_COURBURE: //target_theta_robot = theta_robot - target_theta_robot; //instruction.arg3 = instruction.arg3 - target_theta_robot; if(instruction.direction == LEFT){ target_theta_robot = target_theta_robot - theta_robot; }else{ target_theta_robot = theta_robot + target_theta_robot; } target_theta_robot = (target_theta_robot)%3600; if(target_theta_robot > 1800) { target_theta_robot = target_theta_robot-3600; } if(InversStrat == 1) { target_theta_robot = -target_theta_robot; } instruction.arg3 = target_theta_robot; gameEtat = ETAT_GAME_PROCESS_INSTRUCTION; break; default: actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; break; } //actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante //gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; break; case ETAT_WARNING_SWITCH_STRATEGIE://Si à la fin du timeout il y a toujours un robot, passer à l'instruction d'erreur actual_instruction = instruction.nextLineError; gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; ingnorBaliseOnce = 1; break; case ETAT_EVITEMENT : E_Evitement EvitEtat= ETAT_INIT_EVITEMENT; while(1) { canProcessRx(); switch(EvitEtat) { case ETAT_INIT_EVITEMENT: EvitEtat = ETAT_ESTIMATION_POSITION; break; case ETAT_ESTIMATION_POSITION : wait_ms(100); Rotate(3600); EvitEtat = ETAT_ESTIMATION_POSITION_ROTATION_ACK; waitingAckID = ASSERVISSEMENT_ROTATION; waitingAckFrom = ACKNOWLEDGE_MOTEUR; break; case ETAT_ESTIMATION_POSITION_ROTATION_ACK: if(waitingAckID == 0 && waitingAckFrom == 0) EvitEtat = ETAT_ESTIMATION_POSITION_ROTATION_ACK_END; break; case ETAT_ESTIMATION_POSITION_ROTATION_ACK_END: if(angle_moyen_balise_IR >= 13.5 && angle_moyen_balise_IR <= 14.5) { wait_ms(100); SendRawId(ASSERVISSEMENT_STOP); EvitEtat = ETAT_FIN_EVITEMENT; } break; case ETAT_FIN_EVITEMENT: break; } } break; case ETAT_END: if (ModeDemo){ gameEtat = ETAT_CHECK_CARTE_SCREEN; ModeDemo = 1; } else { gameEtat = ETAT_END_LOOP; } break; case ETAT_END_LOOP: //Rien, on tourne en rond break; default: break; } } /****************************************************************************************/ /* FUNCTION NAME: canProcessRx */ /* DESCRIPTION : Fait évoluer l'automate de l'IHM en fonction des receptions sur le CAN*/ /****************************************************************************************/ void canProcessRx(void) { static signed char FIFO_occupation=0,FIFO_max_occupation=0; char useless1 = 0; char message[10]="toto"; char message1[10]="toto"; char message2[10]="toto"; char message3[10]="toto"; FIFO_occupation=FIFO_ecriture-FIFO_lecture; if(FIFO_occupation<0) FIFO_occupation=FIFO_occupation+SIZE_FIFO; if(FIFO_max_occupation<FIFO_occupation) FIFO_max_occupation=FIFO_occupation; if(FIFO_occupation!=0) { int identifiant=msgRxBuffer[FIFO_lecture].id; switch(identifiant) { case ALIVE_MOTEUR: if (etat == ATT) { lcd.SetTextColor(LCD_COLOR_LIGHTGREEN); lcd.FillRect(0,400,400,150); lcd.SetTextColor(LCD_COLOR_BLACK); lcd.SetBackColor(LCD_COLOR_LIGHTGREEN); lcd.DisplayStringAt(80, 450, (uint8_t *)"Carte Moteur", LEFT_MODE); } break; case ALIVE_BALISE: if (etat == ATT) { lcd.SetTextColor(LCD_COLOR_LIGHTGREEN); lcd.FillRect(0,600,400,150); //carte AX12 lcd.SetTextColor(LCD_COLOR_BLACK); lcd.SetBackColor(LCD_COLOR_LIGHTGREEN); lcd.DisplayStringAt(110, 650, (uint8_t *)"Balise", LEFT_MODE); } break; case RESET_IHM: etat = CHOIX; break; case DEBUG_FAKE_JAKE://Permet de lancer le match à distance case GLOBAL_JACK: if(gameEtat == ETAT_GAME_WAIT_FOR_JACK) { gameEtat = ETAT_GAME_START; SendRawId(ACKNOWLEDGE_JACK); } break; case ALIVE_ACTIONNEURS_AVANT: //pas de break donc passe directement dans ECRAN_ALL_CHECK mais conserve l'ident initial case