Robot's source code
Dependencies: mbed
Diff: Asservissement/Asserv.h
- Revision:
- 43:87bdce65341f
- Parent:
- 42:fcb48e2fc426
- Child:
- 44:d5f95af61243
--- a/Asservissement/Asserv.h Wed Mar 18 13:47:40 2015 +0000 +++ b/Asservissement/Asserv.h Thu Mar 19 14:35:25 2015 +0000 @@ -1,7 +1,7 @@ /*KalmanFilter*/ #include "EKF.h" #include "Odometry.h" - +/* template<typename T> Mat<T> motion_bicycle3( Mat<T> state, Mat<T> command, T dt = (T)0.5); template<typename T> @@ -14,204 +14,7 @@ Mat<T> jsensor_bicycle3( Mat<T> state, Mat<T> command, Mat<T> d_state, T dt = 0.5); template<typename T> bool setPWM(PwmOut *servo,T p); -int reduc = 16; - -extern Serial logger; - -/*---------------------------------------------------------------------------------------------------------*/ -/*---------------------------------------------------------------------------------------------------------*/ - -template<typename T> -class Asserv -{ - private : - - Odometry* odometry; - EKF<T> instanceEKF; - int nbrstate; - int nbrcontrol; - int nbrobs; - T dt; - - T stdnoise; - Mat<T> X; - Mat<T> dX; - Mat<T> initX; - Mat<T> z; - Mat<T> u; - bool extended; - bool filterOn; - - Mat<T> ki; - Mat<T> kp; - Mat<T> kd; - - public : - - T phi_r; - T phi_l; - T phi_max; - bool execution; - bool isarrived; - - Asserv(Odometry* odometry) - { - /*Odometry*/ - this->odometry = odometry; - phi_max = (T)1.0; - - /*KalmanFilter*/ - //double phi_max = 100; - /*en millimetres*/ - - nbrstate = 5; - nbrcontrol = 2; - nbrobs = 5; - dt = (T)0.05; - stdnoise = (T)0.05; - - initX = Mat<T>((T)0, nbrstate, 1); - initX.set( (T)0, 3,1); - X = initX; - - extended = true; - filterOn = true; - - instanceEKF = EKF<T>(nbrstate, nbrcontrol, nbrobs, dt, stdnoise, /*current state*/ initX, extended, filterOn); - - instanceEKF.initMotion(motion_bicycle3); - instanceEKF.initSensor(sensor_bicycle3); - instanceEKF.initJMotion(jmotion_bicycle3); - //instanceEKF.initJMotionCommand(jmotion_bicycle3_command); - instanceEKF.initJSensor(jsensor_bicycle3); - - /*desired State : (x y theta phiright phileft)*/ - dX = Mat<T>((T)0, nbrstate, 1); - dX.set( (T)0, 1,1); - dX.set( (T)0, 2,1); - dX.set( (T)0, 3,1); - dX.set( (T)0, 4,1); - dX.set( (T)0, 5,1); - - ki = Mat<T>((T)0, nbrcontrol, nbrstate); - kp = Mat<T>((T)0, nbrcontrol, nbrstate); - kd = Mat<T>((T)0, nbrcontrol, nbrstate); - //Mat<double> kdd((double)0.0015, nbrcontrol, nbrstate); - - for(int i=1;i<=nbrstate;i++) - { - kp.set( (T)0.01, i, i); - kd.set( (T)0.0001, i, i); - ki.set( (T)0.0001, i, i); - } - - instanceEKF.setKi(ki); - instanceEKF.setKp(kp); - instanceEKF.setKd(kd); - //instance.setKdd(kdd); - - u = Mat<T>(transpose( instanceEKF.getCommand()) ); - - /*Observations*/ - /*il nous faut 5 observation : mais on n'en met à jour que 3...