Repostiory containing DAPLink source code with Reset Pin workaround for HANI_IOT board.
Upstream: https://github.com/ARMmbed/DAPLink
source/hic_hal/nxp/lpc4322/DAP_config.h
- Committer:
- Pawel Zarembski
- Date:
- 2020-04-07
- Revision:
- 0:01f31e923fe2
File content as of revision 0:01f31e923fe2:
/** * @file DAP_config.c * @brief * * DAPLink Interface Firmware * Copyright (c) 2009-2016, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __DAP_CONFIG_H__ #define __DAP_CONFIG_H__ //************************************************************************************************** /** \defgroup DAP_Config_Debug_gr CMSIS-DAP Debug Unit Information \ingroup DAP_ConfigIO_gr @{ Provides definitions about: - Definition of Cortex-M processor parameters used in CMSIS-DAP Debug Unit. - Debug Unit communication packet size. - Debug Access Port communication mode (JTAG or SWD). - Optional information about a connected Target Device (for Evaluation Boards). */ #include "LPC43xx.h" // Debug Unit Cortex-M Processor Header File #include "lpc43xx_scu.h" typedef unsigned int BOOL; #ifndef __TRUE #define __TRUE 1 #endif #ifndef __FALSE #define __FALSE 0 #endif /// Processor Clock of the Cortex-M MCU used in the Debug Unit. /// This value is used to calculate the SWD/JTAG clock speed. #define CPU_CLOCK SystemCoreClock ///< Specifies the CPU Clock in Hz /// Number of processor cycles for I/O Port write operations. /// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O /// Port write operations in the Debug Unit by a Cortex-M MCU. Most Cortex-M processors /// requrie 2 processor cycles for a I/O Port Write operation. If the Debug Unit uses /// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be /// required. #define IO_PORT_WRITE_CYCLES 2 ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0 /// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port. /// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>. #define DAP_SWD 1 ///< SWD Mode: 1 = available, 0 = not available /// Indicate that JTAG communication mode is available at the Debug Port. /// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>. #define DAP_JTAG 0 ///< JTAG Mode: 1 = available, 0 = not available. /// Configure maximum number of JTAG devices on the scan chain connected to the Debug Access Port. /// This setting impacts the RAM requirements of the Debug Unit. Valid range is 1 .. 255. #define DAP_JTAG_DEV_CNT 0 ///< Maximum number of JTAG devices on scan chain /// Default communication mode on the Debug Access Port. /// Used for the command \ref DAP_Connect when Port Default mode is selected. #define DAP_DEFAULT_PORT 1 ///< Default JTAG/SWJ Port Mode: 1 = SWD, 2 = JTAG. /// Default communication speed on the Debug Access Port for SWD and JTAG mode. /// Used to initialize the default SWD/JTAG clock frequency. /// The command \ref DAP_SWJ_Clock can be used to overwrite this default setting. #define DAP_DEFAULT_SWJ_CLOCK 5000000 ///< Default SWD/JTAG clock frequency in Hz. /// Maximum Package Size for Command and Response data. /// This configuration settings is used to optimized the communication performance with the /// debugger and depends on the USB peripheral. Change setting to 1024 for High-Speed USB. #define DAP_PACKET_SIZE 64 ///< USB: 64 = Full-Speed, 1024 = High-Speed. /// Maximum Package Buffers for Command and Response data. /// This configuration settings is used to optimized the communication performance with the /// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the /// setting can be reduced (valid range is 1 .. 