Robot's source code
Dependencies: mbed
Diff: Asservissement/Asserv.h
- Revision:
- 36:54f86bc6fd80
- Child:
- 41:c04c2ec37aad
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Asservissement/Asserv.h Sun Mar 08 21:24:27 2015 +0000 @@ -0,0 +1,365 @@ +/*KalmanFilter*/ +#include "EKF.h" +#include "Odometry.h" + +template<typename T> +Mat<T> motion_bicycle3( Mat<T> state, Mat<T> command, T dt = (T)0.5); +template<typename T> +Mat<T> sensor_bicycle3( Mat<T> state, Mat<T> command, Mat<T> d_state, T dt = 0.5 ); +template<typename T> +Mat<T> jmotion_bicycle3( Mat<T> state, Mat<T> command, T dt = 0.5); +template<typename T> +Mat<T> jmotion_bicycle3_command(Mat<T> state, Mat<T> command, T dt = 0.5); +template<typename T> +Mat<T> jsensor_bicycle3( Mat<T> state, Mat<T> command, Mat<T> d_state, T dt = 0.5); +template<typename T> +bool setPWM(PwmOut *servo,T p); +int reduc = 16; + + +/*---------------------------------------------------------------------------------------------------------*/ +/*---------------------------------------------------------------------------------------------------------*/ + +template<typename T> +class Asserv +{ + private : + + Odometry* odometry; + EKF<T> instanceEKF; + int nbrstate; + int nbrcontrol; + int nbrobs; + T dt; + + T stdnoise; + Mat<T> X; + Mat<T> dX; + Mat<T> initX; + Mat<T> z; + Mat<T> u; + bool extended; + bool filterOn; + + Mat<T> ki; + Mat<T> kp; + Mat<T> kd; + + public : + + T phi_r; + T phi_l; + T phi_max; + bool execution; + bool isarrived; + + Asserv(Odometry* odometry) + { + /*Odometry*/ + this->odometry = odometry; + phi_max = (T)1.0; + + /*KalmanFilter*/ + //double phi_max = 100; + /*en millimetres*/ + + nbrstate = 5; + nbrcontrol = 2; + nbrobs = 5; + dt = (T)0.05; + stdnoise = (T)0.05; + + initX = Mat<T>((T)0, nbrstate, 1); + initX.set( (T)0, 3,1); + X = initX; + + extended = true; + filterOn = true; + + instanceEKF = EKF<T>(nbrstate, nbrcontrol, nbrobs, dt, stdnoise, /*current state*/ initX, extended, filterOn); + + instanceEKF.initMotion(motion_bicycle3); + instanceEKF.initSensor(sensor_bicycle3); + instanceEKF.initJMotion(jmotion_bicycle3); + //instanceEKF.initJMotionCommand(jmotion_bicycle3_command); + instanceEKF.initJSensor(jsensor_bicycle3); + + /*desired State : (x y theta phiright phileft)*/ + dX = Mat<T>((T)0, nbrstate, 1); + dX.set( (T)0, 1,1); + dX.set( (T)0, 2,1); + dX.set( (T)0, 3,1); + dX.set( (T)0, 4,1); + dX.set( (T)0, 5,1); + + ki = Mat<T>((T)0, nbrcontrol, nbrstate); + kp = Mat<T>((T)0, nbrcontrol, nbrstate); + kd = Mat<T>((T)0, nbrcontrol, nbrstate); + //Mat<double> kdd((double)0.0015, nbrcontrol, nbrstate); + + for(int i=1;i<=nbrstate;i++) + { + kp.set( (T)0.01, i, i); + kd.set( (T)0.0001, i, i); + ki.set( (T)0.0001, i, i); + } + + instanceEKF.setKi(ki); + instanceEKF.setKp(kp); + instanceEKF.setKd(kd); + //instance.setKdd(kdd); + + u = Mat<T>(transpose( instanceEKF.getCommand()) ); + + /*Observations*/ + /*il nous faut 5 observation : mais on n'en met à jour que 3...