BME SmartLab
/
SmartCone
SmartCone Demo
Revision 0:f86c91eb17cb, committed 2017-01-19
- Comitter:
- mrcrsch
- Date:
- Thu Jan 19 13:25:53 2017 +0000
- Commit message:
- Init for publish;
Changed in this revision
diff -r 000000000000 -r f86c91eb17cb MPU9250Mod.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MPU9250Mod.h Thu Jan 19 13:25:53 2017 +0000 @@ -0,0 +1,456 @@ +#ifndef MPU9250_H +#define MPU9250_H + +#include "mbed.h" +#include "math.h" + +//const uint16_t this_node = 01; + #define this_node 01 +// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in +// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map +// +//Magnetometer Registers +#define AK8963_ADDRESS 0x0C<<1 +#define WHO_AM_I_AK8963 0x00 // should return 0x48 +#define INFO 0x01 +#define AK8963_ST1 0x02 // data ready status bit 0 +#define AK8963_XOUT_L 0x03 // data +#define AK8963_XOUT_H 0x04 +#define AK8963_YOUT_L 0x05 +#define AK8963_YOUT_H 0x06 +#define AK8963_ZOUT_L 0x07 +#define AK8963_ZOUT_H 0x08 +#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 +#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 +#define AK8963_ASTC 0x0C // Self test control +#define AK8963_I2CDIS 0x0F // I2C disable +#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value +#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value +#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value + +#define SELF_TEST_X_GYRO 0x00 +#define SELF_TEST_Y_GYRO 0x01 +#define SELF_TEST_Z_GYRO 0x02 + +/*#define X_FINE_GAIN 0x03 // [7:0] fine gain +#define Y_FINE_GAIN 0x04 +#define Z_FINE_GAIN 0x05 +#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer +#define XA_OFFSET_L_TC 0x07 +#define YA_OFFSET_H 0x08 +#define YA_OFFSET_L_TC 0x09 +#define ZA_OFFSET_H 0x0A +#define ZA_OFFSET_L_TC 0x0B */ + +#define SELF_TEST_X_ACCEL 0x0D +#define SELF_TEST_Y_ACCEL 0x0E +#define SELF_TEST_Z_ACCEL 0x0F + +#define SELF_TEST_A 0x10 + +#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope +#define XG_OFFSET_L 0x14 +#define YG_OFFSET_H 0x15 +#define YG_OFFSET_L 0x16 +#define ZG_OFFSET_H 0x17 +#define ZG_OFFSET_L 0x18 +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define ACCEL_CONFIG 0x1C +#define ACCEL_CONFIG2 0x1D +#define LP_ACCEL_ODR 0x1E +#define WOM_THR 0x1F + +#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms +#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] +#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms + +#define FIFO_EN 0x23 +#define I2C_MST_CTRL 0x24 +#define I2C_SLV0_ADDR 0x25 +#define I2C_SLV0_REG 0x26 +#define I2C_SLV0_CTRL 0x27 +#define I2C_SLV1_ADDR 0x28 +#define I2C_SLV1_REG 0x29 +#define I2C_SLV1_CTRL 0x2A +#define I2C_SLV2_ADDR 0x2B +#define I2C_SLV2_REG 0x2C +#define I2C_SLV2_CTRL 0x2D +#define I2C_SLV3_ADDR 0x2E +#define I2C_SLV3_REG 0x2F +#define I2C_SLV3_CTRL 0x30 +#define I2C_SLV4_ADDR 0x31 +#define I2C_SLV4_REG 0x32 +#define I2C_SLV4_DO 0x33 +#define I2C_SLV4_CTRL 0x34 +#define I2C_SLV4_DI 0x35 +#define I2C_MST_STATUS 0x36 +#define INT_PIN_CFG 0x37 +#define INT_ENABLE 0x38 +#define DMP_INT_STATUS 0x39 // Check DMP interrupt +#define INT_STATUS 0x3A +#define ACCEL_XOUT_H 0x3B +#define ACCEL_XOUT_L 0x3C +#define ACCEL_YOUT_H 0x3D +#define ACCEL_YOUT_L 0x3E +#define ACCEL_ZOUT_H 0x3F +#define ACCEL_ZOUT_L 0x40 +#define TEMP_OUT_H 0x41 +#define TEMP_OUT_L 0x42 +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 +#define EXT_SENS_DATA_00 0x49 +#define EXT_SENS_DATA_01 0x4A +#define EXT_SENS_DATA_02 0x4B +#define EXT_SENS_DATA_03 0x4C +#define EXT_SENS_DATA_04 0x4D +#define EXT_SENS_DATA_05 0x4E +#define EXT_SENS_DATA_06 0x4F +#define EXT_SENS_DATA_07 0x50 +#define EXT_SENS_DATA_08 0x51 +#define EXT_SENS_DATA_09 0x52 +#define EXT_SENS_DATA_10 0x53 +#define EXT_SENS_DATA_11 0x54 +#define EXT_SENS_DATA_12 0x55 +#define EXT_SENS_DATA_13 0x56 +#define EXT_SENS_DATA_14 0x57 +#define EXT_SENS_DATA_15 0x58 +#define EXT_SENS_DATA_16 0x59 +#define EXT_SENS_DATA_17 0x5A +#define EXT_SENS_DATA_18 0x5B +#define EXT_SENS_DATA_19 0x5C +#define EXT_SENS_DATA_20 0x5D +#define EXT_SENS_DATA_21 0x5E +#define EXT_SENS_DATA_22 0x5F +#define EXT_SENS_DATA_23 0x60 +#define MOT_DETECT_STATUS 0x61 +#define I2C_SLV0_DO 0x63 +#define I2C_SLV1_DO 0x64 +#define I2C_SLV2_DO 0x65 +#define I2C_SLV3_DO 0x66 +#define I2C_MST_DELAY_CTRL 0x67 +#define SIGNAL_PATH_RESET 0x68 +#define MOT_DETECT_CTRL 0x69 +#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP +#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode +#define PWR_MGMT_2 0x6C +#define DMP_BANK 0x6D // Activates a specific bank in the DMP +#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank +#define DMP_REG 0x6F // Register in DMP from which to read or to which to write +#define DMP_REG_1 0x70 +#define DMP_REG_2 0x71 +#define FIFO_COUNTH 0x72 +#define FIFO_COUNTL 0x73 +#define FIFO_R_W 0x74 +#define WHO_AM_I_MPU9250 0x75 // Should return 0x71 +#define XA_OFFSET_H 0x77 +#define XA_OFFSET_L 0x78 +#define YA_OFFSET_H 0x7A +#define YA_OFFSET_L 0x7B +#define ZA_OFFSET_H 0x7D +#define ZA_OFFSET_L 0x7E + +// Using the MSENSR-9250 breakout board, ADO is set to 0 +// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 +//mbed uses the eight-bit device address, so shift seven-bit addresses left by one! +#define ADO 0 +#if ADO +#define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 +#else +#define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0 +#endif + +// Set initial input parameters +enum Ascale { + AFS_2G = 0, + AFS_4G, + AFS_8G, + AFS_16G +}; + +enum Gscale { + GFS_250DPS = 0, + GFS_500DPS, + GFS_1000DPS, + GFS_2000DPS +}; + +enum Mscale { + MFS_14BITS = 0, // 0.6 mG per LSB + MFS_16BITS // 0.15 mG per LSB +}; + +uint8_t Ascale = AFS_8G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G +uint8_t Gscale = GFS_2000DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS +uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution +uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR +float aRes, gRes, mRes; // scale resolutions per LSB for the sensors + +//Set up I2C, (SDA,SCL) +//I2C i2c(PB_9, PB_8); +I2C i2c(PF_0,PF_1); + + +float magbias[3] = {303.12, 163.22, -259.35}, magCalibration[3] = {0,0,0}; // Factory mag calibration and mag bias + float magscale[3] = {1.16,0.987234,0.888889}; + float gyroBias[3] = {0.326364,-0.87681,0.723182}, accelBias[3] = {-0.00906,0.009605,0.002286}; // Bias corrections for gyro and accelerometer + +/* +#if this_node == 01 + float magbias[3] = {303.12, 163.22, -259.35}, magCalibration[3] = {0,0,0}; // Factory mag calibration and mag bias + float magscale[3] = {1.16,0.987234,0.888889}; + float gyroBias[3] = {0.326364,-0.87681,0.723182}, accelBias[3] = {-0.00906,0.009605,0.002286}; // Bias corrections for gyro and accelerometer +#elif this_node == 02 + float magbias[3] = {152.937, 284.675, 32.2063}, magCalibration[3] = {0,0,0}; // Factory mag calibration and mag bias + float magscale[3] = {1.05367, 0.986772, 0.963824}; + //float gyroBias[3] = {2.16792601,-3.441743604,-11.80535044}, accelBias[3] = {0.063996427,-0.04823691,-0.045249821}; + float gyroBias[3] = {2.450195,-1.63298,-18.4074}, accelBias[3] = {0.021225,0.018935,-0.05172}; +#elif this_node == 03 //racket + float magbias[3] = {263.908875, 440.263977, -235.16362}, magCalibration[3] = {0,0,0}; // Factory mag calibration and mag bias + float magscale[3] = {1.013227, 0.997396, 0.989664}; + float gyroBias[3] = {-1.12645,0.154036,0.416789}, accelBias[3] = {-0.009199,-0.03983,-0.00774}; +#endif +*/ + + +// Pin definitions +int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins + +int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output +int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output +int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output +float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values +int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius +float temperature; +float SelfTest[6]; + +int delt_t = 0; // used to control display output rate +int count = 0; // used to control display output rate + +// parameters for 6 DoF sensor fusion calculations +float PI = 