ALIVE_ACTIONNEURS_ARRIERE: case ALIVE_HERKULEX: case ECRAN_ALL_CHECK: if(waitingAckFrom == msgRxBuffer[FIFO_lecture].id) { waitingAckFrom = 0;//C'est la bonne carte qui indique qu'elle est en ligne } break; /////////////////////////////////////Acknowledges de Reception de la demande d'action//////////////////////////////////////// case ACKNOWLEDGE_HERKULEX: case ACKNOWLEDGE_BALISE: //pas de break donc passe directement dans INSTRUCTION_END_AX12 mais conserve l'ident initial case ACKNOWLEDGE_TELEMETRE: /////////////////////////////////////////////Acknowledges de la fin d'action///////////////////////////////////////////////// case ACKNOWLEDGE_MOTEUR: case INSTRUCTION_END_BALISE: case INSTRUCTION_END_MOTEUR: case ACK_FIN_ACTION: if(waitingAckFrom == msgRxBuffer[FIFO_lecture].id && ((unsigned short)msgRxBuffer[FIFO_lecture].data[0]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[1])<<8) == waitingAckID)) { lcd.DisplayStringAt(0, LINE(16),(unsigned char *)"ACK OK",LEFT_MODE); waitingAckFrom = 0; waitingAckID = 0; } if(waitingAckFrom_FIN == msgRxBuffer[FIFO_lecture].id && ((unsigned short)msgRxBuffer[FIFO_lecture].data[0]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[1])<<8) == waitingAckID_FIN)) { //SendRawId(waitingAckID); waitingAckFrom_FIN = 0; waitingAckID_FIN = 0; } break; #ifdef ROBOT_BIG case ODOMETRIE_BIG_POSITION: #else case ODOMETRIE_SMALL_POSITION: #endif x_robot=msgRxBuffer[FIFO_lecture].data[0]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[1])<<8); y_robot=msgRxBuffer[FIFO_lecture].data[2]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[3])<<8); theta_robot=msgRxBuffer[FIFO_lecture].data[4]|((signed short)(msgRxBuffer[FIFO_lecture].data[5])<<8); break; //case SERVO_AX12_SETGOAL: //SendAck(0x114, SERVO_AX12_SETGOAL); //if(AX12_isLocal(msgRxBuffer[FIFO_lecture].data[0])) //AX12_setGoal(msgRxBuffer[FIFO_lecture].data[0], msgRxBuffer[FIFO_lecture].data[1]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[2])<<8), msgRxBuffer[FIFO_lecture].data[3]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[4])<<8)); //break; /*case SERVO_AX12_PROCESS: SendAck(0x114, SERVO_AX12_PROCESS); //AX12_processChange(1); break; case SERVO_AX12_DONE: SendRawId(POMPE_PWM); //SendAck(0x114, SERVO_AX12_DONE); AX12_notifyCANEnd(((unsigned short)(msgRxBuffer[FIFO_lecture].data[0]))); gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; waitingAckFrom = 0; waitingAckID = 0;*/ //break; case ACK_ACTION: if(waitingAckID == msgRxBuffer[FIFO_lecture].id) { waitingAckFrom = 0; waitingAckID = 0; } break; case BALISE_DANGER : SendAck(ACKNOWLEDGE_BALISE, BALISE_END_DANGER); break; case BALISE_STOP: SendAck(ACKNOWLEDGE_BALISE, BALISE_STOP); signed char fin_angle_detection = msgRxBuffer[FIFO_lecture].data[0] & 0x0F; signed char debut_angle_detection = (msgRxBuffer[FIFO_lecture].data[0] & 0xF0) >> 4; if(debut_angle_detection > fin_angle_detection) { angle_moyen_balise_IR = (float)debut_angle_detection + ((15.0-(float)debut_angle_detection)+(float)fin_angle_detection)/2.0; if(angle_moyen_balise_IR > 15.0) angle_moyen_balise_IR-=15.0; } else angle_moyen_balise_IR = debut_angle_detection + (fin_angle_detection-debut_angle_detection)/2; if (instruction.order != MV_TURN && instruction.order != ACTION ){ //J'ai rajouté cette ligne mais il faut tester avec et sans pour voir le comportement du robot, if(needToStop() != 0 && ingnorBaliseOnce ==0) { if(gameEtat > ETAT_GAME_START && gameEtat != ETAT_WARNING_TIMEOUT) { SendRawId(ASSERVISSEMENT_STOP); //while(1); // ligne à décommenter si on est en homologation if(gameEtat != ETAT_WARING_END_BALISE_WAIT) { timeoutWarning.reset(); timeoutWarning.start();//Reset