*/ - z = Mat<T>((T)0,5,1); - this->measurementCallback(&z); - - /*----------------------------------------------------------------------------------------------*/ - isarrived = true; - execution = false; - - } - - ~Asserv() - { - - } - - void setGoal(T x, T y, T theta) - { - dX.set(x,1,1); - dX.set(y,2,1); - dX.set(theta,3,1); - dX.set((T)0,4,1); - dX.set((T)0,5,1); - execution = true; - isarrived = false; - - } - - bool isArrived() { return isarrived;} - - void stop() - { - execution = false; - } - - void update(T deltat) - { - if(execution) - { - dt = deltat; - /*Asservissement*/ - logger.printf("1\r\n"); - this->measurementCallback(&z); - logger.printf("2\r\n"); - instanceEKF.measurement_Callback( z, dX, true ); - logger.printf("3\r\n"); - instanceEKF.state_Callback(); - //instance.setX(z); - X = instanceEKF.getX(); - X.afficherMblue(); - - //instance.computeCommand(dX, (double)dt, -2); - instanceEKF.computeCommand(dX, (T)dt, -2); - phi_r = instanceEKF.getCommand().get(1,1); - phi_l = instanceEKF.getCommand().get(2,1); - } - else - { - phi_r = (T)0; - phi_l = (T)0; - } - } - - void measurementCallback( Mat<T>* z) - { - z->set( (T)/*conversionUnitée mm */this->odometry->getX(), 1,1); - z->set( (T)/*conversionUnitée mm*/this->odometry->getY(), 2,1); - T theta = (T)this->odometry->getTheta(); - theta = atan21(sin(theta),cos(theta)); - z->set( (double)/*conversionUnitée rad*/theta, 3,1);//odometry->getTheta(), 3,1); - T vx = (T)this->odometry->getVx(); - T vy = (T)this->odometry->getVy(); - z->set( sqrt(vx*vx+vy*vy),4,1); - z->set( (T)odometry->getW(),5,1); - - //z->afficherM(); - } - - Mat<T> getX() - { - return X; - } - - T getPhiR() - { - return phi_r; - } - - T getPhiL() - { - return phi_l; - } - - T getPhiMax() - { - return phi_max; - } - - -}; +*/ template<typename T> bool setPWM(PwmOut *servo,T p) @@ -227,8 +30,7 @@ template<typename T> Mat<T> motion_bicycle3( Mat<T> state, Mat<T> command, T dt) -{ - logger.printf("motion\r\n"); +{ Mat<T> bicycle(3,1); bicycle.set((T)36, 1,1); /*radius*/ bicycle.set((T)36, 2,1); @@ -295,9 +97,8 @@ template<typename T> Mat<T> jmotion_bicycle3( Mat<T> state, Mat<T> command, T dt) -{ - logger.printf("jmotion\r\n"); - T h = sqrt(numeric_limits<T>::epsilon())*norme2(state)+ pow(numeric_limits<T>::epsilon(), (T)0.5); +{ + T h = pow(numeric_limits<T>::epsilon(),(T)0.5)*norme2(state)+ pow(numeric_limits<T>::epsilon(), (T)0.5); Mat<T> var( (T)0, state.getLine(), state.getColumn()); var.set( h, 1,1); Mat<T> G(motion_bicycle3(state+var, command, dt) - motion_bicycle3(state-var, command,dt)); @@ -316,7 +117,7 @@ template<typename T> Mat<T> jmotion_bicycle3_command(Mat<T> state, Mat<T> command, T dt) { - T h = pow(numeric_limits<T>::epsilon()), (T)0.5)+sqrt(numeric_limits<T>::epsilon())*norme2(state); + T h = pow(numeric_limits<T>::epsilon(), (T)0.5)+sqrt(numeric_limits<T>::epsilon())*norme2(state); Mat<T> var( (T)0, command.getLine(), command.getColumn()); var.set( h, 1,1); Mat<T> G(motion_bicycle3(state, command+var, dt) - motion_bicycle3(state, command-var,dt)); @@ -367,4 +168,198 @@ return (1.0/(2*h))*H; */ -} \ No newline at end of file +} +//int reduc = 16; + +extern Serial logger; + +/*---------------------------------------------------------------------------------------------------------*/ +/*---------------------------------------------------------------------------------------------------------*/ + +template<typename T> +class Asserv +{ + private : + + Odometry* odometry; + EKF<T>* instanceEKF; + int nbrstate; + int nbrcontrol; + int nbrobs; + T dt; + + T stdnoise; + Mat<T> X; + Mat<T> dX; + Mat<T> initX; + Mat<T> z; + Mat<T> u; + bool extended; + bool filterOn; + + Mat<T> ki; + Mat<T> kp; + Mat<T> kd; + + public : + + T phi_r; + T