255). Change setting to 4 for High-Speed USB. #define DAP_PACKET_COUNT 1 ///< Buffers: 64 = Full-Speed, 4 = High-Speed. /// Indicate that UART Serial Wire Output (SWO) trace is available. /// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>. #define SWO_UART 0 ///< SWO UART: 1 = available, 0 = not available /// Maximum SWO UART Baudrate #define SWO_UART_MAX_BAUDRATE 10000000U ///< SWO UART Maximum Baudrate in Hz /// Indicate that Manchester Serial Wire Output (SWO) trace is available. /// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>. #define SWO_MANCHESTER 0 ///< SWO Manchester: 1 = available, 0 = not available /// SWO Trace Buffer Size. #define SWO_BUFFER_SIZE 4096U ///< SWO Trace Buffer Size in bytes (must be 2^n) /// SWO Streaming Trace. #define SWO_STREAM 0 ///< SWO Streaming Trace: 1 = available, 0 = not available. /// Clock frequency of the Test Domain Timer. Timer value is returned with \ref TIMESTAMP_GET. #define TIMESTAMP_CLOCK 1000000U ///< Timestamp clock in Hz (0 = timestamps not supported). /// Debug Unit is connected to fixed Target Device. /// The Debug Unit may be part of an evaluation board and always connected to a fixed /// known device. In this case a Device Vendor and Device Name string is stored which /// may be used by the debugger or IDE to configure device parameters. #define TARGET_DEVICE_FIXED 0 ///< Target Device: 1 = known, 0 = unknown; #if TARGET_DEVICE_FIXED #define TARGET_DEVICE_VENDOR "" ///< String indicating the Silicon Vendor #define TARGET_DEVICE_NAME "" ///< String indicating the Target Device #endif ///@} // LPC43xx peripheral register bit masks (used by macros) #define CCU_CLK_CFG_RUN (1UL << 0) #define CCU_CLK_CFG_AUTO (1UL << 1) #define CCU_CLK_STAT_RUN (1UL << 0) // State of Reset Ouput Enable buffer extern BOOL gpio_reset_pin_is_input; // Debug Port I/O Pins // SWCLK Pin P1_17: GPIO0[12] #define PORT_SWCLK 0 #define PIN_SWCLK_IN_BIT 12 #define PIN_SWCLK (1<<PIN_SWCLK_IN_BIT) // SWDIO Pin P1_6: GPIO1[9] #define PORT_SWDIO 1 #define PIN_SWDIO_IN_BIT 9 #define PIN_SWDIO (1<<PIN_SWDIO_IN_BIT) // SWDIO Output Enable Pin P1_5: GPIO1[8] #define PORT_SWDIO_TXE 1 #define PIN_SWDIO_TXE_IN_BIT 8 #define PIN_SWDIO_TXE (1<<PIN_SWDIO_TXE_IN_BIT) // nRESET Pin P2_5: GPIO5[5] note: HANI_IOT workaround: changing to GPIO0[7] #define PORT_nRESET 0 #define PIN_nRESET_IN_BIT 7 #define PIN_nRESET (1<<PIN_nRESET_IN_BIT) // nRESET Output Enable Pin P2_6: GPIO5[6] #define PORT_RESET_TXE 5 #define PIN_RESET_TXE_IN_BIT 6 #define PIN_RESET_TXE (1<<PIN_RESET_TXE_IN_BIT) // ISP Control Pin P2_11: GPIO1[11] #define ISPCTRL_PORT 1 #define ISPCTRL_BIT 11 #define X_SET(str) LPC_GPIO_PORT->SET[PORT_##str] = PIN_##str #define X_CLR(str) LPC_GPIO_PORT->CLR[PORT_##str] = PIN_##str #define X_DIR_OUT(str) LPC_GPIO_PORT->DIR[PORT_##str] |= (PIN_##str) #define X_DIR_IN(str) LPC_GPIO_PORT->DIR[PORT_##str] &= ~(PIN_##str) #define X_BYTE(str) LPC_GPIO_PORT->B[(PORT_##str << 5) + PIN_##str##_IN_BIT] //************************************************************************************************** /** \defgroup DAP_Config_PortIO_gr CMSIS-DAP Hardware I/O Pin Access \ingroup DAP_ConfigIO_gr @{ Standard I/O Pins of the CMSIS-DAP Hardware Debug Port support standard JTAG mode and Serial Wire Debug (SWD) mode. In SWD mode only 2 pins are required to implement the debug interface of a