3.14159265358979323846f; +float GyroMeasError = PI * (40.0f / 180.0f); //60 volt // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 +float beta = sqrt(3.0f / 4.0f) * GyroMeasError; //3 volt // compute beta +float GyroMeasDrift = PI * (0.0f / 180.0f); //1.0 volt // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) +float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value +#define Kp 2.0f //* 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral +#define Ki 0.005f + +float pitch, yaw, roll; +float deltat = 0.0f; // integration interval for both filter schemes +int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval +float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion +float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method + +class MPU9250 { + + protected: + + public: + //=================================================================================================================== +//====== Set of useful function to access acceleratio, gyroscope, and temperature data +//=================================================================================================================== + + void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) +{ + char data_write[2]; + data_write[0] = subAddress; + data_write[1] = data; + i2c.write(address, data_write, 2, 0); +} + + char readByte(uint8_t address, uint8_t subAddress) +{ + char data[1]; // `data` will store the register data + char data_write[1]; + data_write[0] = subAddress; + i2c.write(address, data_write, 1, 1); // no stop + i2c.read(address, data, 1, 0); + return data[0]; +} + + void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) +{ + char data[14]; + char data_write[1]; + data_write[0] = subAddress; + i2c.write(address, data_write, 1, 1); // no stop + i2c.read(address, data, count, 0); + for(int ii = 0; ii < count; ii++) { + dest[ii] = data[ii]; + } +} + + +void getMres() { + switch (Mscale) + { + // Possible magnetometer scales (and their register bit settings) are: + // 14 bit resolution (0) and 16 bit resolution (1) + case MFS_14BITS: + mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss + break; + case MFS_16BITS: + mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss + break; + } +} + + +void getGres() { + switch (Gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case GFS_250DPS: + gRes = 250.0/32768.0; + break; + case GFS_500DPS: + gRes = 500.0/32768.0; + break; + case GFS_1000DPS: + gRes = 1000.0/32768.0; + break; + case GFS_2000DPS: + gRes = 2000.0/32768.0; + break; + } +} + + +void getAres() { + switch (Ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + aRes = 2.0/32768.0; + break; + case AFS_4G: + aRes = 4.0/32768.0; + break; + case AFS_8G: + aRes = 8.0/32768.0; + break; + case AFS_16G: + aRes = 16.0/32768.0; + break; + } +} + + +void readAccelData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; +} + +void readGyroData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; +} + +void readMagData(int16_t * destination) +{ + uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition + if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set + readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array + uint8_t c = rawData[6]; // End data read by reading ST2 register + if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data + destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian + destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; + } + } +} + +int16_t readTempData() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value +} + + +void resetMPU9250() { + // reset device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); +} + + +void initMPU9250() +{ + // Initialize MPU9250 device + // wake up device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors + wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt + + // get stable time source + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + + // Configure Gyro and Accelerometer + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; + // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both + // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate + writeByte(MPU9250_ADDRESS, CONFIG, 0x01 ); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x09); // Use a 200 Hz rate; the same rate set in CONFIG above + + // Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 + uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro + + // Set accelerometer configuration + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer + + // Set accelerometer sample rate configuration + // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for + // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x01); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz + + // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, + // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting + + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips + // can join the I2C bus and all can be controlled by the Arduino as master + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt +} + + + + + +}; + + + + + + +#endif \ No newline at end of file
diff -r 000000000000 -r f86c91eb17cb RF24.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RF24.lib Thu Jan 19 13:25:53 2017 +0000 @@ -0,0 +1,1 @@ +http://developer.mbed.org/users/akashvibhute/code/RF24/#ef74df512fed
diff -r 000000000000 -r f86c91eb17cb main.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Thu Jan 19 13:25:53 2017 +0000 @@ -0,0 +1,155 @@ +#include "mbed.h" +#include "MPU9250Mod.h" +#include "RF24.h" + + +#define NodeID 1 + + +#define ledpin PA_10 + +#define nrf_CE PA_1 +#define nrf_CSN PA_4 +#define spi_SCK PA_5 +#define spi_MOSI PA_7 +#define spi_MISO PA_6 +#define nrf_irq PA_1 + +#define i2c_sda PF_0 +#define i2c_scl PF_1 + +MPU9250 mpu9250; +DigitalOut led(ledpin); + +RF24 radio(spi_MOSI, spi_MISO, spi_SCK, nrf_CE, nrf_CSN ); +InterruptIn NRF_irq(PA_0); + +const uint64_t PiAddress = 0xF0F0F0F0E1LL; +const uint64_t ActionAddress = 0xF0F0F0F0D2LL; + + +struct IRQStruct{ + uint8_t ID; + uint8_t Threshold; + bool isOn; +}IRQMsg; + +void RF24IntHandler(); +void SetupRadio(); +void SendMsg(); + +float AccelMsg = 1.0; +uint8_t AThreshold = 5; + +typedef enum{ + NRF, + IMU +} state; + +state State = IMU; + + +int main(){ + led = !led; + SetupRadio(); + + NRF_irq.fall(&RF24IntHandler); + + + + i2c.frequency(400000); + mpu9250.initMPU9250(); + + + mpu9250.getAres(); // Get accelerometer sensitivity + mpu9250.getGres(); // Get gyro sensitivity + mpu9250.getMres(); // Get magnetometer sensitivity + + while(true){ + + switch(State){ + case(IMU): + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01){ + mpu9250.readAccelData(accelCount); + ax = (float)accelCount[0]*aRes; + ay = (float)accelCount[1]*aRes; + az = (float)accelCount[2]*aRes; + + float AbsAcc = sqrt(ax*ax + ay*ay + az*az); + AccelMsg = AbsAcc; + //memcpy(&AccelMsg, &AbsAcc, 4); + + if(AbsAcc > AThreshold) + SendMsg(); + } + + wait(0.1); + + + break; + + case(NRF): + if(radio.getDynamicPayloadSize() < 1)// Corrupt payload has been flushed + continue; + + radio.read(&IRQMsg, sizeof(IRQMsg)); + + if(IRQMsg.ID != NodeID) + continue; + + led = IRQMsg.isOn; + AThreshold = IRQMsg.Threshold; + + State = IMU; + + break; + } + + + + + + + + + + } +} + +void SendMsg(){ + radio.stopListening(); + wait_ms(10); + + + radio.write(&AccelMsg, sizeof(AccelMsg) ); + radio.startListening(); + led = !led; + wait(1); + +} + +void SetupRadio(){ + + radio.begin(); + radio.setPALevel(RF24_PA_MAX) ; + radio.setDataRate(RF24_2MBPS); + radio.setCRCLength(RF24_CRC_16); + radio.setChannel(120); + + radio.enableDynamicAck(); + radio.enableDynamicPayloads(); + + radio.openWritingPipe(ActionAddress); + radio.openReadingPipe(1,PiAddress); + + radio.startListening(); + +} + + + +void RF24IntHandler(){ + State = NRF; + + +} \ No newline at end of file
diff -r 000000000000 -r f86c91eb17cb mbed.bld --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Thu Jan 19 13:25:53 2017 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/faff56e089b2 \ No newline at end of file