Repostiory containing DAPLink source code with Reset Pin workaround for HANI_IOT board.
Upstream: https://github.com/ARMmbed/DAPLink
source/hic_hal/stm32/stm32f103xb/uart.c
- Committer:
- Pawel Zarembski
- Date:
- 2020-04-07
- Revision:
- 0:01f31e923fe2
File content as of revision 0:01f31e923fe2:
/** * @file uart.c * @brief * * DAPLink Interface Firmware * Copyright (c) 2009-2016, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "string.h" #include "stm32f1xx.h" #include "uart.h" #include "gpio.h" #include "util.h" #include "circ_buf.h" #include "IO_Config.h" // For usart #define CDC_UART USART2 #define CDC_UART_ENABLE() __HAL_RCC_USART2_CLK_ENABLE() #define CDC_UART_DISABLE() __HAL_RCC_USART2_CLK_DISABLE() #define CDC_UART_IRQn USART2_IRQn #define CDC_UART_IRQn_Handler USART2_IRQHandler #define UART_PINS_PORT_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define UART_PINS_PORT_DISABLE() __HAL_RCC_GPIOA_CLK_DISABLE() #define UART_TX_PORT GPIOA #define UART_TX_PIN GPIO_PIN_2 #define UART_RX_PORT GPIOA #define UART_RX_PIN GPIO_PIN_3 #define UART_CTS_PORT GPIOA #define UART_CTS_PIN GPIO_PIN_0 #define UART_RTS_PORT GPIOA #define UART_RTS_PIN GPIO_PIN_1 #define RX_OVRF_MSG "<DAPLink:Overflow>\n" #define RX_OVRF_MSG_SIZE (sizeof(RX_OVRF_MSG) - 1) #define BUFFER_SIZE (512) circ_buf_t write_buffer; uint8_t write_buffer_data[BUFFER_SIZE]; circ_buf_t read_buffer; uint8_t read_buffer_data[BUFFER_SIZE]; static UART_Configuration configuration = { .Baudrate = 9600, .DataBits = UART_DATA_BITS_8, .Parity = UART_PARITY_NONE, .StopBits = UART_STOP_BITS_1, .FlowControl = UART_FLOW_CONTROL_NONE, }; extern uint32_t SystemCoreClock; static void clear_buffers(void) { circ_buf_init(&write_buffer, write_buffer_data, sizeof(write_buffer_data)); circ_buf_init(&read_buffer, read_buffer_data, sizeof(read_buffer_data)); } int32_t uart_initialize(void) { GPIO_InitTypeDef GPIO_InitStructure; CDC_UART->CR1 &= ~(USART_IT_TXE | USART_IT_RXNE); clear_buffers(); CDC_UART_ENABLE(); UART_PINS_PORT_ENABLE(); //TX pin GPIO_InitStructure.Pin = UART_TX_PIN; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; HAL_GPIO_Init(UART_TX_PORT, &GPIO_InitStructure); //RX pin GPIO_InitStructure.Pin = UART_RX_PIN; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStructure.Mode = GPIO_MODE_INPUT; GPIO_InitStructure.Pull = GPIO_PULLUP; HAL_GPIO_Init(UART_RX_PORT, &GPIO_InitStructure); //CTS pin, input GPIO_InitStructure.Pin = UART_CTS_PIN; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStructure.Mode = GPIO_MODE_INPUT; GPIO_InitStructure.Pull = GPIO_PULLUP; HAL_GPIO_Init(UART_CTS_PORT, &GPIO_InitStructure); //RTS pin, output low HAL_GPIO_WritePin(UART_RTS_PORT, UART_RTS_PIN, GPIO_PIN_RESET); GPIO_InitStructure.Pin = UART_RTS_PIN; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; HAL_GPIO_Init(UART_RTS_PORT, &GPIO_InitStructure); NVIC_EnableIRQ(CDC_UART_IRQn); return 1; } int32_t uart_uninitialize(void) { CDC_UART->CR1 &= ~(USART_IT_TXE | USART_IT_RXNE); clear_buffers(); return 1; } int32_t uart_reset(void) { const uint32_t cr1 = CDC_UART->CR1; CDC_UART->CR1 = cr1 & ~(USART_IT_TXE | USART_IT_RXNE); clear_buffers(); CDC_UART->CR1 = cr1 & ~USART_IT_TXE; return 1; } int32_t uart_set_configuration(UART_Configuration *config) { UART_HandleTypeDef uart_handle; HAL_StatusTypeDef status; memset(&uart_handle, 0, sizeof(uart_handle)); uart_handle.Instance = CDC_UART; // parity configuration.Parity = config->Parity; if(config->Parity == UART_PARITY_ODD) { uart_handle.Init.Parity = HAL_UART_PARITY_ODD; } else if(config->Parity == UART_PARITY_EVEN) { uart_handle.Init.Parity = HAL_UART_PARITY_EVEN; } else if(config->Parity == UART_PARITY_NONE) { uart_handle.Init.Parity = HAL_UART_PARITY_NONE; } else { //Other not support uart_handle.Init.Parity = HAL_UART_PARITY_NONE; configuration.Parity = UART_PARITY_NONE; } // stop bits configuration.StopBits = config->StopBits; if(config->StopBits == UART_STOP_BITS_2) { uart_handle.Init.StopBits = UART_STOPBITS_2; } else if(config->StopBits == UART_STOP_BITS_1_5) { uart_handle.Init.StopBits = UART_STOPBITS_2; configuration.StopBits = UART_STOP_BITS_2; } else if(config->StopBits == UART_STOP_BITS_1) { uart_handle.Init.StopBits = UART_STOPBITS_1; } else { uart_handle.Init.StopBits = UART_STOPBITS_1; configuration.StopBits = UART_STOP_BITS_1; } //Only 8 bit support configuration.DataBits = UART_DATA_BITS_8; uart_handle.Init.WordLength = UART_WORDLENGTH_8B; // No flow control configuration.FlowControl = UART_FLOW_CONTROL_NONE; uart_handle.Init.HwFlowCtl = UART_HWCONTROL_NONE; // Specified baudrate configuration.Baudrate = config->Baudrate; uart_handle.Init.BaudRate = config->Baudrate; // TX and RX uart_handle.Init.Mode = UART_MODE_TX_RX; // Disable uart and tx/rx interrupt CDC_UART->CR1 &= ~(USART_IT_TXE | USART_IT_RXNE); clear_buffers(); status = HAL_UART_DeInit(&uart_handle); util_assert(HAL_OK == status); status = HAL_UART_Init(&uart_handle); util_assert(HAL_OK == status); (void)status; CDC_UART->CR1 |= USART_IT_RXNE; return 1; } int32_t uart_get_configuration(UART_Configuration *config) { config->Baudrate = configuration.Baudrate; config->DataBits = configuration.DataBits; config->Parity = configuration.Parity; config->StopBits = configuration.StopBits; config->FlowControl = UART_FLOW_CONTROL_NONE; return 1; } int32_t uart_write_free(void) { return circ_buf_count_free(&write_buffer); } int32_t uart_write_data(uint8_t *data, uint16_t size) { uint32_t cnt = circ_buf_write(&write_buffer, data, size); CDC_UART->CR1 |= USART_IT_TXE; return cnt; } int32_t uart_read_data(uint8_t *data, uint16_t size) { return circ_buf_read(&read_buffer, data, size); } void CDC_UART_IRQn_Handler(void) { const uint32_t sr = CDC_UART->SR; if (sr & USART_SR_RXNE) { uint8_t dat = CDC_UART->DR; uint32_t free = circ_buf_count_free(&read_buffer); if (free > RX_OVRF_MSG_SIZE) { circ_buf_push(&read_buffer, dat); } else if (RX_OVRF_MSG_SIZE == free) { circ_buf_write(&read_buffer, (uint8_t*)RX_OVRF_MSG, RX_OVRF_MSG_SIZE); } else { // Drop character } } if (sr & USART_SR_TXE) { if (circ_buf_count_used(&write_buffer) > 0) { CDC_UART->DR = circ_buf_pop(&write_buffer); } else { CDC_UART->CR1 &= ~USART_IT_TXE; } } }