Repostiory containing DAPLink source code with Reset Pin workaround for HANI_IOT board.
Upstream: https://github.com/ARMmbed/DAPLink
source/hic_hal/maxim/max32620/system_max32620.c
- Committer:
- Pawel Zarembski
- Date:
- 2020-04-07
- Revision:
- 0:01f31e923fe2
File content as of revision 0:01f31e923fe2:
/******************************************************************************* * Copyright (C) 2017 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. * ******************************************************************************/ #include <string.h> #include <stdio.h> #include <stdlib.h> #include "max32620.h" #include "clkman_regs.h" #include "adc_regs.h" #include "pwrseq_regs.h" #include "pwrman_regs.h" #include "icc_regs.h" #include "flc_regs.h" #include "rtc_regs.h" #include "trim_regs.h" #ifndef RO_FREQ #define RO_FREQ 96000000 #endif #ifndef LP0_POST_HOOK #define LP0_POST_HOOK #endif extern void (* const __isr_vector[])(void); /* * Note: When compiling on ARM Keil Toolchain only. * If the SystemCoreClock is left uninitialized, post Scatter load * the clock will default to system reset value(48MHz) */ uint32_t SystemCoreClock = RO_FREQ; void SystemCoreClockUpdate(void) { if(MXC_PWRSEQ->reg0 & MXC_F_PWRSEQ_REG0_PWR_RCEN_RUN) { /* 4 MHz source */ if(MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RC_DIV) { SystemCoreClock = (4000000 / (0x1 << ((MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RC_DIV) >> MXC_F_PWRSEQ_REG3_PWR_RC_DIV_POS))); } else { SystemCoreClock = 4000000; } } else { /* 96 MHz source */ if(MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RO_DIV) { SystemCoreClock = (RO_FREQ / (0x1 << ((MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RO_DIV) >> MXC_F_PWRSEQ_REG3_PWR_RO_DIV_POS))); } else { SystemCoreClock = RO_FREQ; } } } void CLKMAN_TrimRO(void) { uint32_t running; uint32_t trim; /* Step 1: enable 32KHz RTC */ running = MXC_PWRSEQ->reg0 & MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN; MXC_PWRSEQ->reg0 |= MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN; /* Wait for RTC warm-up */ while(MXC_RTCCFG->osc_ctrl & MXC_F_RTC_OSC_CTRL_OSC_WARMUP_ENABLE) {} /* Step 2: enable RO calibration complete interrupt */ MXC_ADC->intr |= MXC_F_ADC_INTR_RO_CAL_DONE_IE; /* Step 3: clear RO calibration complete interrupt */ MXC_ADC->intr |= MXC_F_ADC_INTR_RO_CAL_DONE_IF; /* Step 4: -- NO LONGER NEEDED / HANDLED BY STARTUP CODE -- */ /* Step 5: write initial trim to frequency calibration initial condition register */ trim = (MXC_PWRSEQ->reg6 & MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF) >> MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF_POS; MXC_ADC->ro_cal1 = (MXC_ADC->ro_cal1 & ~MXC_F_ADC_RO_CAL1_TRM_INIT) | ((trim << MXC_F_ADC_RO_CAL1_TRM_INIT_POS) & MXC_F_ADC_RO_CAL1_TRM_INIT); /* Step 6: load initial trim to active frequency trim register */ MXC_ADC->ro_cal0 |= MXC_F_ADC_RO_CAL0_RO_CAL_LOAD; /* Step 7: enable frequency loop to control RO trim */ MXC_ADC->ro_cal0 |= MXC_F_ADC_RO_CAL0_RO_CAL_EN; /* Step 8: run frequency calibration in atomic mode */ MXC_ADC->ro_cal0 |= MXC_F_ADC_RO_CAL0_RO_CAL_ATOMIC; /* Step 9: waiting for ro_cal_done flag */ while(!