device. The following I/O Pins are provided: JTAG I/O Pin | SWD I/O Pin | CMSIS-DAP Hardware pin mode ---------------------------- | -------------------- | --------------------------------------------- TCK: Test Clock | SWCLK: Clock | Output Push/Pull TMS: Test Mode Select | SWDIO: Data I/O | Output Push/Pull; Input (for receiving data) TDI: Test Data Input | | Output Push/Pull TDO: Test Data Output | | Input nTRST: Test Reset (optional) | | Output Open Drain with pull-up resistor nRESET: Device Reset | nRESET: Device Reset | Output Open Drain with pull-up resistor DAP Hardware I/O Pin Access Functions ------------------------------------- The various I/O Pins are accessed by functions that implement the Read, Write, Set, or Clear to these I/O Pins. For the SWDIO I/O Pin there are additional functions that are called in SWD I/O mode only. This functions are provided to achieve faster I/O that is possible with some advanced GPIO peripherals that can independently write/read a single I/O pin without affecting any other pins of the same I/O port. The following SWDIO I/O Pin functions are provided: - \ref PIN_SWDIO_OUT_ENABLE to enable the output mode from the DAP hardware. - \ref PIN_SWDIO_OUT_DISABLE to enable the input mode to the DAP hardware. - \ref PIN_SWDIO_IN to read from the SWDIO I/O pin with utmost possible speed. - \ref PIN_SWDIO_OUT to write to the SWDIO I/O pin with utmost possible speed. */ // Configure DAP I/O pins ------------------------------ /** Setup JTAG I/O pins: TCK, TMS, TDI, TDO, nTRST, and nRESET. Configures the DAP Hardware I/O pins for JTAG mode: - TCK, TMS, TDI, nTRST, nRESET to output mode and set to high level. - TDO to input mode. */ __STATIC_INLINE void PORT_JTAG_SETUP(void) {} /** Setup SWD I/O pins: SWCLK, SWDIO, and nRESET. Configures the DAP Hardware I/O pins for Serial Wire Debug (SWD) mode: - SWCLK, SWDIO, nRESET to output mode and set to default high level. - TDI, TMS, nTRST to HighZ mode (pins are unused in SWD mode). */ __STATIC_INLINE void PORT_SWD_SETUP(void) { X_SET(SWCLK); X_SET(SWDIO); X_DIR_OUT(SWCLK); X_DIR_OUT(SWDIO); X_SET(SWDIO_TXE); X_DIR_OUT(SWDIO_TXE); } /** Disable JTAG/SWD I/O Pins. Disables the DAP Hardware I/O pins which configures: - TCK/SWCLK, TMS/SWDIO, TDI, TDO, nTRST, nRESET to High-Z mode. */ __STATIC_INLINE void PORT_OFF(void) { X_CLR(SWCLK); X_CLR(SWDIO); X_DIR_OUT(SWCLK); X_DIR_OUT(SWDIO); X_SET(SWDIO_TXE); X_DIR_OUT(SWDIO_TXE); } // SWCLK/TCK I/O pin ------------------------------------- /** SWCLK/TCK I/O pin: Get Input. \return Current status of the SWCLK/TCK DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN(void) { return (0); // Not available } /** SWCLK/TCK I/O pin: Set Output to High. Set the SWCLK/TCK DAP hardware I/O pin to high level. */ __STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET(void) { X_SET(SWCLK); } /** SWCLK/TCK I/O pin: Set Output to Low. Set the SWCLK/TCK DAP hardware I/O pin to low level. */ __STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR(void) { X_CLR(SWCLK); } // SWDIO/TMS Pin I/O -------------------------------------- /** SWDIO/TMS I/O pin: Get Input. \return Current status of the SWDIO/TMS DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN(void) { return X_BYTE(SWDIO) & 0x1; } /** SWDIO/TMS I/O pin: Set Output to High. Set the SWDIO/TMS DAP hardware I/O pin to high level. */ __STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET(void) { X_SET(SWDIO); } /** SWDIO/TMS