IMU Kalman Filter
Dependencies: mbed
Fork of frdm_serial_K64F by
IMU.cpp
- Committer:
- Pawel_13
- Date:
- 2014-12-08
- Revision:
- 8:7a22b8294c5d
File content as of revision 8:7a22b8294c5d:
/** * @author Eric Van den Bulck * * @section LICENSE * * Copyright (c) 2010 ARM Limited * * @section DESCRIPTION * * Pololu MinIMU-9 v2 sensor: * L3GD20 three-axis digital output gyroscope. * LSM303 three-axis digital accelerometer and magnetometer * * Information to build this library: * 1. The Arduino libraries for this sensor from the Pololu and Adafruit websites, available at gitbub. * https://github.com/adafruit/Adafruit_L3GD20 * https://github.com/pololu/L3G/tree/master/L3G * 2. The Rasberry Pi code at https://github.com/idavidstory/goPiCopter/tree/master/io/sensors * https://github.com/idavidstory/goPiCopter/tree/master/io/sensors * 3. Information on how to write libraries: http://mbed.org/cookbook/Writing-a-Library * 4. Information on I2C control: http://mbed.org/users/mbed_official/code/mbed/ * 5. The Youtube videos from Brian Douglas (3 x 15') at http://www.youtube.com/playlist?list=PLUMWjy5jgHK30fkGrufluENJqZmLZkmqI * http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/ * Reading an IMU Without Kalman: The Complementary Filter: http://www.pieter-jan.com/node/11 * setup info on the minIMU-9 v2 on http://forum.pololu.com/viewtopic.php?f=3&t=4801&start=30 */ #include "mbed.h" #include "IMU.h" IMU::IMU(PinName sda, PinName scl) : _i2c(sda, scl) { _i2c.frequency(400000); /* 400kHz, fast mode. */ } char IMU::init(void) /* returns error upon a non-zero return */ { char ack, rx, tx[2]; double pi, a, A; // 1. Initialize selected registers: 2c.read and i2c.write return 0 on success (ack) // -------------------------------- // // 1.a Enable L3DG20 gyrosensor and set operational mode: // CTRL_REG1: set to 0x1F = 0001-1111 --> enable sensor, DR= 95Hz, LPF-Cut-off-freq=25Hz. // CTRL_REG1: set to 0x5F = 0101-1111 --> enable sensor, DR=190Hz, LPF-Cut-off-freq=25Hz. // CTRL_REG4: left at default = 0x00 --> Full Scale = 250 degrees/second --> Sensitivity = 0.00875 dps/digit. address = L3GD20_ADDR; tx[0] = L3GD20_CTRL_REG1; // address contrl_register 1 tx[1] = 0x1F; // 00-01-1-111 enable sensor and set operational mode. ack = _i2c.write(address, tx, 2); ack |= _i2c.write(address, tx, 1); ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x1F) ack |= 1; // // 1.b Enable LSM303 accelerometer and set operational mode: // CTRL_REG1: set to 0x37 = 0011 1111 --> DR = 25Hz & enable sensor in low power mode (normal mode zmienic ostatnie 4 na 0111) // CTRL_REG1: set to 0x47 = 0100 1111 --> DR = 50Hz & enable sensor -// // CTRL_REG1: set to 0x57 = 0101 1111 --> DR = 100Hz & enable sensor // CTRL_REG1: set to 0x67 = 0110 1111 --> DR = 200Hz & enable sensor // CTRL_REG1: set to 0x77 = 0111 0111 --> DR = 400Hz & enable sensor (0x7F low power mode - b duze oscylacje) // CTRL_REG4: set to 0x08 = 0000 1000 --> Full Scale = +/- 2G & high resolution --> Sensitivity = 0.001G/digit. address = LSM303_A_ADDR; tx[0] = LSM303_A_CTRL_REG1; tx[1] = 0x77; // --> 400 Hz Data rate speed - p.24/42 of datasheet ack |= _i2c.write(address, tx, 2); ack |= _i2c.write(address, tx, 1); ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x77) ack |= 1; tx[0] = LSM303_A_CTRL_REG4; //tx[1] = 0x08; // 0000 1000 enable high resolution mode + selects default 2G scale. p.26/42 tx[1] = 0x18; // 0001 1000 enable high resolution mode + selects 4G scale. ack |= _i2c.write(address, tx ,2); ack |= _i2c.write(address, tx, 1); ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x18) ack |= 1; // // 1.c enable LSM303 magnetometer and set operational mode: // CRA_REG is reset from 0x10 to 0x14 = 00010100 --> 30 Hz data output rate. // CRA_REG is reset from 0x10 to 0x18 = 00011000 --> 75 Hz data output rate. // CRA_REG is reset from 0x10 to 0x1C = 00011100 --> 220 Hz data output rate. // CRB_REG is kept at default = 00100000 = 0x20 --> range +/- 1.3 Gauss, Gain = 