State machine
Dependencies: mbed Adafruit_GFX BioroboticsMotorControl MODSERIAL BioroboticsEMGFilter
forward_kinematics.h
- Committer:
- MAHCSnijders
- Date:
- 2018-11-05
- Revision:
- 50:5d2176b93a65
- Parent:
- 22:720a410c4980
File content as of revision 50:5d2176b93a65:
#pragma once #include "mbed.h" #include "constants.h" // Pass the two values that you want the x and y outputs in, as 3rd and 4th arguments (3rd and 4th arguments are outpurs). void forward_kinematics(double main_angle, double sec_angle, double &output_x, double &output_y) { // Calculation of position joint 1 expressed in frame 0 float J1x_0 = L6 + L0 + L1*cos(sec_angle); float J1y_0 = L1*sin(sec_angle); // Calculation of position joint 3 expressed in frame 0 float J3x_0 = L6 + L4*cos(main_angle); float J3y_0 = L4*sin(main_angle); // Calculation of Joint 2 expressed in frame 2 float m_y = J3y_0 - J1y_0; float m_x = J1x_0 - J3x_0; float m = sqrt(pow(m_y,2) + pow(m_x,2)); // Radius between Joint 1 and 3 float delta = acos(- ( pow(m,2) - pow(L2,2) - pow(L3,2))/(2*L2*L3) ); float mu = acos( (pow(L2,2) - pow(L3,2) + pow(m,2))/(2*m*L2) ); // Angle between L2 and m float t_y = J3y_0; float t_x = (L0 + L6) - J3x_0; float t = sqrt(pow(t_y,2) + pow(t_x,2)); // Radius between frame 1 and Joint 3 float phi = acos( (pow(L1,2) - pow(t,2) + pow(m,2))/(2*m*L1) ); // Angle between L1 and m float q2 = PI - mu - phi; // Angle that L2 makes in frame 2 float J2x_2 = L2*cos(q2); float J2y_2 = L2*sin(q2); // Calculation of Joint 2 expressed in frame 0 float J1x_1 = L1*cos(sec_angle); // Joint 1 expressed in frame 1 float J1y_1 = L1*sin(sec_angle); float J2x_0 = J2x_2*cos(sec_angle) - J2y_2 * sin(sec_angle) + J1x_1 + L0 + L6; // Joint 2 expressed in frame 0 float J2y_0 = J2x_2*sin(sec_angle) + J2y_2 * cos(sec_angle) + J1y_1; // Calculation of End-effector float f_x = J2x_0 - L6; float f_y = J2y_0; float f = sqrt(pow(f_x,2) + pow(f_y,2)); // Radius between motor 1 and Joint 2 float xhi = acos( -(pow(f,2) - pow(L3,2) - pow(L4,2))/(2*L3*L4) ); // Angle between L3 and L4 float omega = PI - xhi; // Angle between L4 and L5 float n = sqrt(pow(L4,2) + pow(L5,2) - 2*L4*L5*cos(omega)); // Radius between end effector and motor 1 float theta = acos( (pow(L4,2) - pow(L5,2) + pow(n,2))/(2*n*L4) ); // Angle between n and L4 float rho = PI - theta - main_angle; // Angle between n and L4 float Pe_x = L6 - n*cos(rho); // y-coordinate end-effector float Pe_y = n*sin(rho); // x-coordinate end-effector output_x = Pe_x; output_y = Pe_y; }