I/O pin: Set Output to Low. Set the SWDIO/TMS DAP hardware I/O pin to low level. */ __STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR(void) { X_CLR(SWDIO); } /** SWDIO I/O pin: Get Input (used in SWD mode only). \return Current status of the SWDIO DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN(void) { return X_BYTE(SWDIO) & 0x1; } /** SWDIO I/O pin: Set Output (used in SWD mode only). \param bit Output value for the SWDIO DAP hardware I/O pin. */ __STATIC_FORCEINLINE void PIN_SWDIO_OUT(uint32_t bit) { if (bit & 0x1) { X_SET(SWDIO); } else { X_CLR(SWDIO); } } /** SWDIO I/O pin: Switch to Output mode (used in SWD mode only). Configure the SWDIO DAP hardware I/O pin to output mode. This function is called prior \ref PIN_SWDIO_OUT function calls. */ __STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE(void) { X_SET(SWDIO_TXE); X_DIR_OUT(SWDIO); } /** SWDIO I/O pin: Switch to Input mode (used in SWD mode only). Configure the SWDIO DAP hardware I/O pin to input mode. This function is called prior \ref PIN_SWDIO_IN function calls. */ __STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE(void) { X_DIR_IN(SWDIO); X_CLR(SWDIO_TXE); } // TDI Pin I/O --------------------------------------------- /** TDI I/O pin: Get Input. \return Current status of the TDI DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_TDI_IN(void) { return (0); // Not available } /** TDI I/O pin: Set Output. \param bit Output value for the TDI DAP hardware I/O pin. */ __STATIC_FORCEINLINE void PIN_TDI_OUT(uint32_t bit) { ; // Not available } // TDO Pin I/O --------------------------------------------- /** TDO I/O pin: Get Input. \return Current status of the TDO DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_TDO_IN(void) { return (0); // Not available } // nTRST Pin I/O ------------------------------------------- /** nTRST I/O pin: Get Input. \return Current status of the nTRST DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_nTRST_IN(void) { return (0); // Not available } /** nTRST I/O pin: Set Output. \param bit JTAG TRST Test Reset pin status: - 0: issue a JTAG TRST Test Reset. - 1: release JTAG TRST Test Reset. */ __STATIC_FORCEINLINE void PIN_nTRST_OUT(uint32_t bit) { ; // Not available } // nRESET Pin I/O------------------------------------------ /** nRESET I/O pin: Get Input. \return Current status of the nRESET DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_nRESET_IN(void) { if (gpio_reset_pin_is_input) { return X_BYTE(nRESET) & 0x1; } else { return 0; // Always LOW when output } } /** nRESET I/O pin: Set Output. \param bit target device hardware reset pin status: - 0: issue a device hardware reset. - 1: release device hardware reset. */ __STATIC_FORCEINLINE void PIN_nRESET_OUT(uint32_t bit) { if (bit) { // release device hardware reset. (reset INPUT, reset oe LOW=INPUT) X_DIR_IN(nRESET); X_CLR(RESET_TXE); gpio_reset_pin_is_input = __TRUE; LPC_GPIO_PIN_INT->IST = 0x01; // ACK any pending edge interrupt LPC_GPIO_PIN_INT->SIENF |= 0x1; // Enable falling edge interrupt } else { // issue a device hardware reset. (reset OUTPUT+LOW, reset oe HIGH=OUTPUT) gpio_reset_pin_is_input = __FALSE; LPC_GPIO_PIN_INT->CIENF |= 0x1; // Disable falling edge interrupt LPC_GPIO_PIN_INT->IST = 0x01; // ACK any pending edge interrupt X_SET(RESET_TXE); X_CLR(nRESET); X_DIR_OUT(nRESET); } } ///@} //************************************************************************************************** /** \defgroup