1100/980(Z) LSB/Gauss. // MR_REG is reset from 0x03 to 0x00 -> continuos conversion mode in stead of sleep mode. address = LSM303_M_ADDR; tx[0] = LSM303_M_CRA_REG; tx[1] = 0x18; // --> 75 Hz minimum output rate - p.36/42 of datasheet ack |= _i2c.write(address, tx, 2); ack |= _i2c.write(address, tx, 1); ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x18) ack |= 1; tx[0] = LSM303_M_MR_REG; tx[1] = 0x00; // 0000 0000 --> continuous-conversion mode 25 Hz Data rate speed - p.24/42 of datasheet ack |= _i2c.write(address, tx, 2); ack |= _i2c.write(address, tx, 1); ack |= _i2c.read(address+1, &rx, 1); if (rx != 0x00) ack |= 1; // 2. Initialize calibration constants with predetermined values. // acceleration: // My calibration values, vs. the website http://rwsarduino.blogspot.be/2013/01/inertial-orientation-sensing.html /* my predetermined static bias counts */ L3GD20_biasX = (int16_t) 97; // BTLO 90 /* digit counts */ L3GD20_biasY = (int16_t) 5; //BYLO 180 L3GD20_biasZ = (int16_t) 140; //BYLO -10 /* reference gravity acceleration */ //g_0 = 9.815; //przy ustawieniu zakresu na +/- 2g g_0 = 19.63; //przy ustawienu zakresu na +/- 4g // CTR_REG 4 = 0001 1000 0x18 /* filter parameters: assume 400 Hz sampling rare and 2nd orcer Butterworth filter with fc = 5Hz. */ pi = 3.1415926536; A = tan(pi*5/400); a = 1 + sqrt(2.0)*A + A*A; FF[1] = 2*(A*A-1)/a; FF[2] = (1-sqrt(2.0)*A+A*A)/a; FF[0] = (1+FF[1]+FF[2])/4; return ack; } char IMU::readData(float *d) { char ack, reg, D[6]; int16_t W[3]; // report the data in rad/s // gyro data are 16 bit readings per axis, stored: X_l, X_h, Y_l, Y_h, Z_l, Z_h // #define L3GD20_SENSITIVITY_250DPS 0.00875 --- #define L3GD20_DPS_TO_RADS 0.017453293 address = L3GD20_ADDR; reg = L3GD20_OUT_X_L | 0x80; // set address auto-increment bit ack = _i2c.write(address,®,1); ack |= _i2c.read(address+1,D,6); W[0] = (int16_t) (D[1] << 8 | D[0]); W[1] = (int16_t) (D[3] << 8 | D[2]); W[2] = (int16_t) (D[5] << 8 | D[4]); *(d+0) = (float) 0.971*(W[0]-L3GD20_biasX)*L3GD20_SENSITIVITY_250DPS*L3GD20_DPS_TO_RADS; *(d+1) = (float) 0.998*(W[1]-L3GD20_biasY)*L3GD20_SENSITIVITY_250DPS*L3GD20_DPS_TO_RADS; *(d+2) = (float) 1.002*(W[2]-L3GD20_biasZ)*L3GD20_SENSITIVITY_250DPS*L3GD20_DPS_TO_RADS; // Accelerometer data are stored as 12 bit readings, left justified per axis. // The data needs to be shifted 4 digits to the right! This is not general, only for the A measurement. address = LSM303_A_ADDR; reg = LSM303_A_OUT_X_L | 0x80; // set address auto-increment bit ack |= _i2c.write(address,®,1); ack |= _i2c.read(address+1,D,6); W[0] = ((int16_t) (D[1] << 8 | D[0])) >> 4; W[1] = ((int16_t) (D[3] << 8 | D[2])) >> 4; W[2] = ((int16_t) (D[5] << 8 | D[4])) >> 4; *(d+3) = (float) g_0*0.986*(W[0]+18)/1000; // kalibracja - zmiana z 0.991 na 0.986 i z +34 na +18 *(d+4) = (float) g_0*0.99*(W[1]-4)/1000; // kalibracja - zmiana z 0.970 na 0.99 i z +2 na -4 *(d+5) = (float) g_0*0.983*(W[2]+9)/1000; // kalibracja - zmiana +28 na +9 // GN = 001 // Magnetometer; are stored as 12 bit readings, right justified per axis. address = LSM303_M_ADDR; reg = LSM303_M_OUT_X_H | 0x80; // set address auto-increment bit ack |= _i2c.write(address,®,1); ack |= _i2c.read(address+1,D,6); W[0] = ((int16_t) (D[0] << 8 | D[1])); W[1] = ((int16_t) (D[4] << 8 | D[5])); W[2] = ((int16_t) (D[2] << 8 | D[3])); *(d+6) = (float) 2.813*(W[0]-220)/1100; //Z bylo 264 *(d+7) = (float) 2.822*(W[1]+ 230)/1100; //X bylo *(d+8) = (float) 2.880*(W[2]- 380)/980; //Y return ack; } void IMU::filterData(float *d, double *D) // 2nd order Butterworth filter. Filter coefficients FF computed in function init. { for (int i=0; i<9; ++i) { // *(FD+9*i+2) = *(FD+9*i+1); *(FD+9*i+1) = *(FD+9*i); *(FD+9*i) = (double) d[i]; FD[2][i] = FD[1][i]; FD[1][i] = FD[0][i]; FD[0][i] = (double) d[i]; FD[5][i] = FD[4][i]; FD[4][i] = FD[3][i]; FD[3][i] = FF[0]*(FD[0][i] + 2*FD[1][i] + FD[2][i]) - FF[1]*FD[4][i] - FF[2]*FD[5][i]; D[i] = FD[3][i]; } // D[0] = FD[0][2]; D[1] = FD[1][2]; D[2] = FD[2][2]; }