File content as of revision 6:83ed80f27fff:
#include "mbed.h"
#include "sps30.h"
//-----------------------------------------------------------------------------
// Constructor
sps30::sps30(PinName sda, PinName scl, int i2c_frequency) : _i2c(sda, scl) {
_i2c.frequency(i2c_frequency);
}
//-----------------------------------------------------------------------------
// Destructor
sps30::~sps30() {
}
//-----------------------------------------------------------------------------
// start auto-measurement
//
uint8_t sps30::StartMeasurement()
{
i2cbuff[0] = SPS30_CMMD_STRT_MEAS >> 8;
i2cbuff[1] = SPS30_CMMD_STRT_MEAS & 255;
i2cbuff[2] = SPS30_STRT_MEAS_WRITE_DATA >> 8;
i2cbuff[3] = SPS30_STRT_MEAS_WRITE_DATA & 255;
i2cbuff[4] = sps30::CalcCrc2b(SPS30_STRT_MEAS_WRITE_DATA);
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 5, false);
if(res) return SPSNOACKERROR;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Stop auto-measurement
uint8_t sps30::StopMeasurement()
{
i2cbuff[0] = SPS30_CMMD_STOP_MEAS >> 8;
i2cbuff[1] = SPS30_CMMD_STOP_MEAS & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Get ready status value
uint8_t sps30::GetReadyStatus()
{
i2cbuff[0] = SPS30_CMMD_GET_READY_STAT >> 8;
i2cbuff[1] = SPS30_CMMD_GET_READY_STAT & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
_i2c.read(SPS30_I2C_ADDR | 1, i2cbuff, 3, false);
uint16_t stat = (i2cbuff[0] << 8) | i2cbuff[1];
ready = stat;
uint8_t dat = sps30::CheckCrc2b(stat, i2cbuff[2]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Get all the measurement values, stick them into the array
uint8_t sps30::ReadMeasurement()
{
i2cbuff[0] = SPS30_CMMD_READ_MEAS >> 8;
i2cbuff[1] = SPS30_CMMD_READ_MEAS & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
_i2c.read(SPS30_I2C_ADDR | 1, i2cbuff, 60, false);
uint16_t stat = (i2cbuff[0] << 8) | i2cbuff[1];
mass_1p0_m = stat;
uint8_t dat = sps30::CheckCrc2b(stat, i2cbuff[2]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[3] << 8) | i2cbuff[4];
mass_1p0_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[5]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[6] << 8) | i2cbuff[7];
mass_2p5_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[8]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[9] << 8) | i2cbuff[10];
mass_2p5_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[11]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[12] << 8) | i2cbuff[13];
mass_4p0_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[14]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[15] << 8) | i2cbuff[16];
mass_4p0_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[17]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[18] << 8) | i2cbuff[19];
mass_10p0_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[20]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[21] << 8) | i2cbuff[22];
mass_10p0_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[23]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[24] << 8) | i2cbuff[25];
num_0p5_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[26]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[27] << 8) | i2cbuff[28];
num_0p5_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[29]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[30] << 8) | i2cbuff[31];
num_1p0_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[32]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[33] << 8) | i2cbuff[34];
num_1p0_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[35]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[36] << 8) | i2cbuff[37];
num_2p5_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[38]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[39] << 8) | i2cbuff[40];
num_2p5_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[41]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[42] << 8) | i2cbuff[43];
num_4p0_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[44]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[45] << 8) | i2cbuff[46];
num_4p0_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[47]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[48] << 8) | i2cbuff[49];
num_10p0_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[50]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[51] << 8) | i2cbuff[52];
num_10p0_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[53]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[54] << 8) | i2cbuff[55];
typ_pm_size_m = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[56]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[57] << 8) | i2cbuff[58];
typ_pm_size_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[59]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
mass_1p0_i = (mass_1p0_m << 16) | mass_1p0_l;
mass_2p5_i = (mass_2p5_m << 16) | mass_2p5_l;
mass_4p0_i = (mass_4p0_m << 16) | mass_4p0_l;
mass_10p0_i = (mass_10p0_m << 16) | mass_10p0_l;
num_0p5_i = (num_0p5_m << 16) | num_0p5_l;
num_1p0_i = (num_1p0_m << 16) | num_1p0_l;
num_2p5_i = (num_2p5_m << 16) | num_2p5_l;
num_4p0_i = (num_4p0_m << 16) | num_4p0_l;
