tfsd

Dependencies:   Servo GroveGPS Cayenne-LPP driver_mbed_TH02

Committer:
younousleconquerant
Date:
Tue Mar 29 09:43:58 2022 +0000
Revision:
65:724a61ad654c
Parent:
64:4cd8fed3f437
12;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
younousleconquerant 64:4cd8fed3f437 1 /*
younousleconquerant 64:4cd8fed3f437 2 * MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
younousleconquerant 64:4cd8fed3f437 3 * _Please_ see the comments in MFRC522.h - they give useful hints and background.
younousleconquerant 64:4cd8fed3f437 4 * Released into the public domain.
younousleconquerant 64:4cd8fed3f437 5 */
younousleconquerant 64:4cd8fed3f437 6
younousleconquerant 64:4cd8fed3f437 7 #include "MFRC522.h"
younousleconquerant 64:4cd8fed3f437 8
younousleconquerant 64:4cd8fed3f437 9 static const char* const _TypeNamePICC[] =
younousleconquerant 64:4cd8fed3f437 10 {
younousleconquerant 64:4cd8fed3f437 11 "Unknown type",
younousleconquerant 64:4cd8fed3f437 12 "PICC compliant with ISO/IEC 14443-4",
younousleconquerant 64:4cd8fed3f437 13 "PICC compliant with ISO/IEC 18092 (NFC)",
younousleconquerant 64:4cd8fed3f437 14 "MIFARE Mini, 320 bytes",
younousleconquerant 64:4cd8fed3f437 15 "MIFARE 1KB",
younousleconquerant 64:4cd8fed3f437 16 "MIFARE 4KB",
younousleconquerant 64:4cd8fed3f437 17 "MIFARE Ultralight or Ultralight C",
younousleconquerant 64:4cd8fed3f437 18 "MIFARE Plus",
younousleconquerant 64:4cd8fed3f437 19 "MIFARE TNP3XXX",
younousleconquerant 64:4cd8fed3f437 20
younousleconquerant 64:4cd8fed3f437 21 /* not complete UID */
younousleconquerant 64:4cd8fed3f437 22 "SAK indicates UID is not complete"
younousleconquerant 64:4cd8fed3f437 23 };
younousleconquerant 64:4cd8fed3f437 24
younousleconquerant 64:4cd8fed3f437 25 static const char* const _ErrorMessage[] =
younousleconquerant 64:4cd8fed3f437 26 {
younousleconquerant 64:4cd8fed3f437 27 "Unknown error",
younousleconquerant 64:4cd8fed3f437 28 "Success",
younousleconquerant 64:4cd8fed3f437 29 "Error in communication",
younousleconquerant 64:4cd8fed3f437 30 "Collision detected",
younousleconquerant 64:4cd8fed3f437 31 "Timeout in communication",
younousleconquerant 64:4cd8fed3f437 32 "A buffer is not big enough",
younousleconquerant 64:4cd8fed3f437 33 "Internal error in the code, should not happen",
younousleconquerant 64:4cd8fed3f437 34 "Invalid argument",
younousleconquerant 64:4cd8fed3f437 35 "The CRC_A does not match",
younousleconquerant 64:4cd8fed3f437 36 "A MIFARE PICC responded with NAK"
younousleconquerant 64:4cd8fed3f437 37 };
younousleconquerant 64:4cd8fed3f437 38
younousleconquerant 64:4cd8fed3f437 39 #define MFRC522_MaxPICCs (sizeof(_TypeNamePICC)/sizeof(_TypeNamePICC[0]))
younousleconquerant 64:4cd8fed3f437 40 #define MFRC522_MaxError (sizeof(_ErrorMessage)/sizeof(_ErrorMessage[0]))
younousleconquerant 64:4cd8fed3f437 41
younousleconquerant 64:4cd8fed3f437 42 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 43 // Functions for setting up the driver
younousleconquerant 64:4cd8fed3f437 44 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 45
younousleconquerant 64:4cd8fed3f437 46 /**
younousleconquerant 64:4cd8fed3f437 47 * Constructor.
