With this script a Ball-E robot can be made and be operative for the use.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Samenvoegen_7_5 by
main.cpp
- Committer:
- EmilyJCZ
- Date:
- 2015-10-26
- Revision:
- 5:0597358d0016
- Parent:
- 4:f9f75c913d7d
- Child:
- 6:1518fccc5616
File content as of revision 5:0597358d0016:
//======================================================================= Script: Ball-E ========================================================================== // Authors: Ewoud Velu, Lisa Verhoeven, Robert van der Wal, Thijs van der Wal, Emily Zoetbrood /* This is the script of a EMG measurment moving robot. The purpose of the robot is to amuse people with the disease of Ducenne. The robot is designed to throw a ball in to a certain chosen pocket. In order to achieve this movement we use a ‘arm’ that can turn in the vertical plane and move in the horizontal plane. */ //*********************************************** LIBRARY DECLARATION ******************************************** // Libraries are files which contain standard formulas for reading surtain information. Every library contains its own information. #include "mbed.h" // Standard library. This includes the reading of AnalogIn, DigitalOut, PwmOut and other standard formules. #include "QEI.h" // This library includes the reading of of the Encoders from motors. #include "MODSERIAL.h" // MODSERIAL inherits Serial and adds extensions for buffering. #include "HIDScope.h" // This sends the measured EMG signal to the HIDScope. #include "biquadFilter.h" // Because of this library we can make different filters. #include <cmath> // This library declares a set of functions to compute common mathematical operations and transformations. Only used fabs. #include <stdio.h> // This library defines three variable types, several macros, and various functions for performing input and output. //*********************************************** FUNCTION DECLARATION ******************************************* //**************************** INPUTS ****************************************************** AnalogIn EMG1(A0); // Input left biceps EMG. AnalogIn EMG2(A1); // Input right biceps EMG. QEI wheel1 (D10, D11, NC, 64,QEI::X4_ENCODING); // Function for Encoder1 on the motor1 to the Microcontroller. QEI wheel2 (D12, D13, NC, 64,QEI::X4_ENCODING); // Function for Encoder2 on the motor2 to the Microcontroller. //**************************** OUTPUTS ***************************************************** DigitalOut led_red(D1); // Output for red LED decleared. DigitalOut led_yellow(D3); // Output for yellow LED decleared. DigitalOut led_green(D9); // Output for green LED delceared. DigitalOut magnet(D2); // Output for magnet. DigitalOut motor1direction(D4); // Direction for motor 2 on motorshield. This motor moves the arm in fase 2. PwmOut motor1speed(D5); // Speed for motor 2 on motorshield. This motor moves the arm in fase 2. DigitalOut motor2direction(D7); // Direction for motor 1 on motorshield. This motor moves the board in fase 1. PwmOut motor2speed(D6); // Speed for motor 1 on motorshield. This motor moves the board in fase 1. //**************************** FUNCTIONS *************************************************** //HIDScope scope(2); // HIDScope declared with 2 scopes. MODSERIAL pc(USBTX, USBRX); // Function for Serial communication with the Microcontroller to the pc. //*********************************************** GLOBAL VARIABLES DECLARATION *********************************** const int led_on = 0; // This constant turns the led on. const int led_off = 1; // This constant turns the led off. int games_played1 = 0; // Counts number of games played. int games_played = -1; // Shows real number of games played. There is a -1 because the game is first reset before the first throw. float dt = 0.01; // Time staps //**************************** VARIABLES FOR MOTOR CONTROL ********************************* const float cw = 1; // Motor1 moves counter clock wise and Motor2 moves clock wise. const float ccw = 0; // Motor1 moves clock wise and Motor2 