aaa

Dependencies:   ArduinoSerial I2Cdev2

Dependents:   AutoFlight2017_now2 AutoFlight2018_Control sbus_test_2018 Autoflight2018_sbusread ... more

MPU6050_DMP6.cpp

Committer:
taknokolat
Date:
2018-09-18
Revision:
2:ff025b9c6c7c
Parent:
0:c3af3416e383

File content as of revision 2:ff025b9c6c7c:

#include "MPU6050_DMP6.h"
#include "MODSERIAL.h"

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project

//#include "MPU6050.h" // not necessary if using MotionApps include file



/* =========================================================================
NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch
depends on the MPU-6050's INT pin being connected to the Arduino's
external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is
digital I/O pin 2.
* ========================================================================= */

// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
//#define OUTPUT_READABLE_QUATERNION

// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER

// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT

#ifndef M_PI
#define M_PI 3.14159265358979
#endif

MPU6050DMP6::MPU6050DMP6(PinName intpin, MODSERIAL* serial_p)
    :   
    checkpin_p(new InterruptIn(intpin)),
    checkpin(*checkpin_p),
    pc_p(serial_p)
{
    initializeValue();
}

MPU6050DMP6::~MPU6050DMP6(){}

void MPU6050DMP6::dmpDataReady()
{
    mpuInterrupt = true;
}

void MPU6050DMP6::transformeCoordinate_Skipper(Quaternion* q1, Quaternion* q2){
    q2->w = q1->w;
    q2->x = q1->y;
    q2->y = - q1->x;
    q2->z = q1->z;
}


int MPU6050DMP6::loopstarting(){
    // if programming failed, don't try to do anything
    if (!dmpReady) return -1;

    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();

    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        //arduinoSerial.println(F("FIFO overflow!"));

        // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);

        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

}


}
// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

int MPU6050DMP6::setup()
{
    // initialize arduinoSerial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    // initialize device
    pc_p->printf("Initializing I2C devices...\r\n");
    mpu.initialize();

    // verify connection
    pc_p->printf("Testing device connections...\r\n");

    if(mpu.testConnection())    pc_p->printf("MPU6050 connection successful\r\n");
    else    pc_p->printf("MPU6050 connection failed\r\n"); 

    //arduinoSerial.println(F("Testing device connections..."));
    //arduinoSerial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
    // arduinoSerial.println(F("\nSend any character to begin DMP programming and demo: "));
    // while (arduinoSerial.available() && arduinoSerial.read()); // empty buffer
    // while (!arduinoSerial.available());                 // wait for data
    // while (arduinoSerial.available() && arduinoSerial.read()); // empty buffer again

    // load and configure the DMP
    pc_p->printf("Initializing DMP...\r\n"); 
    //arduinoSerial.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        pc_p->printf("Enabling DMP...\r\n"); 
 
        //arduinoSerial.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);

        // enable Arduino interrupt detection
        pc_p->printf("Enabling interrupt detection (Arduino external interrupt 0)...\r\n"); 
        //arduinoSerial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        checkpin.rise(this, &MPU6050DMP6::dmpDataReady);
        mpuIntStatus = mpu.getIntStatus();

        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        pc_p->printf("DMP ready! Waiting for first interrupt...\r\n"); 
        //arduinoSerial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        
        pc_p->printf("DMP Initialization failed (code %d)\r\n",devStatus); 


        //arduinoSerial.print(F("DMP Initialization failed (code "));
        //arduinoSerial.print(devStatus);
        //arduinoSerial.println(F(")"));
        return -1;
    }

    return 0;
}



// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void MPU6050DMP6::loop()
{
    loopstarting();

#ifdef OUTPUT_READABLE_QUATERNION
        // display quaternion values in easy matrix form: w x y z
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        /*
        arduinoSerial.print("quat\t");
        arduinoSerial.print(q.w);
        arduinoSerial.print("\t");
        arduinoSerial.print(q.x);
        arduinoSerial.print("\t");
        arduinoSerial.print(q.y);
        arduinoSerial.print("\t");
        arduinoSerial.println(q.z);
        */
#endif

#ifdef OUTPUT_READABLE_EULER
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetEuler(euler, &q);
        /*
        arduinoSerial.print("euler\t");
        arduinoSerial.print(euler[0] * 180/M_PI);
        arduinoSerial.print("\t");
        arduinoSerial.print(euler[1] * 180/M_PI);
        arduinoSerial.print("\t");
        arduinoSerial.println(euler[2] * 180/M_PI);
        */
#endif

#ifdef OUTPUT_READABLE_YAWPITCHROLL
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        /*
        arduinoSerial.print("ypr\t");
        arduinoSerial.print(ypr[0] * 180/M_PI);
        arduinoSerial.print("\t");
        arduinoSerial.print(ypr[1] * 180/M_PI);
        arduinoSerial.print("\t");
        arduinoSerial.println(ypr[2] * 180/M_PI);
        */
#endif

#ifdef OUTPUT_READABLE_REALACCEL
        // display real acceleration, adjusted to remove gravity
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        /*
        arduinoSerial.print("areal\t");
        arduinoSerial.print(aaReal.x);
        arduinoSerial.print("\t");
        arduinoSerial.print(aaReal.y);
        arduinoSerial.print("\t");
        arduinoSerial.println(aaReal.z);
        */
#endif

#ifdef OUTPUT_READABLE_WORLDACCEL 
        // display initial world-frame acceleration, adjusted to remove gravity
        // and rotated based on known orientation from quaternion
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
        /*
        arduinoSerial.print("aworld\t");
        arduinoSerial.print(aaWorld.x);
        arduinoSerial.print("\t");
        arduinoSerial.print(aaWorld.y);
        arduinoSerial.print("\t");
        arduinoSerial.println(aaWorld.z);
        */
#endif

#ifdef OUTPUT_TEAPOT
        // display quaternion values in InvenSense Teapot demo format:
        teapotPacket[2] = fifoBuffer[0];
        teapotPacket[3] = fifoBuffer[1];
        teapotPacket[4] = fifoBuffer[4];
        teapotPacket[5] = fifoBuffer[5];
        teapotPacket[6] = fifoBuffer[8];
        teapotPacket[7] = fifoBuffer[9];
        teapotPacket[8] = fifoBuffer[12];
        teapotPacket[9] = fifoBuffer[13];
        //arduinoSerial.write(teapotPacket, 14);
        teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif

}


void MPU6050DMP6::getRollPitchYaw_Skipper(float rpy[3]){
    float ypr[3];
    loopstarting();
    // display Euler angles in degrees
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    transformeCoordinate_Skipper(&q, &q2);
    mpu.dmpGetGravity(&gravity, &q2);
    mpu.dmpGetYawPitchRoll(ypr, &q2, &gravity);
    rpy[0] = ypr[2];
    rpy[1] = ypr[1];
    rpy[2] = ypr[0];
}

void MPU6050DMP6::initializeValue(){
    dmpReady = false;
    mpuInterrupt = false;

    teapotPacket[0] = '$';
    teapotPacket[1] = 0x20;
    teapotPacket[2] = 0;
    teapotPacket[3] = 0;
    teapotPacket[4] = 0;
    teapotPacket[5] = 0;
    teapotPacket[6] = 0;
    teapotPacket[7] = 0;
    teapotPacket[8] = 0;
    teapotPacket[9] = 0;
    teapotPacket[10] = 0x00;
    teapotPacket[11] = 0x00;
    teapotPacket[12] = '\r';
    teapotPacket[13] = '\n';

}