younousleconquerant 64:4cd8fed3f437 48 * Prepares the output pins.
younousleconquerant 64:4cd8fed3f437 49 */
younousleconquerant 64:4cd8fed3f437 50 MFRC522::MFRC522(PinName mosi,
younousleconquerant 64:4cd8fed3f437 51 PinName miso,
younousleconquerant 64:4cd8fed3f437 52 PinName sclk,
younousleconquerant 64:4cd8fed3f437 53 PinName cs,
younousleconquerant 64:4cd8fed3f437 54 PinName reset) : m_SPI(mosi, miso, sclk), m_CS(cs), m_RESET(reset)
younousleconquerant 64:4cd8fed3f437 55 {
younousleconquerant 64:4cd8fed3f437 56 /* Configure SPI bus */
younousleconquerant 64:4cd8fed3f437 57 m_SPI.format(8, 0);
younousleconquerant 64:4cd8fed3f437 58 m_SPI.frequency(8000000);
younousleconquerant 64:4cd8fed3f437 59
younousleconquerant 64:4cd8fed3f437 60 /* Release SPI-CS pin */
younousleconquerant 64:4cd8fed3f437 61 m_CS = 1;
younousleconquerant 64:4cd8fed3f437 62
younousleconquerant 64:4cd8fed3f437 63 /* Release RESET pin */
younousleconquerant 64:4cd8fed3f437 64 m_RESET = 1;
younousleconquerant 64:4cd8fed3f437 65 } // End constructor
younousleconquerant 64:4cd8fed3f437 66
younousleconquerant 64:4cd8fed3f437 67
younousleconquerant 64:4cd8fed3f437 68 /**
younousleconquerant 64:4cd8fed3f437 69 * Destructor.
younousleconquerant 64:4cd8fed3f437 70 */
younousleconquerant 64:4cd8fed3f437 71 MFRC522::~MFRC522()
younousleconquerant 64:4cd8fed3f437 72 {
younousleconquerant 64:4cd8fed3f437 73
younousleconquerant 64:4cd8fed3f437 74 }
younousleconquerant 64:4cd8fed3f437 75
younousleconquerant 64:4cd8fed3f437 76
younousleconquerant 64:4cd8fed3f437 77 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 78 // Basic interface functions for communicating with the MFRC522
younousleconquerant 64:4cd8fed3f437 79 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 80
younousleconquerant 64:4cd8fed3f437 81 /**
younousleconquerant 64:4cd8fed3f437 82 * Writes a byte to the specified register in the MFRC522 chip.
younousleconquerant 64:4cd8fed3f437 83 * The interface is described in the datasheet section 8.1.2.
younousleconquerant 64:4cd8fed3f437 84 */
younousleconquerant 64:4cd8fed3f437 85 void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t value)
younousleconquerant 64:4cd8fed3f437 86 {
younousleconquerant 64:4cd8fed3f437 87 m_CS = 0; /* Select SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 88
younousleconquerant 64:4cd8fed3f437 89 // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
younousleconquerant 64:4cd8fed3f437 90 (void) m_SPI.write(reg & 0x7E);
younousleconquerant 64:4cd8fed3f437 91 (void) m_SPI.write(value);
younousleconquerant 64:4cd8fed3f437 92
younousleconquerant 64:4cd8fed3f437 93 m_CS = 1; /* Release SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 94 } // End PCD_WriteRegister()
younousleconquerant 64:4cd8fed3f437 95
younousleconquerant 64:4cd8fed3f437 96 /**
younousleconquerant 64:4cd8fed3f437 97 * Writes a number of bytes to the specified register in the MFRC522 chip.
younousleconquerant 64:4cd8fed3f437 98 * The interface is described in the datasheet section 8.1.2.
