With this program the buttons on the biorobotics shield can be used to move the arms. both buttons pressed means shoot. Also SW3 can be pressed to adjust controller constants via Serial connection
Dependencies: HIDScope QEI controlandadjust mbed
Diff: main.cpp
- Revision:
- 0:24628832f21d
- Child:
- 1:41a9e3340c96
diff -r 000000000000 -r 24628832f21d main.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Thu Oct 01 14:33:20 2015 +0000 @@ -0,0 +1,175 @@ +#include "mbed.h" +#include "QEI.h" +#include "HIDScope.h" + +//////////////////////////////////////CONSTANTS, I/O, FREQUENCIES AND TICKERS////////////////////////////////////// +//info uit +HIDScope scope(5); + +//encoders +QEI encoder1 (D12,D13,NC,32); // first b then a for clockwise + +QEI encoder2 (D10,D11,NC,32); + +//ingangen +DigitalIn butR(D2); +DigitalIn butL(D3); + +//uitgangen +DigitalOut motor1_direction(D7);// draairichting motor 1 (1 is CW encoder als je daar op kijkt en CW shaft als je daar op kijkt) +PwmOut motor1_speed_control(D6);//aanstuursnelheid motor 1 +PwmOut motor2_speed_control(D5); +DigitalOut motor2_direction(D4); +const int CW=1; //clockwise +const int CCW=0; //counterclockwise + +//frequencies +const double hidscope_frequency=100;//frequentie waarop data naar HIDScope wordt gestuurd +const double pi_control_frequency=25;//frequentie waarop er een control actie wordt uitgevoerd. kan hoger, voorzichtig bij ruis! +const double read_but_frequency=25; + +//tickers +Ticker hidscope_ticker; +Ticker pi_control_ticker; +Ticker read_but_ticker; + +//constants +const float cpr=32*131; +const float PI=3.1415; +const float counttorad=((2*PI)/cpr); +const float counttodeg=(360/cpr); +const float mmpersecbut=(30/(read_but_frequency)); +const float radpersecbut=(PI/read_but_frequency); +const float armlength=400;//length "upper arm" in mm + +///////////////////////////////////////////////////CONTROLLER CONSTANTS//////////////////////////////// + +//DEZE WAARDES ZIJN ZOMAAR RANDOM WAARDES!!!! + + +double desiredangle[2]= {0,0}; +double desiredposition=0; +double signal_motor[2]= {0,0}; +////////////////////////////////////////////GO FLAGS AND ACTIVATION FUNCTIONS////////////////////////////////// +//go flags +volatile bool scopedata_go=false, pi_control_go=false,read_but_go=false; + +//acvitator functions + +void scopedata_activate() +{ + scopedata_go=true; +} +void pi_control_activate() +{ + pi_control_go=true; +} +void read_but_activate() +{ + read_but_go=true; +} +///////////////////////////////////////////////////////FUNCTIONS////////////////////////////////////////////////////////////////////////// + +//scopedata +void scopedata() +{ + scope.set(0,desiredposition);//gewenste hoek van arm + scope.set(1,counttodeg*encoder1.getPulses());//hoek in rad van outputshaft + scope.set(2,motor1_speed_control.read());//pwm signaal naar motor toe + scope.set(3,counttodeg*encoder2.getPulses());//hoek in rad van outputshaft + scope.set(4,motor2_speed_control.read());//pwm signaal naar motor toe + scope.send(); +} +//////////////////////////////////////////////////////////CONTROLLER/////////////////////////////////////// +float pi_kp=0.5; +float pi_ki=0.01; +float Ts=1.0/pi_control_frequency; +double e[2]= {0,0}; +double motor_error_int[2]= {0,0}; + +// Reusable PI controller +void pi_control() +{ + motor_error_int[0] = motor_error_int[0] + Ts * e[0]; // e_int is changed globally because it’s ’by reference’ (&) + signal_motor[0]=pi_kp*e[0]+pi_ki*motor_error_int[0]; + + motor_error_int[1] = motor_error_int[1] + Ts * e[1]; // e_int is changed globally because it’s ’by reference’ (&) + signal_motor[1]=pi_kp*e[1]+pi_ki*motor_error_int[1]; +} + +//////////////////////////////////////////////////MAIN/////////////////////////////////// +int main() +{ + //set initial shizzle + motor1_speed_control.write(0); + motor2_speed_control.write(0); + + //tickers + hidscope_ticker.attach(&scopedata_activate,1.0/hidscope_frequency); + pi_control_ticker.attach(&pi_control_activate,1.0/pi_control_frequency); + read_but_ticker.attach(&read_but_activate,1.0/read_but_frequency); + + while(1) { + //control motor 1 with a pi controller + + if (read_but_go==true) { + float buttonR=butR.read(), buttonL=butL.read(); + if (buttonR==0 && buttonL ==1) { + desiredposition += (radpersecbut); + read_but_go=false; + } + if (buttonR==1 && buttonL==0) { + desiredposition -= (radpersecbut); + read_but_go=false; + } else { + desiredposition=desiredposition; + } + desiredangle[0]=desiredposition; + desiredangle[1]=desiredposition; + read_but_go=false; + } + + if (pi_control_go==true) { + e[0]=desiredangle[0]-(counttorad*encoder1.getPulses()); + e[1]=desiredangle[1]-(counttorad*encoder2.getPulses()); + pi_control(); + //motor1 + if (signal_motor[0]>=0) {//determine CW or CCW rotation + motor1_direction.write(CW); + } else { + motor1_direction.write(CCW); + } + + if (fabs(signal_motor[0])>=1) { //check if signal is <1 + signal_motor[0]=1;//if signal >1 make it 1 to not damage motor + } else { + signal_motor[0]=fabs(signal_motor[0]);// if signal<1 use signal + } + + //motor 2 + if (signal_motor[1]>=0) {//determine CW or CCW rotation + motor2_direction.write(CW); + } else { + motor2_direction.write(CCW); + } + + if (fabs(signal_motor[1])>=1) { //check if signal is <1 + signal_motor[1]=1;//if signal >1 make it 1 to not damage motor + } else { + signal_motor[1]=fabs(signal_motor[1]);// if signal<1 use signal + } + + + + motor1_speed_control.write(fabs(signal_motor[0]));//write signal to motor + motor2_speed_control.write(fabs(signal_motor[1]));//write signal to motor + + pi_control_go=false; + } + //call scopedata + if (scopedata_go==true) { + scopedata(); + scopedata_go=false; + } + } + return 0; +}