Robot's source code

Dependencies:   mbed

Asserv_Plan_B/planB.cpp

Committer:
sype
Date:
2015-05-05
Revision:
108:890094ee202a
Parent:
106:05096985d1b2
Child:
112:df5388d9f706

File content as of revision 108:890094ee202a:

#include "planB.h"
#include "defines.h"

extern Serial logger;

aserv_planB::aserv_planB(Odometry2 &odometry,Motor &motorL,Motor &motorR) : m_odometry(odometry), m_motorL(motorL), m_motorR(motorR)
{
    somme_erreur = 0;
    Kp_angle = 3.0; //Fixed à 3.0 pour 180 deg
    Ki_angle = 0.00;
    cmd = 0;
    cmd_g = 0, cmd_d = 0;
    N = 0;
    arrived = false;
    squip = false;
    state = 0; // Etat ou l'on ne fait rien
    distanceGoal = 0;
    distance = 0;
    Kp_distance = 0.004;
    Ki_distance = 0.001;
    Kd_distance = 0.0;
}

void aserv_planB::setGoal(float x, float y, float phi)
{
    m_goalX = x;
    m_goalY = y;
    m_goalPhi = phi;
    distanceGoal = sqrt(carre(m_goalX-m_odometry.getX())+carre(m_goalY-m_odometry.getY()));
    state = 1; // Etat de rotation 1
    N = 0;
    Kp_angle = 3.0;
    arrived = false;
}

void aserv_planB::stop(void)
{
    m_motorL.setSpeed(0);
    m_motorR.setSpeed(0);
    m_goalX = m_odometry.getX();
    m_goalY = m_odometry.getY();
    setGoal(m_goalX, m_goalY);
}

void aserv_planB::setGoal(float x, float y)
{
    squip = true;
    setGoal(x, y, 0);
    squip = false;
}

void aserv_planB::update(float dt)
{

    thetaGoal = atan2(m_goalY-m_odometry.getY(),m_goalX-m_odometry.getX());
    float erreur_theta = thetaGoal-m_odometry.getTheta();
    float erreur_distance = sqrt(carre(m_goalX-m_odometry.getX())+carre(m_goalY-m_odometry.getY()));
    if(erreur_theta <= PI) erreur_theta += 2.0f*PI;
    if(erreur_theta >= PI) erreur_theta -= 2.0f*PI;

    // Etat 1 : Angle theta pour viser dans la direction du point M(x,y)
    if(state == 1)
    {
        //logger.printf("%.2f\r\n", erreur_theta*180/PI);
        cmd = erreur_theta*Kp_angle + (erreur_theta-erreur_precedente)*Kd_angle + somme_erreur*Ki_angle;
        erreur_precedente = erreur_theta;
        somme_erreur += erreur_theta;
        
        if(cmd > 0.8) cmd = 0.8;
        else if(cmd < -0.8) cmd = -0.8;
        
        m_motorL.setSpeed(-cmd);
        m_motorR.setSpeed(cmd);
        
        if(abs(erreur_theta)< 0.05) N++;
        else N = 0;
        if(N > 10)
        {
            m_motorL.setSpeed(0);
            m_motorR.setSpeed(0);
            state = 2;
            logger.printf("Erreur theta : %.2f\r\n", erreur_theta*180/PI);
            somme_erreur = 0;
            N = 0;
            Kp_angle = 5.0;
        }
    }

    // Etat 2 : Parcours du robot jusqu'au point M(x,y)
    if(state == 2) 
    {
        //logger.printf("%.2f %.2f %.2f\r\n", erreur_distance, cmd_g, cmd_d);
        cmd_g = erreur_distance*Kp_distance + somme_erreur*Ki_distance - erreur_theta*Kp_angle;
        cmd_d = erreur_distance*Kp_distance + somme_erreur*Ki_distance + erreur_theta*Kp_angle;
        
        if(cmd_g > 0.8) cmd_g = 0.8;
        else if(cmd_g < -0.8) cmd_g = -0.8;
        
        if(cmd_d > 0.8) cmd_d = 0.8;
        else if(cmd_d < -0.8) cmd_d = -0.8;
                
        m_motorL.setSpeed(cmd_g);
        m_motorR.setSpeed(cmd_d);
        
        if(abs(erreur_distance) <= 10.0) 
        {
            arrived = true;
            logger.printf("Erreur distance : %.2f, arrived = %d\r\n", erreur_distance, (int)arrived);
            state = 3;
            N = 0;
        }
        /*if(abs(erreur_distance) < 20.0) N++;
        else N = 0;
        if(N > 50)
        {
            logger.printf("Erreur distance : %.2f\r\n", erreur_distance);
            state = 3;
            N = 0;
        }*/
    }

    // Etat 3 : Placement au bon angle Phi souhaité au point M(x,y)
    if(state == 3)
    {
        //float erreur_phi = m_goalPhi-m_odometry.getTheta();
        //logger.printf("%.2f\r\n", erreur_phi*180/PI);
        m_motorL.setSpeed(0);
        m_motorR.setSpeed(0);
        arrived = true;
    }
}