younousleconquerant 64:4cd8fed3f437 99 */
younousleconquerant 64:4cd8fed3f437 100 void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values)
younousleconquerant 64:4cd8fed3f437 101 {
younousleconquerant 64:4cd8fed3f437 102 m_CS = 0; /* Select SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 103
younousleconquerant 64:4cd8fed3f437 104 // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
younousleconquerant 64:4cd8fed3f437 105 (void) m_SPI.write(reg & 0x7E);
younousleconquerant 64:4cd8fed3f437 106 for (uint8_t index = 0; index < count; index++)
younousleconquerant 64:4cd8fed3f437 107 {
younousleconquerant 64:4cd8fed3f437 108 (void) m_SPI.write(values[index]);
younousleconquerant 64:4cd8fed3f437 109 }
younousleconquerant 64:4cd8fed3f437 110
younousleconquerant 64:4cd8fed3f437 111 m_CS = 1; /* Release SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 112 } // End PCD_WriteRegister()
younousleconquerant 64:4cd8fed3f437 113
younousleconquerant 64:4cd8fed3f437 114 /**
younousleconquerant 64:4cd8fed3f437 115 * Reads a byte from the specified register in the MFRC522 chip.
younousleconquerant 64:4cd8fed3f437 116 * The interface is described in the datasheet section 8.1.2.
younousleconquerant 64:4cd8fed3f437 117 */
younousleconquerant 64:4cd8fed3f437 118 uint8_t MFRC522::PCD_ReadRegister(uint8_t reg)
younousleconquerant 64:4cd8fed3f437 119 {
younousleconquerant 64:4cd8fed3f437 120 uint8_t value;
younousleconquerant 64:4cd8fed3f437 121 m_CS = 0; /* Select SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 122
younousleconquerant 64:4cd8fed3f437 123 // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
younousleconquerant 64:4cd8fed3f437 124 (void) m_SPI.write(0x80 | reg);
younousleconquerant 64:4cd8fed3f437 125
younousleconquerant 64:4cd8fed3f437 126 // Read the value back. Send 0 to stop reading.
younousleconquerant 64:4cd8fed3f437 127 value = m_SPI.write(0);
younousleconquerant 64:4cd8fed3f437 128
younousleconquerant 64:4cd8fed3f437 129 m_CS = 1; /* Release SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 130
younousleconquerant 64:4cd8fed3f437 131 return value;
younousleconquerant 64:4cd8fed3f437 132 } // End PCD_ReadRegister()
younousleconquerant 64:4cd8fed3f437 133
younousleconquerant 64:4cd8fed3f437 134 /**
younousleconquerant 64:4cd8fed3f437 135 * Reads a number of bytes from the specified register in the MFRC522 chip.
younousleconquerant 64:4cd8fed3f437 136 * The interface is described in the datasheet section 8.1.2.
younousleconquerant 64:4cd8fed3f437 137 */
younousleconquerant 64:4cd8fed3f437 138 void MFRC522::PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign)
younousleconquerant 64:4cd8fed3f437 139 {
younousleconquerant 64:4cd8fed3f437 140 if (count == 0) { return; }
younousleconquerant 64:4cd8fed3f437 141
younousleconquerant 64:4cd8fed3f437 142 uint8_t address = 0x80 | reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
younousleconquerant 64:4cd8fed3f437 143 uint8_t index = 0; // Index in values array.