du timer utiliser par le timeout } gameEtat = ETAT_WARNING_TIMEOUT; } } } ingnorBaliseOnce = 0; break; case BALISE_END_DANGER: SendAck(ACKNOWLEDGE_BALISE, BALISE_END_DANGER); if(gameEtat == ETAT_WARNING_TIMEOUT) { timeoutWarningWaitEnd.reset(); timeoutWarningWaitEnd.start(); gameEtat = ETAT_WARING_END_BALISE_WAIT; } break; case OBJET_SUR_TABLE: if (msgRxBuffer[FIFO_lecture].data[1] == 0xff){ gameEtat = ETAT_WARNING_END_LAST_INSTRUCTION; } else{ waitingAckFrom = 0; waitingAckID = 0; strat_instructions[actual_instruction+1].arg1 = returnX(strat_instructions[actual_instruction].arg2); strat_instructions[actual_instruction+1].arg2 = returnY(strat_instructions[actual_instruction].arg2); } modeTelemetre = 0; break; case RECEPTION_DATA: telemetreDistance=char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[0], msgRxBuffer[FIFO_lecture].data[1]); telemetreDistance= (float)telemetreDistance*100*35.5+50; waitingAckFrom = 0; waitingAckID = 0; break; case RECEPTION_RECALAGE: telemetreDistance_arriere_droite = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[0], msgRxBuffer[FIFO_lecture].data[1]); // telemetreDistance_avant_droite = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[2], msgRxBuffer[FIFO_lecture].data[3]); telemetreDistance_arriere_gauche = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[4], msgRxBuffer[FIFO_lecture].data[5]); telemetreDistance_avant_gauche = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[6], msgRxBuffer[FIFO_lecture].data[7]); if(ModeDemo==1) { sprintf(message,"%04d mm",telemetreDistance_arriere_droite); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(0, LINE(10),(unsigned char *)"LASER ARD : ",LEFT_MODE); lcd.DisplayStringAt(200, LINE(10),(unsigned char *)message, LEFT_MODE); sprintf(message1,"%04d mm",telemetreDistance_avant_droite); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(0, LINE(12),(unsigned char *)"LASER AVD : ",LEFT_MODE); lcd.DisplayStringAt(200, LINE(12),(unsigned char *)message1, LEFT_MODE); sprintf(message2,"%04d mm",telemetreDistance_arriere_gauche); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(0, LINE(14),(unsigned char *)"LASER ARG : ",LEFT_MODE); lcd.DisplayStringAt(200, LINE(14),(unsigned char *)message2, LEFT_MODE); sprintf(message3,"%04d mm",telemetreDistance_avant_gauche); lcd.SetBackColor(LCD_COLOR_WHITE); lcd.DisplayStringAt(0, LINE(16),(unsigned char *)"LASER AVG : ",LEFT_MODE); lcd.DisplayStringAt(200, LINE(16),(unsigned char *)message3, LEFT_MODE); } break; case RECEPTION_COULEUR: couleur1=msgRxBuffer[FIFO_lecture].data[0]; couleur2=msgRxBuffer[FIFO_lecture].data[1]; couleur3=msgRxBuffer[FIFO_lecture].data[2]; break; case NO_BLOC: //il n'y a pas de bloc, on saute les étapes liées à l'attrape bloc actual_instruction = instruction.nextLineError; gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION; /*waitingAckID_FIN=0; waitingAckFrom_FIN=0;*/ SendRawId(0x40); break; } FIFO_lecture=(FIFO_lecture+1)%SIZE_FIFO; } } /****************************************************************************************/ /* FUNCTION NAME: Bouton_Strat */ /* DESCRIPTION : Sélection de la strat sur le lcd puis envoie sur CAN (à modifier!) */ /****************************************************************************************/ signed char Bouton_Strat (void) { Button STRAT_1 (0, 30, 190, 110, strat_sd[0]); Button STRAT_2 (210, 30, 190, 110, strat_sd[1]); Button STRAT_3 (0, 150, 190, 110, strat_sd[2]); Button STRAT_4 (210, 150, 190, 110, strat_sd[3]); Button STRAT_5 (0, 270, 190, 110,strat_sd[4]); Button STRAT_6 (210, 270, 190, 110, strat_sd[5]); Button STRAT_7 (0, 390, 190, 110, strat_sd[6]); Button