phi_l; + T phi_max; + bool execution; + bool isarrived; + + Asserv(Odometry* odometry) + { + /*Odometry*/ + this->odometry = odometry; + phi_max = (T)1.0; + + /*KalmanFilter*/ + //double phi_max = 100; + /*en millimetres*/ + + nbrstate = 5; + nbrcontrol = 2; + nbrobs = 5; + dt = (T)0.05; + stdnoise = (T)0.05; + + initX = Mat<T>((T)0, nbrstate, 1); + initX.set( (T)0, 3,1); + X = initX; + + extended = true; + filterOn = true; + + instanceEKF = new EKF<T>(nbrstate, nbrcontrol, nbrobs, dt, stdnoise, /*current state*/ initX, extended, filterOn); + + instanceEKF->initMotion(motion_bicycle3); + instanceEKF->initSensor(sensor_bicycle3); + instanceEKF->initJMotion(jmotion_bicycle3); + //instanceEKF.initJMotionCommand(jmotion_bicycle3_command); + instanceEKF->initJSensor(jsensor_bicycle3); + + /*desired State : (x y theta phiright phileft)*/ + dX = Mat<T>((T)0, nbrstate, 1); + dX.set( (T)0, 1,1); + dX.set( (T)0, 2,1); + dX.set( (T)0, 3,1); + dX.set( (T)0, 4,1); + dX.set( (T)0, 5,1); + + ki = Mat<T>((T)0, nbrcontrol, nbrstate); + kp = Mat<T>((T)0, nbrcontrol, nbrstate); + kd = Mat<T>((T)0, nbrcontrol, nbrstate); + //Mat<double> kdd((double)0.0015, nbrcontrol, nbrstate); + + for(int i=1;i<=nbrstate;i++) + { + kp.set( (T)0.01, i, i); + kd.set( (T)0.0001, i, i); + ki.set( (T)0.0001, i, i); + } + + instanceEKF->setKi(ki); + instanceEKF->setKp(kp); + instanceEKF->setKd(kd); + //instance.setKdd(kdd); + + u = Mat<T>(transpose( instanceEKF->getCommand()) ); + + /*Observations*/ + /*il nous faut 5 observation : mais on n'en met à jour que 3...*/ + z = Mat<T>((T)0,5,1); + this->measurementCallback(&z); + + /*----------------------------------------------------------------------------------------------*/ + isarrived = true; + execution = false; + + } + + ~Asserv() + { + delete instanceEKF; + } + + void setGoal(T x, T y, T theta) + { + dX.set(x,1,1); + dX.set(y,2,1); + dX.set(theta,3,1); + dX.set((T)0,4,1); + dX.set((T)0,5,1); + execution = true; + isarrived = false; + + } + + bool isArrived() { return isarrived;} + + void stop() + { + execution = false; + } + + void update(T deltat) + { + if(execution) + { + dt = deltat; + /*Asservissement*/ + this->measurementCallback(&z); + instanceEKF->measurement_Callback( z, dX, true ); + instanceEKF->state_Callback(); + //instance.setX(z); + X = instanceEKF->getX(); + + //instance.computeCommand(dX, (double)dt, -2); + instanceEKF->computeCommand(dX, (T)dt, -2); + phi_r = instanceEKF->getCommand().get(1,1); + phi_l = instanceEKF->getCommand().get(2,1); + } + else + { + phi_r = (T)0; + phi_l = (T)0; + } + } + + void measurementCallback( Mat<T>* z) + { + z->set( (T)/*conversionUnitée mm */this->odometry->getX(), 1,1); + z->set( (T)/*conversionUnitée mm*/this->odometry->getY(), 2,1); + T theta = (T)this->odometry->getTheta(); + theta = atan21(sin(theta),cos(theta)); + z->set( (double)/*conversionUnitée rad*/theta, 3,1);//odometry->getTheta(), 3,1); + T vx = (T)this->odometry->getVx(); + T vy = (T)this->odometry->getVy(); + z->set( sqrt(vx*vx+vy*vy),4,1); + z->set( (T)odometry->getW(),5,1); + + //z->afficherM(); + } + + Mat<T> getX() + { + return X; + } + + T getPhiR() + { + return phi_r; + } + + T getPhiL() + { + return phi_l; + } + + T getPhiMax() + { + return phi_max; + } + + +};