younousleconquerant 64:4cd8fed3f437 144
younousleconquerant 64:4cd8fed3f437 145 m_CS = 0; /* Select SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 146 count--; // One read is performed outside of the loop
younousleconquerant 64:4cd8fed3f437 147 (void) m_SPI.write(address); // Tell MFRC522 which address we want to read
younousleconquerant 64:4cd8fed3f437 148
younousleconquerant 64:4cd8fed3f437 149 while (index < count)
younousleconquerant 64:4cd8fed3f437 150 {
younousleconquerant 64:4cd8fed3f437 151 if ((index == 0) && rxAlign) // Only update bit positions rxAlign..7 in values[0]
younousleconquerant 64:4cd8fed3f437 152 {
younousleconquerant 64:4cd8fed3f437 153 // Create bit mask for bit positions rxAlign..7
younousleconquerant 64:4cd8fed3f437 154 uint8_t mask = 0;
younousleconquerant 64:4cd8fed3f437 155 for (uint8_t i = rxAlign; i <= 7; i++)
younousleconquerant 64:4cd8fed3f437 156 {
younousleconquerant 64:4cd8fed3f437 157 mask |= (1 << i);
younousleconquerant 64:4cd8fed3f437 158 }
younousleconquerant 64:4cd8fed3f437 159
younousleconquerant 64:4cd8fed3f437 160 // Read value and tell that we want to read the same address again.
younousleconquerant 64:4cd8fed3f437 161 uint8_t value = m_SPI.write(address);
younousleconquerant 64:4cd8fed3f437 162
younousleconquerant 64:4cd8fed3f437 163 // Apply mask to both current value of values[0] and the new data in value.
younousleconquerant 64:4cd8fed3f437 164 values[0] = (values[index] & ~mask) | (value & mask);
younousleconquerant 64:4cd8fed3f437 165 }
younousleconquerant 64:4cd8fed3f437 166 else
younousleconquerant 64:4cd8fed3f437 167 {
younousleconquerant 64:4cd8fed3f437 168 // Read value and tell that we want to read the same address again.
younousleconquerant 64:4cd8fed3f437 169 values[index] = m_SPI.write(address);
younousleconquerant 64:4cd8fed3f437 170 }
younousleconquerant 64:4cd8fed3f437 171
younousleconquerant 64:4cd8fed3f437 172 index++;
younousleconquerant 64:4cd8fed3f437 173 }
younousleconquerant 64:4cd8fed3f437 174
younousleconquerant 64:4cd8fed3f437 175 values[index] = m_SPI.write(0); // Read the final byte. Send 0 to stop reading.
younousleconquerant 64:4cd8fed3f437 176
younousleconquerant 64:4cd8fed3f437 177 m_CS = 1; /* Release SPI Chip MFRC522 */
younousleconquerant 64:4cd8fed3f437 178 } // End PCD_ReadRegister()
younousleconquerant 64:4cd8fed3f437 179
younousleconquerant 64:4cd8fed3f437 180 /**
younousleconquerant 64:4cd8fed3f437 181 * Sets the bits given in mask in register reg.
younousleconquerant 64:4cd8fed3f437 182 */
younousleconquerant 64:4cd8fed3f437 183 void MFRC522::PCD_SetRegisterBits(uint8_t reg, uint8_t mask)
younousleconquerant 64:4cd8fed3f437 184 {
younousleconquerant 64:4cd8fed3f437 185 uint8_t tmp = PCD_ReadRegister(reg);
younousleconquerant 64:4cd8fed3f437 186 PCD_WriteRegister(reg, tmp | mask); // set bit mask
younousleconquerant 64:4cd8fed3f437 187 } // End PCD_SetRegisterBitMask()
younousleconquerant 64:4cd8fed3f437 188
younousleconquerant 64:4cd8fed3f437 189 /**
younousleconquerant 64:4cd8fed3f437 190 * Clears the bits given in mask from register reg.