moves counter clock wise. bool flag_s = false; // Var flag_s sensor ticker const int relax = 0; // The motor speed is zero. //**************************** VARIABLES FOR CONTROL 1 ************************************* int Fs = 512; // Sampling frequency. int calibration_measurements = 0; // Integer counts the number of calibrations done. It starts at 0. //Filter coefficients. a1 is normalized to 1. const double low_b1 = /*0.0055427172102806843;*/1.480219865318266e-04; const double low_b2 = /*0.011085434420561369;*/2.960439730636533e-04; const double low_b3 = /*0.0055427172102806843; */1.480219865318266e-04; const double low_a2 = /*-1.778631777824585; */-1.965293372622690e+00; const double low_a3 = /*0.80080264666570777; */9.658854605688177e-01; const double high_b1 = /*0.63894552515902237;*/8.047897937631126e-01; const double high_b2 = /*-1.2778910503180447; */-1.609579587526225e+00; const double high_b3 = /*0.63894552515902237;*/8.047897937631126e-01; const double high_a2 = /*-1.1429805025399009;*/-1.571102440190402e+00; const double high_a3 = /*0.41280159809618855;*/6.480567348620491e-01; // Declaring the input and output variables. double u1; // Input from EMG 1. The left biceps. double y1; // Output from the filters from u1. double u2; // Input from EMG 2. The right biceps. double y2; // Output from the filters from u2. double cali_fact1 = 0.9; // Calibration factor to normalize filter output to a scale of 0 - 1. For signal y1. double cali_fact2 = 0.9; // Calibration factor to normalize filter output to a scale of 0 - 1. For signal y2. double cali_max1 = 0; // Declares max y1. double cali_max2 = 0; // Declares max y2. double cali_array1[2560] = {}; // Array to store values in for the 5 seconds calibartion for y1. double cali_array2[2560] = {}; // Array to store values in for the 5 seconds calibartion for y2. volatile bool sample_go; // Ticker EMG function. bool flag_calibration = true; // Flag to start calibration. //**************************** VARIABLES FOR FASE SWITCH *********************************** int fase = 3; // The fase is used in a switch to switch between the fases. It starts at the reset fase. int j = 1; // Starting up a new part of the game. int N = 200; // Stop for j. bool fase_switch_wait = true; // Timer wait to switch between different fases. //**************************** VARIABLES FOR CONTROL 2 ************************************* const float contract = 0.5; // The minimum value for y1 and y2 for which the motor moves. const float fasecontract = 0.7; // The value y1 and y2 must be for the fase change. const float maxleft = -200; // With this angle the motor should stop moving. const float maxright = 200; // With this angle the motor should stop moving. const float speed_plate_1 = 0.1; // The speed of the plate in control 2. bool flag_left = true; // This flag determines if the signals from the left biceps should be measured. This is signal y1. bool flag_right = true; // This flag determines if the signals from the right biceps should be measured. This is signal y2. float pos_board = 0; // The begin position of the board. It begins at zero. Reads Encoder2 in degrees. Formula is applied in SensorTicker. int pos_board1 = 0; // float Encoderread2 = 0; // Reads travelled distance from Motor2. Reads pulses. //**************************** VARIABLES FOR CONTROL 3 ************************************* const float minimum_contract = 0.4; // The minimum value for y2 for whicht the motor moves. const float medium_contract = 0.5; // Value for different speeds of the motor. const float maximum_leftbiceps = 0.7; // Value for y1 for which the magnet turns off. const float on = 1.0; // This value turns the magnet on. const float off = 0.0; // This value turns the magnet off. const float minimum_throw_angle = 20; // The minimum angle the arm has to be in to be able to turn the magnet off. const float maximum_throw_angle = 110; // The maximum angle for the arm to turn the magnet off. float pos_arm = 0; // The begin position of the arm. It begins at zero. Reads Encoder1 in degrees. Formula is applied in