STRAT_8 (210, 390, 190, 110, strat_sd[7]); Button STRAT_9 (0, 510, 190, 110, strat_sd[8]); Button STRAT_10 (210, 510, 190, 110, strat_sd[9]); Button RETOUR (0, 680, 400, 110, "--Precedent--"); //Definition des boutons Ack_strat = 0; Strat = 0; STRAT_1.Draw(0xFFF0F0F0, 0); STRAT_2.Draw(0xFFF0F0F0, 0); STRAT_3.Draw(0xFFF0F0F0, 0); STRAT_4.Draw(0xFFF0F0F0, 0); STRAT_5.Draw(0xFFF0F0F0, 0); STRAT_6.Draw(0xFFF0F0F0, 0); STRAT_7.Draw(0xFFF0F0F0, 0); STRAT_8.Draw(0xFFF0F0F0, 0); STRAT_9.Draw(0xFFF0F0F0, 0); STRAT_10.Draw(0xFFF0F0F0, 0); RETOUR.Draw(0xFFFF0000, 0); while(Ack_strat == 0) { canProcessRx(); CANMessage msgTx=CANMessage(); //msgTx.id=ECRAN_CHOICE_STRAT; if (RETOUR.Touched()) return -1; while(RETOUR.Touched()); //////////////////////////////STRATEGIE N°1 if (STRAT_1.Touched()){ Strat = 0; //msgTx.data[0] = 0x1; //can2.write(msgTx); while(STRAT_1.Touched()); Ack_strat =1; } /////////////////////////////STRATEGIE N°2 if (STRAT_2.Touched()){ Strat = 1; //msgTx.data[0] = 0x2; //can2.write(msgTx); while(STRAT_2.Touched()); Ack_strat =1; } //////////////////////////////STRATEGIE N°3 if (STRAT_3.Touched()){ Strat = 2; //msgTx.data[0] = 0x3; //can2.write(msgTx); while(STRAT_3.Touched()); Ack_strat =1; } /////////////////////////////STRATEGIE N°4 if (STRAT_4.Touched()){ Strat = 3; //msgTx.data[0] = 0x4; //can2.write(msgTx); while(STRAT_4.Touched()); Ack_strat =1; } ///////////////////////////////STRATEGIE N°5 if (STRAT_5.Touched()){ Strat = 4; //msgTx.data[0] = 0x5; //can2.write(msgTx); while(STRAT_5.Touched()); Ack_strat =1; } ////////////////////////////////STRATEGIE N°6 if (STRAT_6.Touched()){ Strat = 5; //msgTx.data[0] = 0x6; //can2.write(msgTx); while(STRAT_6.Touched()); Ack_strat =1; } /////////////////////////////////STRATEGIE N°7 if (STRAT_7.Touched()){ Strat = 6; //msgTx.data[0] = 0x7; //can2.write(msgTx); while(STRAT_7.Touched()); Ack_strat =1; } /////////////////////////////////STRATEGIE N°8 if (STRAT_8.Touched()){ Strat = 7; //msgTx.data[0] = 0x8; //can2.write(msgTx); while(STRAT_8.Touched()); Ack_strat =1; } /////////////////////////////////STRATEGIE N°9 if (STRAT_9.Touched()){ Strat = 8; //msgTx.data[0] = 0x9; //can2.write(msgTx); while(STRAT_9.Touched()); Ack_strat =1; } ///////////////////////////////////STRATEGIE N°10 if (STRAT_10.Touched()){ Strat = 9; //msgTx.data[0] = 0xA; //can2.write(msgTx); while(STRAT_10.Touched()); Ack_strat =1; } } return Strat; } void affichage_compteur (int nombre) { int dizaine=0,unite=0; dizaine = nombre/10; unite = nombre-(10*dizaine); print_segment(unite,0); print_segment(dizaine,200); } //****print_segment*** //Dessine en 7 segment le nombre en parametre // A // ===== // | | // B | G | E // |=====| // C | | F // | | // ===== // D /* position pour le chiffre des unites lcd.FillRect(460,75,120,25);// A lcd.FillRect(435,100,25,120);// B lcd.FillRect(435,245,25,120);// C lcd.FillRect(460,365,120,25);// D lcd.FillRect(580,100,25,120);// E lcd.FillRect(580,245,25,120);// F lcd.FillRect(460,220,120,25);// G position pour le chiffre des dizaines lcd.FillRect(260,75,120,25);// A lcd.FillRect(235,100,25,120);// B lcd.FillRect(235,245,25,120);// C lcd.FillRect(260,365,120,25);// D lcd.FillRect(380,100,25,120);// E lcd.FillRect(380,245,25,120);// F lcd.FillRect(260,220,120,25);// G */ void print_segment(int nombre, int decalage) { switch(nombre) { case 0: lcd.FillRect(240-decalage,75,120,25); lcd.FillRect(215-decalage,100,25,120); lcd.FillRect(215-decalage,245,25,120); lcd.FillRect(360-decalage,245,25,120); lcd.FillRect(360-decalage,100,25,120); lcd.FillRect(240-decalage,365,120,25); break; case 1: lcd.FillRect(360-decalage,100,25,120);// E