*/ + z = Mat<T>((T)0,5,1); + this->measurementCallback(&z); + + /*----------------------------------------------------------------------------------------------*/ + isarrived = true; + execution = false; + + } + + ~Asserv() + { + + } + + void setGoal(T x, T y, T theta) + { + dX.set(x,1,1); + dX.set(y,2,1); + dX.set(theta,3,1); + dX.set((T)0,4,1); + dX.set((T)0,5,1); + execution = true; + isarrived = false; + + } + + bool isArrived() { return isarrived;} + + void stop() + { + execution = false; + } + + void update(T deltat) + { + if(execution) + { + dt = deltat; + /*Asservissement*/ + + this->measurementCallback(&z); + instanceEKF.measurement_Callback( z, dX, true ); + + instanceEKF.state_Callback(); + //instance.setX(z); + X = instanceEKF.getX(); + + //instance.computeCommand(dX, (double)dt, -2); + instanceEKF.computeCommand(dX, (T)dt, -2); + phi_r = instanceEKF.getCommand().get(1,1); + phi_l = instanceEKF.getCommand().get(2,1); + } + else + { + phi_r = (T)0; + phi_l = (T)0; + } + } + + void measurementCallback( Mat<T>* z) + { + z->set( (T)/*conversionUnitée mm */this->odometry->getX(), 1,1); + z->set( (T)/*conversionUnitée mm*/this->odometry->getY(), 2,1); + T theta = (T)this->odometry->getTheta(); + theta = atan21(sin(theta),cos(theta)); + z->set( (double)/*conversionUnitée rad*/theta, 3,1);//odometry->getTheta(), 3,1); + T vx = (T)this->odometry->getVx(); + T vy = (T)this->odometry->getVy(); + z->set( sqrt(vx*vx+vy*vy),4,1); + z->set( (T)odometry->getW(),5,1); + + //z->afficherM(); + } + + Mat<T> getX() + { + return X; + } + + T getPhiR() + { + return phi_r; + } + + T getPhiL() + { + return phi_l; + } + + T getPhiMax() + { + return phi_max; + } + + +}; + +template<typename T> +bool setPWM(PwmOut *servo,T p) +{ + if(p <= (T)1.0 && p >= (T)0.0) + { + servo->write((float)p); + return true; + } + + return false; +} + +template<typename T> +Mat<T> motion_bicycle3( Mat<T> state, Mat<T> command, T dt) +{ + Mat<T> bicycle(3,1); + bicycle.set((T)36, 1,1); /*radius*/ + bicycle.set((T)36, 2,1); + bicycle.set((T)220, 3,1); /*entre-roue*/ + Mat<T> r(state); + //double v = bicycle.get(1,1)/(2*bicycle.get(3,1))*(r.get(4,1)+r.get(5,1)); + //double w = bicycle.get(1,1)/(2*bicycle.get(3,1))*(r.get(4,1)-r.get(5,1)); + T v = state.get(4,1); + T w = state.get(5,1); + + r.set( r.get(1,1) + v*cos(r.get(3,1))*dt, 1,1); + r.set( r.get(2,1) + v*sin(r.get(3,1))*dt, 2,1); + + T angle = (r.get(3,1) + dt*w); + if( angle < -PI) + { + angle = angle - PI*ceil(angle/PI); + } + else if( angle > PI) + { + angle = angle - PI*floor(angle/PI); + } + + r.set( atan21(sin(angle), cos(angle)), 3,1); + + + /*----------------------------------------*/ + /*Modele du moteur*/ + /*----------------------------------------*/ + //double r1 = bicycle.get(3,1)/bicycle.get(1,1)*(command.get(1,1)/bicycle.get(3,1)+command.get(2,1)); + //double r2 = bicycle.get(3,1)/bicycle.get(1,1)*(command.get(1,1)/bicycle.get(3,1)-command.get(2,1)); + T r1 = bicycle.get(1,1)/2*(command.get(1,1)+command.get(2,1)); + T r2 = bicycle.get(1,1)/bicycle.get(3,1)*(command.get(1,1)-command.get(2,1)); + + + r.set( r1, 4,1); + r.set( r2, 5,1); + + + /*----------------------------------------*/ + /*----------------------------------------*/ + + return r; +} + +template<typename T> +Mat<T> sensor_bicycle3( Mat<T> state, Mat<T> command, Mat<T> d_state, T dt) +{ + /* + double angle = state.get(3,1); + if( angle < -PI) + { + angle = angle - PI*ceil(angle/PI); + } + else if( angle > PI) + { + angle = angle - PI*floor(angle/PI); + } + + state.set( atan21(sin(angle), cos(angle)), 3,1); + */ + return state; +} + +template<typename T> +Mat<T> jmotion_bicycle3( Mat<T> state, Mat<T> command, T dt) +{ + T h = sqrt(numeric_limits<T>::epsilon())*norme2(state)+ pow(numeric_limits<T>::epsilon(), (T)0.5); + Mat<T> var( (T)0, state.getLine(), state.getColumn()); + var.set( h, 1,1); + Mat<T> G(motion_bicycle3(state+var, command, dt) - motion_bicycle3(state-var, command,dt)); + + for(int i=2;i<=state.getLine();i++) + { + var.set( (T)0, i-1,1); + var.set( h, i,1); + G = operatorL(G, motion_bicycle3(state+var, command, dt) - motion_bicycle3(state-var, command,dt) ); + } + + + return ((T)1.0/(2*h))*G; +} + +template<typename T> +Mat<T> jmotion_bicycle3_command(Mat<T> state, Mat<T> command, T dt) +{ + T h = pow(numeric_limits<T>::epsilon()), (T)0.5)+sqrt(numeric_limits<T>::epsilon())*norme2(state); + Mat<T> var( (T)0, command.getLine(), command.getColumn()); + var.set( h, 1,1); + Mat<T> G(motion_bicycle3(state, command+var, dt) - motion_bicycle3(state, command-var,dt)); + + for(int i=2;i<=command.getLine();i++) + { + var.set( (T)0, i-1,1); + var.set( h, i,1); + G = operatorL(G, motion_bicycle3(state, command+var, dt) - motion_bicycle3(state, command-var,dt) ); + } + + + return (1.0/(2*h))*G; +} + + +template<typename T> +Mat<T> jsensor_bicycle3( Mat<T> state, Mat<T> command, Mat<T> d_state, T dt) +{ + T h = pow(numeric_limits<T>::epsilon(), (T)0.5)+sqrt(numeric_limits<T>::epsilon())*norme2(state); + Mat<T> var((T)0, state.getLine(), state.getColumn()); + var.set( h, 1,1); + Mat<T> H(sensor_bicycle3(state+var, command, d_state, dt) - sensor_bicycle3(state-var, command, d_state, dt)); + + for(int i=2;i<=state.getLine();i++) + { + var.set( (T)0, i-1,1); + var.set( h, i,1); + H = operatorL(H, sensor_bicycle3(state+var, command, d_state, dt) - sensor_bicycle3(state-var, command, d_state, dt) ); + } + + + return ((T)1.0/(2*h))*H; + /* + double h = sqrt(numeric_limits<double>::epsilon())*10e2+sqrt(numeric_limits<double>::epsilon())*norme2(state); + Mat<double> var((double)0, state.getLine(), state.getColumn()); + var.set( h, 1,1); + Mat<double> H(sensor_bicycle3(state+var, command, d_state, dt) - sensor_bicycle3(state-var, command, d_state, dt)); + + for(int i=2;i<=state.getLine();i++) + { + var.set( (double)0, i-1,1); + var.set( h, i,1); + H = operatorL(H, sensor_bicycle3(state+var, command, d_state, dt) - sensor_bicycle3(state-var, command, d_state, dt) ); + + } + + + return (1.0/(2*h))*H; + */ +} \ No newline at end of file