SensorTicker. int pos_arm1 = 0; // This makes from the positon of the arm degrees within a cirkel. float pos_arm2 = 0; // This makes from the positon of the arm degrees within a cirkel. float previous_pos_arm = 0; // Needed to calculate the v_arm. float v_arm = 0; // The speed of the arm. float v_arm_com = 0; // The compensated speed of the arm. float speed_control_arm = 0.000; // float Encoderread1 = 0; // Reads travelled distance from Motor1. int switch_rounds = 2; // Value of a switch to calculate the number of rounds made. int rounds = 0; // Number of rounds made by the arm. float pos_armrounds_max = 3; // Max rounds the arm can make. bool problem1 = false; // bool problem2 = false; // bool flag_v_arm = false; // float problem_velocity = 0; // //**************************** VARIABLES FOR CONTROL 4 ************************************* float reset_position = 0; // The reset position of the arm. int reset_arm = 0; // The reset position of the arm (?). int reset_board = 0; // The reset position of the board. float speedcompensation; // Speed of Motor2 during reset. float speedcompensation2; // Speed of Motor1 during reset. int t = 5; // Integer for count down to new game. int switch_reset = 1; // Value of a switch for the different parts of the reset. bool board = false; // // **************************************** Tickers **************************************** /* Tickers count constantly. The formulas attacht to the ticker count with them. */ Ticker Sensor_control; // This ticker counts for the position of the motors and the speed of the arm. Ticker EMG_Control; // This ticker counts for the filtering of the EMG signal //=============================================================================================== SUB LOOPS ================================================================================================================== //**************************** CONTROL 1-EMG CALIBRATION *********************************** biquadFilter highpass1(high_a2, high_a3, high_b1, high_b2, high_b3); // Different objects for different inputs, otherwise the v1 and v2 variables get fucked up biquadFilter highpass2(high_a2, high_a3, high_b1, high_b2, high_b3); biquadFilter lowpass1(low_a2, low_a3, low_b1, low_b2, low_b3); biquadFilter lowpass2(low_a2, low_a3, low_b1, low_b2, low_b3); void hoog_laag_filter() { u1 = EMG1; u2 = EMG2; y1 = highpass1.step(u1); y2 = highpass2.step(u2); // filter order is: high-pass --> rectify --> low-pass y1 = fabs(y1); y2 = fabs(y2); y1 = lowpass1.step(y1)*cali_fact1; y2 = lowpass2.step(y2)*cali_fact2; // roughly normalize to a scale of 0 - 1, where 0 is minimum and 1 is roughly the maximum output. } //**************************** TICKER LOOPS ************************************************ void SENSOR_LOOP() { Encoderread1 = wheel1.getPulses(); pos_arm = (Encoderread1/((64.0*131.0)/360.0)); // Omrekenen naar graden van arm pos_arm1 = pos_arm; previous_pos_arm = pos_arm; v_arm = (pos_arm - previous_pos_arm)/dt; Encoderread2 = wheel2.getPulses(); pos_board = (Encoderread2/((64.0*131.0)/360.0)); // Omrekenen naar graden van board pos_board1 = pos_board; flag_s = true; } void EMG_LOOP() // ticker function, set flag to true every sample interval { if(flag_calibration == false) { hoog_laag_filter(); sample_go = 0; sample_go = 1; } } //================================================================================================== HEAD LOOP ================================================================================================================ int main() { pc.baud(115200); Sensor_control.attach(&SENSOR_LOOP, 0.01); // TICKER FUNCTION EMG_Control.attach(&EMG_LOOP, (float)1/Fs); led_green.write(0); led_yellow.write(0); led_red.write(0); pc.printf("===============================================================\n"); pc.printf(" \t\t\t Ball-E\n"); pc.printf("In the module Biorobotics on the University of Twente is this script created\n"); pc.printf("Autors:\tE. Velu, L. Verhoeven, R. v/d Wal, T. v/d Wal, E. Zoetbrood\n\n"); wait(3); pc.printf("The script will begin with a short