DAP_Config_LEDs_gr CMSIS-DAP Hardware Status LEDs \ingroup DAP_ConfigIO_gr @{ CMSIS-DAP Hardware may provide LEDs that indicate the status of the CMSIS-DAP Debug Unit. It is recommended to provide the following LEDs for status indication: - Connect LED: is active when the DAP hardware is connected to a debugger. - Running LED: is active when the debugger has put the target device into running state. */ /** Debug Unit: Set status of Connected LED. \param bit status of the Connect LED. - 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit. - 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit. */ __STATIC_INLINE void LED_CONNECTED_OUT(uint32_t bit) { } /** Debug Unit: Set status Target Running LED. \param bit status of the Target Running LED. - 1: Target Running LED ON: program execution in target started. - 0: Target Running LED OFF: program execution in target stopped. */ __STATIC_INLINE void LED_RUNNING_OUT(uint32_t bit) { ; // Not available } ///@} //************************************************************************************************** /** \defgroup DAP_Config_Timestamp_gr CMSIS-DAP Timestamp \ingroup DAP_ConfigIO_gr @{ Access function for Test Domain Timer. The value of the Test Domain Timer in the Debug Unit is returned by the function \ref TIMESTAMP_GET. By default, the DWT timer is used. The frequency of this timer is configured with \ref TIMESTAMP_CLOCK. */ /** Get timestamp of Test Domain Timer. \return Current timestamp value. */ __STATIC_INLINE uint32_t TIMESTAMP_GET (void) { return (DWT->CYCCNT) / (CPU_CLOCK / TIMESTAMP_CLOCK); } ///@} //************************************************************************************************** /** \defgroup DAP_Config_Initialization_gr CMSIS-DAP Initialization \ingroup DAP_ConfigIO_gr @{ CMSIS-DAP Hardware I/O and LED Pins are initialized with the function \ref DAP_SETUP. */ /** Setup of the Debug Unit I/O pins and LEDs (called when Debug Unit is initialized). This function performs the initialization of the CMSIS-DAP Hardware I/O Pins and the Status LEDs. In detail the operation of Hardware I/O and LED pins are enabled and set: - I/O clock system enabled. - all I/O pins: input buffer enabled, output pins are set to HighZ mode. - for nTRST, nRESET a weak pull-up (if available) is enabled. - LED output pins are enabled and LEDs are turned off. */ __STATIC_INLINE void DAP_SETUP(void) { /* Enable clock and init GPIO outputs */ LPC_CCU1->CLK_M4_GPIO_CFG = CCU_CLK_CFG_AUTO | CCU_CLK_CFG_RUN; while (!(LPC_CCU1->CLK_M4_GPIO_STAT & CCU_CLK_STAT_RUN)); /* Configure I/O pins: function number, input buffer enabled, */ /* no pull-up/down */ scu_pinmux(1, 17, GPIO_NOPULL, FUNC0); /* SWCLK/TCK: GPIO0[12] */ scu_pinmux(1, 6, GPIO_NOPULL, FUNC0); /* SWDIO/TMS: GPIO1[9] */ scu_pinmux(1, 5, GPIO_NOPULL, FUNC0); /* SWDIO_OE: GPIO1[8] */ } /** Reset Target Device with custom specific I/O pin or command sequence. This function allows the optional implementation of a device specific reset sequence. It is called when the command \ref DAP_ResetTarget and is for example required when a device needs a time-critical unlock sequence that enables the debug port. \return 0 = no device specific reset sequence is implemented.\n 1 = a device specific reset sequence is implemented. */ __STATIC_INLINE uint32_t RESET_TARGET(void) { return (0); // change to '1' when a device reset sequence is implemented } ///@} #endif /* __DAP_CONFIG_H__ */