(MXC_ADC->intr & MXC_F_ADC_INTR_RO_CAL_DONE_IF)); /* Step 10: stop frequency calibration */ MXC_ADC->ro_cal0 &= ~MXC_F_ADC_RO_CAL0_RO_CAL_RUN; /* Step 11: disable RO calibration complete interrupt */ MXC_ADC->intr &= ~MXC_F_ADC_INTR_RO_CAL_DONE_IE; /* Step 12: read final frequency trim value */ trim = (MXC_ADC->ro_cal0 & MXC_F_ADC_RO_CAL0_RO_TRM) >> MXC_F_ADC_RO_CAL0_RO_TRM_POS; /* Step 13: write final trim to RO flash trim shadow register */ MXC_PWRSEQ->reg6 = (MXC_PWRSEQ->reg6 & ~MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF) | ((trim << MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF_POS) & MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF); /* Step 14: restore RTC status */ if (!running) { MXC_PWRSEQ->reg0 &= ~MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN; } /* Step 15: disable frequency loop to control RO trim */ MXC_ADC->ro_cal0 &= ~MXC_F_ADC_RO_CAL0_RO_CAL_EN; } static void ICC_Enable(void) { /* Invalidate cache and wait until ready */ MXC_ICC->invdt_all = 1; while (!(MXC_ICC->ctrl_stat & MXC_F_ICC_CTRL_STAT_READY)); /* Enable cache */ MXC_ICC->ctrl_stat |= MXC_F_ICC_CTRL_STAT_ENABLE; /* Must invalidate a second time for proper use */ MXC_ICC->invdt_all = 1; } /* This function is called before C runtime initialization and can be * implemented by the application for early initializations. If a value other * than '0' is returned, the C runtime initialization will be skipped. * * You may over-ride this function in your program by defining a custom * PreInit(), but care should be taken to reproduce the initilization steps * or a non-functional system may result. */ __weak int PreInit(void) { /* Increase system clock to 96 MHz */ MXC_CLKMAN->clk_ctrl = MXC_V_CLKMAN_CLK_CTRL_SYSTEM_SOURCE_SELECT_96MHZ_RO; /* Performance-measurement hook, may be defined as nothing */ LP0_POST_HOOK; /* Enable cache here to reduce boot time */ ICC_Enable(); return 0; } /* * Note: When compiling on ARM Keil Toolchain only. * If the SystemCoreClock is modified in this function, post Scatter load * the clock will default to system reset value(48MHz) */ /* This function can be implemented by the application to initialize the board */ __weak int Board_Init(void) { /* Do nothing */ return 0; } /* This function is called just before control is transferred to main(). * * You may over-ride this function in your program by defining a custom * SystemInit(), but care should be taken to reproduce the initialization * steps or a non-functional system may result. */ __weak void SystemInit(void) { /* Configure the interrupt controller to use the application vector table in */ /* the application space */ #if defined ( __GNUC__) /* IAR sets the VTOR pointer prior to SystemInit and causes stack corruption to change it here. */ __disable_irq(); /* Disable interrupts */ // SCB->VTOR = (uint32_t)__isr_vector; /* set the Vector Table to point at our ISR table */ __DSB(); /* bus sync */ __enable_irq(); /* enable interrupts */ #endif /* __GNUC__ */ /* Copy trim information from shadow registers into power manager registers */ /* NOTE: Checks have been added to prevent bad/missing trim values from being loaded */ if ((MXC_FLC->ctrl & MXC_F_FLC_CTRL_INFO_BLOCK_VALID) && (MXC_TRIM->for_pwr_reg5 != 0xffffffff) && (MXC_TRIM->for_pwr_reg6 != 0xffffffff)) { MXC_PWRSEQ->reg5 = MXC_TRIM->for_pwr_reg5; MXC_PWRSEQ->reg6 = MXC_TRIM->for_pwr_reg6; } else { /* No valid info block, use some reasonable defaults */ MXC_PWRSEQ->reg6 &= ~MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF; MXC_PWRSEQ->reg6 |= (0x1e0 << MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF_POS); } /* Improve flash access timing */ MXC_FLC->perform |= (/*MXC_F_FLC_PERFORM_EN_BACK2BACK_RDS | */ MXC_F_FLC_PERFORM_EN_MERGE_GRAB_GNT | MXC_F_FLC_PERFORM_AUTO_TACC | MXC_F_FLC_PERFORM_AUTO_CLKDIV); /* First, eliminate the unnecessary RTC handshake between clock domains. Must be set as a pair. */ MXC_RTCTMR->ctrl |= (MXC_F_RTC_CTRL_USE_ASYNC_FLAGS | MXC_F_RTC_CTRL_AGGRESSIVE_RST); /* Enable fast read of the RTC timer value, and fast write of all other RTC registers */ MXC_PWRSEQ->rtc_ctrl2 |= (MXC_F_PWRSEQ_RTC_CTRL2_TIMER_AUTO_UPDATE | MXC_F_PWRSEQ_RTC_CTRL2_TIMER_ASYNC_WR); MXC_PWRSEQ->rtc_ctrl2 &= ~(MXC_F_PWRSEQ_RTC_CTRL2_TIMER_ASYNC_RD); /* Clear the GPIO WUD event if not waking up from LP0 */ /* this is necessary because WUD flops come up in undetermined state out of POR or SRST*/ if(MXC_PWRSEQ->reg0 & MXC_F_PWRSEQ_REG0_PWR_FIRST_BOOT || !(MXC_PWRMAN->pwr_rst_ctrl & MXC_F_PWRMAN_PWR_RST_CTRL_POR)) { /* Clear GPIO WUD event and configuration registers, globally */ MXC_PWRSEQ->reg1 |= (MXC_F_PWRSEQ_REG1_PWR_CLR_IO_EVENT_LATCH | MXC_F_PWRSEQ_REG1_PWR_CLR_IO_CFG_LATCH); MXC_PWRSEQ->reg1 &= ~(MXC_F_PWRSEQ_REG1_PWR_CLR_IO_EVENT_LATCH | MXC_F_PWRSEQ_REG1_PWR_CLR_IO_CFG_LATCH); } else { /* Unfreeze the GPIO by clearing MBUS_GATE, when returning from LP0 */ MXC_PWRSEQ->reg1 &= ~(MXC_F_PWRSEQ_REG1_PWR_MBUS_GATE); /* LP0 wake-up: Turn off special switch to eliminate ~50nA of leakage on VDD12 */ MXC_PWRSEQ->reg1 &= ~MXC_F_PWRSEQ_REG1_PWR_SRAM_NWELL_SW; } /* Turn on retention regulator */ MXC_PWRSEQ->reg0 |= (MXC_F_PWRSEQ_REG0_PWR_RETREGEN_RUN | MXC_F_PWRSEQ_REG0_PWR_RETREGEN_SLP); /* Turn on Auto GPIO Freeze/UnFreeze in sleep modes */ MXC_PWRSEQ->reg1 |= MXC_F_PWRSEQ_REG1_PWR_AUTO_MBUS_GATE; /* Adjust settings in the retention controller for fastest wake-up time */ MXC_PWRSEQ->retn_ctrl0 |= (MXC_F_PWRSEQ_RETN_CTRL0_RC_REL_CCG_EARLY | MXC_F_PWRSEQ_RETN_CTRL0_RC_POLL_FLASH); MXC_PWRSEQ->retn_ctrl0 &= ~(MXC_F_PWRSEQ_RETN_CTRL0_RC_USE_FLC_TWK); /* Set retention controller TWake cycle count to 1us to minimize the wake-up time */ /* NOTE: flash polling (...PWRSEQ_RETN_CTRL0_RC_POLL_FLASH) must be enabled before changing POR default! */ MXC_PWRSEQ->retn_ctrl1 = (MXC_PWRSEQ->retn_ctrl1 & ~MXC_F_PWRSEQ_RETN_CTRL1_RC_TWK) | (1 << MXC_F_PWRSEQ_RETN_CTRL1_RC_TWK_POS); /* Improve wake-up time by changing ROSEL to 140ns */ MXC_PWRSEQ->reg3 = (1 << MXC_F_PWRSEQ_REG3_PWR_ROSEL_POS) | (1 << MXC_F_PWRSEQ_REG3_PWR_FAILSEL_POS) | (MXC_PWRSEQ->reg3 & ~(MXC_F_PWRSEQ_REG3_PWR_ROSEL | MXC_F_PWRSEQ_REG3_PWR_FLTRROSEL)); /* Enable RTOS Mode: Enable 32kHz clock synchronizer to SysTick external clock input */ MXC_CLKMAN->clk_ctrl |= MXC_F_CLKMAN_CLK_CTRL_RTOS_MODE; /* Set this so all bits of PWR_MSK_FLAGS are active low to mask the corresponding flags */ MXC_PWRSEQ->pwr_misc |= MXC_F_PWRSEQ_PWR_MISC_INVERT_4_MASK_BITS; /* Clear this bit to get the latest PT */ MXC_PWRMAN->pt_regmap_ctrl &= ~MXC_F_PWRMAN_PT_REGMAP_CTRL_ME02A_MODE; /* Enable FPU on Cortex-M4, which occupies coprocessor slots 10 & 11 */ /* Grant full access, per "Table B3-24 CPACR bit assignments". */ /* DDI0403D "ARMv7-M Architecture Reference Manual" */ SCB->CPACR |= SCB_CPACR_CP10_Msk | SCB_CPACR_CP11_Msk; __DSB(); __ISB(); /* Perform an initial trim of the internal ring oscillator */ CLKMAN_TrimRO(); SystemCoreClockUpdate(); Board_Init(); }