calibration\n\n"); wait(2.5); pc.printf("===============================================================\n"); //************************* CONTROL 1-EMG CALIBRATION **************************** while(1) { if(sample_go) { sample_go = 0; } if (flag_calibration) // function to calibrate the emg signals from the user. It takes 5 seconds of measurements of maximum output, then takes the max and normalizes to that. { calibration_measurements ++; pc.printf(" \n\n EMG Signal starting up Calibration measurement........... \n"); wait(2); led_red.write(0); wait(0.2); led_red.write(1); //Toggles red calibration LED on wait(0.2); led_red.write(0); wait(0.2); led_red.write(1); wait(0.2); led_red.write(0); wait(0.2); led_red.write(1); wait(1); pc.printf("\t.....Calibrating Signal of EMG 1 and 2 .......\n"); led_red.write(0); led_yellow.write(1); wait(0.5); pc.printf("\t......contract muscles..... \n"); for(int cali_index1 = 0; cali_index1 < 2560; cali_index1++) // Records 5 seconds of y1 { hoog_laag_filter(); cali_array1[cali_index1] = y1; wait((float)1/Fs); } for(int cali_index2 = 0; cali_index2 < 2560; cali_index2++) // Records 5 seconds of y2 { hoog_laag_filter(); cali_array2[cali_index2] = y2; wait((float)1/Fs); } for(int cali_index3 = 0; cali_index3 < 2560; cali_index3++) // Scales y1 { if(cali_array1[cali_index3] > cali_max1) { cali_max1 = cali_array1[cali_index3]; } } for(int cali_index4 = 0; cali_index4 < 2560; cali_index4++) // Scales y2 { if(cali_array2[cali_index4] > cali_max2) { cali_max2 = cali_array2[cali_index4]; } } cali_fact1 = (double)1/cali_max1; // Calibration factor for y1 cali_fact2 = (double)1/cali_max2; // Calibration factor for y2 // Toggles green sampling LED off led_yellow.write(0); pc.printf(" \t....... Calibration has been completed!\n"); wait(0.2); led_green.write(led_off); wait(0.2); led_green.write(led_on); wait(0.2); led_green.write(led_off); wait(0.2); led_green.write(led_on); wait(4); pc.printf("Beginning with Ball-E board settings\n"); led_green.write(led_off); wait(2); y1 = 0; y2 = 0; j = 1; // Wachten van fase switch initialiseren fase_switch_wait = true; flag_calibration = false; } //************************* CONTROL MOTOR **************************************** if (flag_s) { flag_calibration = false; } //************************* FASE SWITCH ****************************************** //******************** Fase determination ************* if (fase_switch_wait == true) { j++; wait(0.01); // Problemen met EMG metingen die te hoog zijn op het begin van script na calibratie. vandaar ff wachten en de sample loop een paar keer doorlopen. pc.printf("waarde j = %i \n",j); led_red.write(0); led_green.write(1); led_yellow.write(0); } if( j > N) { fase_switch_wait = false; switch(fase) { //******************* Fase 1 ************************** case(1): led_red.write(1); led_green.write(0); led_yellow.write(0); rounds = 0; if (y1> contract) { flag_right = false; flag_left = true; } if (y2 > contract) { flag_right = true; flag_left = false; } if (pos_board < maxleft) { flag_left = false; motor2speed.write(relax); } if (pos_board > maxright) { flag_right = false; motor2speed.write(relax); } if (flag_left == true) { if (y1> contract) { motor2direction.write(ccw); motor2speed.write(speed_plate_1); } else { motor2speed.write(relax); } } if (flag_right == true) { if (y2 > contract) { motor2direction.write(cw); motor2speed.write(speed_plate_1); } else { motor2speed.write(relax); } } pc.printf("Boardposition \t %f EMG1 en EMG2 signaal = %f \t %f\n", pos_board, y1, y2); if (y1> fasecontract && y2 > fasecontract) { motor2speed.write(relax); fase = 2; fase_switch_wait = true; led_red.write(0); led_green.write(0); led_yellow.write(1); j = 0; } break; //******************* Fase 2 ************************** case(2): led_red.write(0); led_green.write(0); led_yellow.write(1); motor1direction.write(cw); pos_arm1 = (pos_arm - (rounds * 360)); pos_arm2 = pos_arm1; switch(switch_rounds) { case(1): rounds ++; switch_rounds = 2; break; case(2): if(pos_arm1>360 & 368<pos_arm1) { switch_rounds = 1; } break; } if (y2 > minimum_contract & y2 < medium_contract) { speed_control_arm = ((v_arm/304) + 0.15*(1 -(v_arm/304))); motor1speed.write(speed_control_arm); } if (y2 > medium_contract) // Hoger dan drempelwaarde = Actief { speed_control_arm = ((v_arm/304) + 0.15*(1 -(v_arm/304))); motor1speed.write(speed_control_arm); } if (y2 < minimum_contract) // Lager dan drempel = Rust { motor1speed.write(relax); } if(rounds == pos_armrounds_max) // max aantal draaing gemaakt!!!!!! { problem1 = true; problem2 = true; motor1speed.write(relax); while (problem1) { j++; wait(0.01); // Problemen met EMG metingen die te hoog zijn op het begin van script na calibratie. vandaar ff wachten en de sample loop een paar keer doorlopen. Encoderread1 = wheel1.getPulses(); pos_arm = (Encoderread1/((64.0*131.0)/360.0)); // Omrekenen naar graden van arm if( j > N) { problem1 = false; } } wait(0.1); led_red.write(0); wait(0.1); led_red.write(1); wait(0.1); led_red.write(0); wait(0.1); led_red.write(1); wait(0.1); led_red.write(0); wait(0.1); led_red.write(1); wait(1.5); while(problem2) { motor1direction.write(ccw); if(pos_arm < 170){ if(v_arm > 200){ flag_v_arm = true; } } if(flag_v_arm){ v_arm_com = v_arm; } speed_control_arm = (0.4*((pos_arm2 - reset_arm)/500.0) + (0.05) - (v_arm_com/304)*0.3); motor1speed.write(speed_control_arm); if (pos_arm < 10) { flag_v_arm = false; problem2 = false; motor1speed.write(0); rounds = 0; wait(1); } } } if (pos_arm1 > minimum_throw_angle & pos_arm1 < maximum_throw_angle) { if (y1> maximum_leftbiceps) { magnet.write(off); motor1speed.write(relax); fase = 3; pc.printf("Van fase 2 naar fase 3\n"); wait(2); j = 0; fase_switch_wait = true; } } pc.printf("Snelheid arm = \t %f \t EMG1 en EMG2 = %f \t %f \n", speed_control_arm, y1, y2); break; //********************************************* Fase 3 ********************************************** case(3): led_red.write(0); led_green.write(1); led_yellow.write(0); switch(switch_reset) { case(1): if(pos_arm < reset_position) //ene kant op draaien { motor1direction.write(cw); speedcompensation2 = 0.05; //((reset_arm - pos_arm1)/900.0 + (0.02)); motor1speed.write(speedcompensation2); } if(pos_arm > reset_position) //andere kant op { motor1direction.write(ccw); speedcompensation2 = 0.05;//((pos_arm1 - reset_arm)/500.0 + (0.02)); motor1speed.write(speedcompensation2); } if(pos_arm < reset_position+5 && pos_arm > reset_position-5) // Dit gaat niet goed komen, omdat het precies die waarde moet zijn { motor1speed.write(0); switch_reset = 2; } pc.printf("Positie_arm = %f \t \t snelheid = %f \n",pos_arm, speedcompensation); wait(0.0001); break; case(2): pc.printf("\t switch magneet automatisch \n"); wait(0.2); magnet.write(on); wait(2); switch_reset = 3; break; case(3): if(pos_board < reset_board) { motor2direction.write(cw); speedcompensation = 0.05; //((reset_board - pos_board1)/500.0 + (0.1)); motor2speed.write(speedcompensation); } if(pos_board > reset_board) { motor2direction.write(ccw); speedcompensation = 0.05;//((pos_board1 - reset_board)/500.0 + (0.05)); motor2speed.write(speedcompensation); } if(pos_board < reset_board+5 && pos_board > reset_board-5) { motor2speed.write(0); board = true; } if(board == true) { pc.printf("fase switch naar 1\n\n"); board = false; wait(2); games_played ++; games_played1 = games_played - (3*calibration_measurements - 3); pc.printf("Games played total count = %i and loop %i\n",games_played,games_played1); if(games_played1 == 3) { flag_calibration = true; while(t) { pc.printf("\tCalibratie begint over %i \n",t); t--; led_yellow.write(1); wait(0.5); led_yellow.write(0); wait(0.5); } } while(t) { pc.printf("\tNieuw spel begint over %i \n",t); t--; led_yellow.write(1); wait(0.5); led_yellow.write(0); wait(0.5); } fase = 1; // Terug naar fase 1 switch_reset = 1; // De switch op orginele locatie zetten t = 5; } pc.printf("Positie_board = %f \t \t snelheid = %f \n",pos_board, speedcompensation); wait(0.0001); break; } break; //=================================================== STOP SCRIPT ============================================================ } } } }