num_10p0_i = (num_10p0_m << 16) | num_10p0_l;
typ_pm_size_i = (typ_pm_size_m << 16) | typ_pm_size_l;
mass_1p0_f = *(float*)&mass_1p0_i;
mass_2p5_f = *(float*)&mass_2p5_i;
mass_4p0_f = *(float*)&mass_4p0_i;
mass_10p0_f = *(float*)&mass_10p0_i;
num_0p5_f = *(float*)&num_0p5_i;
num_1p0_f = *(float*)&num_1p0_i;
num_2p5_f = *(float*)&num_2p5_i;
num_4p0_f = *(float*)&num_4p0_i;
num_10p0_f = *(float*)&num_10p0_i;
typ_pm_size_f = *(float*)&typ_pm_size_i;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Calculate the CRC of a 2 byte value using the SPS30 CRC polynomial
uint8_t sps30::CalcCrc2b(uint16_t seed)
{
uint8_t bit; // bit mask
uint8_t crc = SPS30_CRC_INIT; // calculated checksum
// calculates 8-Bit checksum with given polynomial
crc ^= (seed >> 8) & 255;
for(bit = 8; bit > 0; --bit)
{
if(crc & 0x80) crc = (crc << 1) ^ SPS30_POLYNOMIAL;
else crc = (crc << 1);
}
crc ^= seed & 255;
for(bit = 8; bit > 0; --bit)
{
if(crc & 0x80) crc = (crc << 1) ^ SPS30_POLYNOMIAL;
else crc = (crc << 1);
}
return crc;
}
//-----------------------------------------------------------------------------
// Compare the CRC values
uint8_t sps30::CheckCrc2b(uint16_t seed, uint8_t crc_in)
{
uint8_t crc_calc = sps30::CalcCrc2b(seed);
if(crc_calc != crc_in) return SPSCRCERROR;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Get article code
uint8_t sps30::GetArticleCode()
{
i2cbuff[0] = SPS30_CMMD_READ_ARTICLECODE >> 8;
i2cbuff[1] = SPS30_CMMD_READ_ARTICLECODE & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
int i = 0;
for(i = 0; i < sizeof(acode); i++) acode[i] = 0;
for(i = 0; i < sizeof(i2cbuff); i++) i2cbuff[i] = 0;
_i2c.read(SPS30_I2C_ADDR | 1, i2cbuff, SPS30_ACODE_SIZE, false);
int t = 0;
for(i = 0; i < SPS30_ACODE_SIZE; i +=3) {
uint16_t stat = (i2cbuff[i] << 8) | i2cbuff[i + 1];
acode[i - t] = stat >> 8;
acode[i - t + 1] = stat & 255;
uint8_t dat = sps30::CheckCrc2b(stat, i2cbuff[i + 2]);
t++;
if(dat == SPSCRCERROR) return SPSCRCERROR;
if(stat == 0) break;
}
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Get sps30 serial number
uint8_t sps30::GetSerialNumber()
{
i2cbuff[0] = SPS30_CMMD_READ_SERIALNBR >> 8;
i2cbuff[1] = SPS30_CMMD_READ_SERIALNBR & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
int i = 0;
for(i = 0; i < sizeof(sn); i++) sn[i] = 0;
for(i = 0; i < sizeof(i2cbuff); i++) i2cbuff[i] = 0;
_i2c.read(SPS30_I2C_ADDR | 1, i2cbuff, SPS30_SN_SIZE, false);
int t = 0;
for(i = 0; i < SPS30_SN_SIZE; i +=3) {
uint16_t stat = (i2cbuff[i] << 8) | i2cbuff[i + 1];
sn[i - t] = stat >> 8;
sn[i - t + 1] = stat & 255;
uint8_t dat = sps30::CheckCrc2b(stat, i2cbuff[i + 2]);
t++;
if(dat == SPSCRCERROR) return SPSCRCERROR;
if(stat == 0) break;
}
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Read Auto Cleaning Interval on the SPS30
uint8_t sps30::ReadAutoCleanInterval()
{
i2cbuff[0] = SPS30_CMMD_AUTO_CLEAN_INTV >> 8;
i2cbuff[1] = SPS30_CMMD_AUTO_CLEAN_INTV & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
_i2c.read(SPS30_I2C_ADDR | 1, i2cbuff, 6, false);
uint16_t stat = (i2cbuff[0] << 8) | i2cbuff[1];
clean_interval_m = stat;
uint8_t dat = sps30::CheckCrc2b(stat, i2cbuff[2]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[3] << 8) | i2cbuff[4];
clean_interval_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[5]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
clean_interval_i = (clean_interval_m << 16) | clean_interval_l;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Set Auto Cleaning Interval on the SPS30
uint8_t sps30::SetAutoCleanInterval(uint32_t set_interval)
{
uint16_t set_interval_m = set_interval >> 16;
uint16_t set_interval_l = set_interval & 65535;
i2cbuff[0] = SPS30_CMMD_AUTO_CLEAN_INTV >> 8;
i2cbuff[1] = SPS30_CMMD_AUTO_CLEAN_INTV & 255;
i2cbuff[2] = set_interval_m >> 8;
i2cbuff[3] = set_interval_m & 255;
i2cbuff[4] = sps30::CalcCrc2b(set_interval_m);
i2cbuff[5] = set_interval_l >> 8;
i2cbuff[6] = set_interval_l & 255;
i2cbuff[7] = sps30::CalcCrc2b(set_interval_l);
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 8, false);
if(res) return SPSNOACKERROR;
_i2c.read(SPS30_I2C_ADDR | 1, i2cbuff, 6, false);
uint16_t stat = (i2cbuff[0] << 8) | i2cbuff[1];
clean_interval_m = stat;
uint8_t dat = sps30::CheckCrc2b(stat, i2cbuff[2]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
stat = (i2cbuff[3] << 8) | i2cbuff[4];
clean_interval_l = stat;
dat = sps30::CheckCrc2b(stat, i2cbuff[5]);
if(dat == SPSCRCERROR) return SPSCRCERROR;
clean_interval_i = (clean_interval_m << 16) | clean_interval_l;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Perform manual fan cleaning
uint8_t sps30::StartFanClean()
{
i2cbuff[0] = SPS30_CMMD_START_FAN_CLEAN >> 8;
i2cbuff[1] = SPS30_CMMD_START_FAN_CLEAN & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
return SPSNOERROR;
}
//-----------------------------------------------------------------------------
// Perform a soft reset on the SPS30
uint8_t sps30::SoftReset()
{
i2cbuff[0] = SPS30_CMMD_SOFT_RESET >> 8;
i2cbuff[1] = SPS30_CMMD_SOFT_RESET & 255;
int res = _i2c.write(SPS30_I2C_ADDR, i2cbuff, 2, false);
if(res) return SPSNOACKERROR;
return SPSNOERROR;
}