lcd.FillRect(360-decalage,245,25,120);// F break; case 2: lcd.FillRect(240-decalage,75,120,25);// A lcd.FillRect(215-decalage,245,25,120);// C lcd.FillRect(240-decalage,365,120,25);// D lcd.FillRect(360-decalage,100,25,120);// E lcd.FillRect(240-decalage,220,120,25);// G break; case 3: lcd.FillRect(240-decalage,75,120,25);// A lcd.FillRect(360-decalage,100,25,120);// E lcd.FillRect(240-decalage,220,120,25);// G lcd.FillRect(240-decalage,365,120,25);// D lcd.FillRect(360-decalage,245,25,120);// F break; case 4: lcd.FillRect(215-decalage,100,25,120);// B lcd.FillRect(360-decalage,100,25,120);// E lcd.FillRect(360-decalage,245,25,120);// F lcd.FillRect(240-decalage,220,120,25);// G break; case 5: lcd.FillRect(240-decalage,75,120,25);// A lcd.FillRect(215-decalage,100,25,120);// B lcd.FillRect(240-decalage,220,120,25);// G lcd.FillRect(240-decalage,365,120,25);// D lcd.FillRect(360-decalage,245,25,120);// F break; case 6: lcd.FillRect(240-decalage,75,120,25);// A lcd.FillRect(215-decalage,100,25,120);// B lcd.FillRect(215-decalage,245,25,120);// C lcd.FillRect(240-decalage,365,120,25);// D lcd.FillRect(360-decalage,245,25,120);// F lcd.FillRect(240-decalage,220,120,25);// G break; case 7: lcd.FillRect(240-decalage,75,120,25);// A lcd.FillRect(360-decalage,100,25,120);// E lcd.FillRect(360-decalage,245,25,120);// F break; case 8: lcd.FillRect(240-decalage,75,120,25); // A lcd.FillRect(215-decalage,100,25,120); lcd.FillRect(215-decalage,245,25,120); lcd.FillRect(360-decalage,245,25,120);//... lcd.FillRect(360-decalage,100,25,120); lcd.FillRect(240-decalage,365,120,25); lcd.FillRect(240-decalage,220,120,25);// G break; case 9: lcd.FillRect(240-decalage,75,120,25);// A lcd.FillRect(215-decalage,100,25,120);// B lcd.FillRect(240-decalage,365,120,25);// D lcd.FillRect(360-decalage,100,25,120);// E lcd.FillRect(360-decalage,245,25,120);// F lcd.FillRect(240-decalage,220,120,25);// G break; } } void effacer_segment(long couleur) { lcd.SetTextColor(couleur); lcd.FillRect(240-200,75,120,25); // A lcd.FillRect(215-200,100,25,120); lcd.FillRect(215-200,245,25,120); lcd.FillRect(360-200,245,25,120);//... lcd.FillRect(360-200,100,25,120); lcd.FillRect(240-200,365,120,25); lcd.FillRect(240-200,220,120,25);// G lcd.FillRect(240,75,120,25); // A lcd.FillRect(215,100,25,120); lcd.FillRect(215,245,25,120); lcd.FillRect(360,245,25,120);//... lcd.FillRect(360,100,25,120); lcd.FillRect(240,365,120,25); lcd.FillRect(240,220,120,25);// G } short recalageAngulaireCapteur(void) { unsigned char nombresDeMesuresAuxTelemetresQuiSontCoherentes = 0; unsigned int moyennageTelemetre = 0; unsigned short angleAvant = 0; unsigned short angleArriere = 0; unsigned short orientationArrondie = 0; unsigned short position_avant_gauche=0; unsigned short position_avant_droite=0; unsigned short position_arriere_gauche=0; unsigned short position_arriere_droite=0; if(theta_robot >= 450 && theta_robot <= 1350) orientationArrondie = 90; else if(theta_robot <= -450 && theta_robot >= -1350) orientationArrondie = 270; else if(theta_robot <= 450 && theta_robot >= -450) orientationArrondie = 0; else if(theta_robot >= 1350 && theta_robot <= -1350) orientationArrondie = 180; // Calcul de position pour faire la vérification de cohérence if(orientationArrondie == 90 || orientationArrondie == 270) { position_avant_gauche = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_gauche; position_avant_droite = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_droite; position_arriere_gauche = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_gauche; position_arriere_droite = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_droite; } else if(orientationArrondie == 0 || orientationArrondie == 180) { position_avant_gauche = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_gauche; position_avant_droite = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_droite; position_arriere_gauche = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_gauche; position_arriere_droite = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_droite; } if(orientationArrondie == 90 || orientationArrondie == 270) // Si il est en axe Y { if(position_arriere_droite >= y_robot-instruction.arg1 && position_arriere_droite <= y_robot+instruction.arg1) // Et que les mesures sont cohérentes { if(position_arriere_gauche >= y_robot-instruction.arg1 && position_arriere_gauche <= y_robot+instruction.arg1) { if(telemetreDistance_arriere_droite > telemetreDistance_arriere_gauche) angleArriere =900+(1800 * atan2((double)(telemetreDistance_arriere_droite-telemetreDistance_arriere_gauche) , (double)ESPACE_INTER_TELEMETRE ))/M_PI; else angleArriere =(1800 * atan2( (double) ESPACE_INTER_TELEMETRE,(double) (telemetreDistance_arriere_gauche-telemetreDistance_arriere_droite) ))/M_PI; nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += angleArriere; } } } else if(orientationArrondie == 0 || orientationArrondie == 180) // Si il est en axe X { if(position_arriere_droite >= x_robot-instruction.arg1 && position_arriere_droite <= x_robot+instruction.arg1) // Et que les mesures sont cohérentes { if(position_arriere_gauche >= x_robot-instruction.arg1 && position_arriere_gauche <= x_robot+instruction.arg1) { if(telemetreDistance_arriere_droite > telemetreDistance_arriere_gauche) angleArriere =900+(1800 * atan2( (double) (telemetreDistance_arriere_droite-telemetreDistance_arriere_gauche) , (double) ESPACE_INTER_TELEMETRE ))/M_PI; else angleArriere =(1800 * atan2( (double) ESPACE_INTER_TELEMETRE,(double) (telemetreDistance_arriere_gauche-telemetreDistance_arriere_droite) ))/M_PI; nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += angleArriere; } } } if(orientationArrondie == 90 || orientationArrondie == 270) // Si il est en axe Y { if(position_avant_droite >= y_robot-instruction.arg1 && position_avant_droite <= y_robot+instruction.arg1) // Et que les mesures sont cohérentes { if(position_avant_gauche >= y_robot-instruction.arg1 && position_avant_gauche <= y_robot+instruction.arg1) { if(telemetreDistance_avant_droite > telemetreDistance_avant_gauche) angleAvant = (1800 * atan2( (double) ESPACE_INTER_TELEMETRE,(double) (telemetreDistance_avant_droite-telemetreDistance_avant_gauche) ))/M_PI; else angleAvant = 900 + (1800 * atan2( (double)( telemetreDistance_avant_gauche-telemetreDistance_avant_droite) ,(double) ESPACE_INTER_TELEMETRE ))/M_PI; nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += angleAvant; } } } else if(orientationArrondie == 0 || orientationArrondie == 180) // Si il est en axe X { if(position_avant_droite >= x_robot-instruction.arg1 && position_avant_droite <= x_robot+instruction.arg1) // Et que les mesures sont cohérentes { if(position_avant_gauche >= x_robot-instruction.arg1 && position_avant_gauche <= x_robot+instruction.arg1) { if(telemetreDistance_avant_droite > telemetreDistance_avant_gauche) angleAvant = (1800 * atan2((double) ESPACE_INTER_TELEMETRE, (double) (telemetreDistance_avant_droite-telemetreDistance_avant_gauche) ))/M_PI; else angleAvant = 900 + (1800 * atan2( (double) (telemetreDistance_avant_gauche-telemetreDistance_avant_droite) ,(double) ESPACE_INTER_TELEMETRE ))/M_PI; nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += angleAvant; } } } angleRecalage = moyennageTelemetre/nombresDeMesuresAuxTelemetresQuiSontCoherentes; if(nombresDeMesuresAuxTelemetresQuiSontCoherentes) { if(orientationArrondie == 0) { angleRecalage -= 900; /*if(telemetreDistance_avant_droite > telemetreDistance_avant_gauche) distanceRecalage = *); else distanceRecalage = 900 + (1800 * atan( (double)( (telemetreDistance_avant_droite-telemetreDistance_avant_gauche) / ESPACE_INTER_TELEMETRE )))/M_PI;*/ } else if(orientationArrondie == 90) { angleRecalage += 0; } else if(orientationArrondie == 180) { angleRecalage += 900; } else if(orientationArrondie == 270) { angleRecalage += 1800; } } return (nombresDeMesuresAuxTelemetresQuiSontCoherentes && (angleAvant-angleArriere<80 && angleAvant-angleArriere>-80)) ? angleRecalage : theta_robot; } short recalageDistanceX(void) { unsigned char nombresDeMesuresAuxTelemetresQuiSontCoherentes = 0; unsigned int moyennageTelemetre = 0; telemetreDistance_avant_gauche = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_gauche; telemetreDistance_avant_droite = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_droite; telemetreDistance_arriere_gauche = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_gauche; telemetreDistance_arriere_droite = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_droite; if(telemetreDistance_avant_gauche >= x_robot-instruction.arg1 && telemetreDistance_avant_gauche <= x_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_avant_gauche; } if(telemetreDistance_avant_droite >= x_robot-instruction.arg1 && telemetreDistance_avant_droite <= x_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_avant_droite; } if(telemetreDistance_arriere_gauche >= x_robot-instruction.arg1 && telemetreDistance_arriere_gauche <= x_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_arriere_gauche; } if(telemetreDistance_arriere_droite >= x_robot-instruction.arg1 && telemetreDistance_arriere_droite <= x_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_arriere_droite; } moyennageTelemetre /= nombresDeMesuresAuxTelemetresQuiSontCoherentes; return (nombresDeMesuresAuxTelemetresQuiSontCoherentes)? moyennageTelemetre : x_robot; //SetOdometrie(ODOMETRIE_SMALL_POSITION, moyennageTelemetre, y_robot, theta_robot); } short recalageDistanceY(void) { unsigned char nombresDeMesuresAuxTelemetresQuiSontCoherentes = 0; unsigned int moyennageTelemetre = 0; telemetreDistance_avant_gauche = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_gauche; telemetreDistance_avant_droite = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_droite; telemetreDistance_arriere_gauche = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_gauche; telemetreDistance_arriere_droite = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_droite; if(telemetreDistance_avant_gauche >= y_robot-instruction.arg1 && telemetreDistance_avant_gauche <= y_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_avant_gauche; } if(telemetreDistance_avant_droite >= y_robot-instruction.arg1 && telemetreDistance_avant_droite <= y_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_avant_droite; } if(telemetreDistance_arriere_gauche >= y_robot-instruction.arg1 && telemetreDistance_arriere_gauche <= y_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_arriere_gauche; } if(telemetreDistance_arriere_droite >= y_robot-instruction.arg1 && telemetreDistance_arriere_droite <= y_robot+instruction.arg1) { nombresDeMesuresAuxTelemetresQuiSontCoherentes++; moyennageTelemetre += telemetreDistance_arriere_droite; } moyennageTelemetre /= nombresDeMesuresAuxTelemetresQuiSontCoherentes; return (nombresDeMesuresAuxTelemetresQuiSontCoherentes)? moyennageTelemetre : y_robot ; // SetOdometrie(ODOMETRIE_SMALL_POSITION, x_robot, moyennageTelemetre, theta_robot); }