mbed(SerialHalfDuplex入り)
Fork of mbed by
LPC2300_HAL.h
- Committer:
- simon.ford@mbed.co.uk
- Date:
- 2008-04-30
- Revision:
- 1:6b7f447ca868
- Parent:
- 0:82220227f4fa
- Child:
- 4:5d1359a283bc
File content as of revision 1:6b7f447ca868:
/* mbed Microcontroller Library - LPC2300 HAL * Copyright (c) 2007-2008, sford * * This should be anything specific to abstraction the LPC2300 * * The HAL has no state associated with it. It is just a nice way to poke registers * It is still specific to the chip, but a neat interface and a bit more general * it is subject ot change and not exposed to the general user */ #ifndef MBED_LPC2300_HAL_H #define MBED_LPC2300_HAL_H #include "LPC23xx.h" namespace LPC2300 { /* Section: LPC2300 */ //=================================================================== // General //=================================================================== typedef volatile unsigned int reg32; #define NOT_CONNECTED (-1) //=================================================================== // Pin Connect Block //=================================================================== /* Function: pin_function * Set the port function (0-3) */ void pin_function(int port, int function); /* Function: pin_pullup * Set the port resistor to pullup */ void pin_pullup(int port); /* Function: pin_pulldown * Set the port resistor to pulldown */ void pin_pulldown(int port); /* Function: pin_pullnone * Set the port resistor to none */ void pin_pullnone(int port); //=================================================================== // GPIO //=================================================================== struct GPIORF { volatile unsigned int dir; // 0x00 volatile unsigned int _nc; // 0x04 volatile unsigned int _nc2; // 0x08 volatile unsigned int _nc3; // 0x0C volatile unsigned int mask; // 0x10 volatile unsigned int pin; // 0x14 volatile unsigned int set; // 0x18 volatile unsigned int clr; // 0x1C }; /* Function: gpio_input * Set the port GPIO as an input */ void gpio_input(int port); /* Function: gpio_output * Set the port GPIO as an output */ void gpio_output(int port); /* Function: gpio_write * Write a value to the GPIO port (v & 1) */ void gpio_write(int port, int v); /* Function: gpio_read * Read a value from the GPIO port (0 or 1) */ int gpio_read(int port); //=================================================================== // GPIO IRQs //=================================================================== struct GPIOInterruptsRF { reg32 StatR; // 0x00 reg32 StatF; // 0x04 reg32 Clr; // 0x08 reg32 EnR; // 0x0C reg32 EnF; // 0x10 }; /* Function: gpio_irq_enable_rising * Enable the rising edge interrupt */ void gpio_irq_enable_rising(int port); /* Function: gpio_irq_enable_falling * Enable the falling edge interrupt */ void gpio_irq_enable_falling(int port); /* Function: gpio_irq_disable_rising * Disable the rising edge interrupt */ void gpio_irq_disable_rising(int port); /* Function: gpio_irq_disable_falling * Disable the falling edge interrupt */ void gpio_irq_disable_falling(int port); /* Function: gpio_irq_clear * Clear rising and falling interrupt for the port */ void gpio_irq_clear(int port); int gpio_irq_pending(); int gpio_irq_pending_rising(int port); int gpio_irq_pending_falling(int port); //=================================================================== // Analog-to-Digital Converter //=================================================================== /* Function: adc_poweron * Turn on the ADC */ void adc_poweron(); /* Function: adc_poweroff * Turn off the ADC */ void adc_poweroff(); /* Function: adc_init * Setup the ADC ready for reading */ void adc_init(); /* Function: adc_read * Read the value of the ADC (10-bit, id 0-5) */ int adc_read(int id); //=================================================================== // Digital-to-Analog Converter //=================================================================== /* Function: dac_poweron * Turn on the DAC */ void dac_poweron(); /* Function: dac_poweroff * Turn off the DAC */ void dac_poweroff(); /* Function: dac_init * Setup the DAC ready for writinbg */ void dac_init(); /* Function: dac_write * Write a value to the DAC (10-bit) */ void dac_write(int value); /* Function: dac_read * Read the value currently set as the DAC output (10-bit) */ int dac_read(); //=================================================================== // PWM //=================================================================== struct LPC2368_PWM_RF { reg32 IR; // 0x00 - Interrupt Register reg32 TCR; // 0x04 - Timer Control Register reg32 TC; // 0x08 - Timer Counter reg32 PR; // 0x0C - Prescale Register reg32 PC; // 0x10 - Prescale Counter reg32 MCR; // 0x14 - Match Control Register reg32 MR0; // 0x18 - Match Register 0 reg32 MR1; // 0x1C - Match Register 1 reg32 MR2; // 0x20 - Match Register 2 reg32 MR3; // 0x24 - Match Register 3 reg32 CCR; // 0x28 - Capture Control Register reg32 CR0; // 0x2C - Capture Register 1 reg32 CR1; // 0x30 - Capture Register 2 reg32 CR2; // 0x34 - Capture Register 3 reg32 CR3; // 0x38 - Capture Register 4 reg32 EMR; // 0x3C - External Match Register reg32 MR4; // 0x40 - Match Register 4 reg32 MR5; // 0x44 - Match Register 5 reg32 MR6; // 0x48 - Match Register 6 reg32 PCR; // 0x4C - PWM Control Register reg32 LER; // 0x50 - Load Enable Register reg32 _nc[7]; // 0x54-0x6C reg32 CTCR; // 0x70 - Count Control Register }; #define LPC2368_PWM ((LPC2368_PWM_RF*)0xE0018000) #define TCR_CNT_EN (1 << 0) #define TCR_RESET (1 << 1) #define TCR_PWM_EN (1 << 3) //=================================================================== // SPI Master (SSP) //=================================================================== struct SPIRF { reg32 CR0; // 0x00 reg32 CR1; // 0x04 reg32 DR; // 0x08 reg32 SR; // 0x0C reg32 CPSR; // 0x10 reg32 IMSC; // 0x14 reg32 RIS; // 0x18 reg32 MIS; // 0x1C reg32 ICR; // 0x20 reg32 DMACR; // 0x24 }; void ssp_format(int id, int bits, int phase, int polarity); void ssp_frequency(int id, int hz); void ssp_enable(int id); void ssp_disable(int id); int ssp_read(int id); void ssp_write(int id, int value); int ssp_readable(int id); int ssp_writeable(int id); void ssp_poweron(int id); void ssp_poweroff(int id); /* int ssp_busy(int id); void ssp_clear(int id); */ //=================================================================== // Uart //=================================================================== struct UartRF { union { reg32 RBR; // 0x00 - Receive Buffer Register [DLAB=0] reg32 THR; // 0x00 - Transmit Holding Register [DLAB=0] reg32 DLL; // 0x00 - Divisor Latch (LSB) [DLAB=1] }; union { reg32 DLM; // 0x04 - Divisor Latch (MSB) [DLAB=1] reg32 IER; // 0x04 - Interrupt Enable Register [DLAB=0] }; union { reg32 IIR; // 0x08 - Interrupt ID Register reg32 FCR; // 0x08 - Fifo Control Register }; reg32 LCR; // 0x0C - Line Control Register reg32 MCR; // 0x10 - Modem Control Register (UART1 only) reg32 LSR; // 0x14 - Line Status Register reg32 MSR; // 0x18 - Modem Status Register (UART1 only) reg32 SCR; // 0x1C - Scratch Pad Register reg32 ACR; // 0x20 - Auto-baud Control Register reg32 ICR; // 0x24 - IrDA Control Register (UART3 only) reg32 FDR; // 0x28 - Fractional Divider Register reg32 _nc; // 0x2C - unused reg32 TER; // 0x30 - Transmit Enable Register }; enum Parity { None = 0, Odd, Even, Forced1, Forced0 }; /* Function: uart_poweron * Turn on the Uart power */ void uart_poweron(int id); /* Function: uart_poweroff * Turn off the Uart power */ void uart_poweroff(int id); void uart_baud(int id, int baudrate); void uart_format(int id, int data_bits, Parity parity, int stop_bits); void uart_enable(int id); void uart_disable(int id); int uart_getc(int id); void uart_putc(int id, int c); int uart_readable(int id); int uart_writable(int id); // I2C struct I2CRF { reg32 I2CONSET; // 0x00 - I2C Control Set Register reg32 I2STAT; // 0x04 - I2C Status Register reg32 I2DAT; // 0x08 - I2C Data Register reg32 I2ADR; // 0x0C - I2C Slave Address Register reg32 I2SCLH; // 0x10 - SCH Duty Cycle Register High reg32 I2SCLL; // 0x14 - SCL Duty Cycle Register Low reg32 I2CONCLR; // 0x18 - I2C Control Clear Register }; void i2c_poweron(int id); void i2c_poweroff(int id); void i2c_frequency(int id, int hz); void i2c_enable(int id); void i2c_conset(int id, int start, int stop, int interrupt, int acknowledge); void i2c_conclr(int id, int start, int stop, int interrupt, int acknowledge); void i2c_wait_SI(int id); void i2c_clear_SI(int id); int i2c_status(int id); int i2c_start(int id, int address); int i2c_write(int id, int value); void i2c_stop(int id); int i2c_read(int id, int last); int i2c_read(int id); int i2c_readlast(int id); // Timer struct TimerRF { reg32 ir; // 0x00 reg32 tcr; // 0x04 reg32 tc; // 0x08 reg32 pr; // 0x0C reg32 pc; // 0x10 reg32 mcr; // 0x14 reg32 mr0; // 0x18 reg32 mr1; // 0x1C reg32 mr2; // 0x20 reg32 mr3; // 0x24 reg32 ccr; // 0x28 reg32 cr0; // 0x2C reg32 cr1; // 0x30 reg32 cr2; // 0x34 reg32 cr3; // 0x38 reg32 emr; // 0x3C reg32 _nc[12]; // 0x40-0x6C reg32 ctcr; // 0x70 }; /* Function: timer_poweron * Turn on the Timer power */ void timer_poweron(int id); /* Function: timer_poweroff * Turn off the Timer power */ void timer_poweroff(int id); void timer_start(int id, int hz); int timer_read(int id); //=================================================================== // VIC //=================================================================== struct VicRF { reg32 IRQStatus; // 0x000 reg32 FIQStatus; // 0x004 reg32 RawIntr; // 0x008 reg32 IntSelect; // 0x00C reg32 IntEnable; // 0x010 reg32 IntEnClr; // 0x014 reg32 SoftInt; // 0x018 reg32 SoftIntClear; // 0x01C reg32 Protection; // 0x020 reg32 SWPriorityMask; // 0x024 reg32 _nc[54]; // 0x028-0x0FC reg32 VectAddr[32]; // 0x100-0x17C reg32 _nc2[32]; // 0x180-0x1FC reg32 VectPriority[32]; // 0x200-0x27C reg32 _nc3[800]; // 0x280-0xEFC reg32 Address; // 0xF00 }; void vic_init(); void vic_vector(int id, void (*fptr)(void) /*__irq*/ , int priority); void vic_enable(int id); void vic_disable(int id); void vic_priority(int id, int priority); void vic_acknowledge(); } // namespace LPC2300 #endif