younousleconquerant 64:4cd8fed3f437 191 */
younousleconquerant 64:4cd8fed3f437 192 void MFRC522::PCD_ClrRegisterBits(uint8_t reg, uint8_t mask)
younousleconquerant 64:4cd8fed3f437 193 {
younousleconquerant 64:4cd8fed3f437 194 uint8_t tmp = PCD_ReadRegister(reg);
younousleconquerant 64:4cd8fed3f437 195 PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask
younousleconquerant 64:4cd8fed3f437 196 } // End PCD_ClearRegisterBitMask()
younousleconquerant 64:4cd8fed3f437 197
younousleconquerant 64:4cd8fed3f437 198
younousleconquerant 64:4cd8fed3f437 199 /**
younousleconquerant 64:4cd8fed3f437 200 * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
younousleconquerant 64:4cd8fed3f437 201 */
younousleconquerant 64:4cd8fed3f437 202 uint8_t MFRC522::PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result)
younousleconquerant 64:4cd8fed3f437 203 {
younousleconquerant 64:4cd8fed3f437 204 PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
younousleconquerant 64:4cd8fed3f437 205 PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit
younousleconquerant 64:4cd8fed3f437 206 PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
younousleconquerant 64:4cd8fed3f437 207 PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO
younousleconquerant 64:4cd8fed3f437 208 PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation
younousleconquerant 64:4cd8fed3f437 209
younousleconquerant 64:4cd8fed3f437 210 // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73us.
younousleconquerant 64:4cd8fed3f437 211 uint16_t i = 5000;
younousleconquerant 64:4cd8fed3f437 212 uint8_t n;
younousleconquerant 64:4cd8fed3f437 213 while (1)
younousleconquerant 64:4cd8fed3f437 214 {
younousleconquerant 64:4cd8fed3f437 215 n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
younousleconquerant 64:4cd8fed3f437 216 if (n & 0x04)
younousleconquerant 64:4cd8fed3f437 217 {
younousleconquerant 64:4cd8fed3f437 218 // CRCIRq bit set - calculation done
younousleconquerant 64:4cd8fed3f437 219 break;
younousleconquerant 64:4cd8fed3f437 220 }
younousleconquerant 64:4cd8fed3f437 221
younousleconquerant 64:4cd8fed3f437 222 if (--i == 0)
younousleconquerant 64:4cd8fed3f437 223 {
younousleconquerant 64:4cd8fed3f437 224 // The emergency break. We will eventually terminate on this one after 89ms.
younousleconquerant 64:4cd8fed3f437 225 // Communication with the MFRC522 might be down.
younousleconquerant 64:4cd8fed3f437 226 return STATUS_TIMEOUT;
younousleconquerant 64:4cd8fed3f437 227 }
younousleconquerant 64:4cd8fed3f437 228 }
younousleconquerant 64:4cd8fed3f437 229
younousleconquerant 64:4cd8fed3f437 230 // Stop calculating CRC for new content in the FIFO.
younousleconquerant 64:4cd8fed3f437 231 PCD_WriteRegister(CommandReg, PCD_Idle);
younousleconquerant 64:4cd8fed3f437 232
younousleconquerant 64:4cd8fed3f437 233 // Transfer the result from the registers to the result buffer
younousleconquerant 64:4cd8fed3f437 234 result[0] = PCD_ReadRegister(CRCResultRegL);
younousleconquerant 64:4cd8fed3f437 235 result[1] = PCD_ReadRegister(CRCResultRegH);
younousleconquerant 64:4cd8fed3f437 236 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 237 } // End PCD_CalculateCRC()
younousleconquerant 64:4cd8fed3f437 238
younousleconquerant 64:4cd8fed3f437 239
younousleconquerant 64:4cd8fed3f437 240 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 241 // Functions for manipulating the MFRC522
younousleconquerant 64:4cd8fed3f437 242 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 243
younousleconquerant 64:4cd8fed3f437 244 /**
younousleconquerant 64:4cd8fed3f437 245 * Initializes the MFRC522 chip.
younousleconquerant 64:4cd8fed3f437 246 */
younousleconquerant 64:4cd8fed3f437 247 void MFRC522::PCD_Init()
younousleconquerant 64:4cd8fed3f437 248 {
younousleconquerant 64:4cd8fed3f437 249 /* Reset MFRC522 */
younousleconquerant 64:4cd8fed3f437 250 m_RESET = 0;
younousleconquerant 64:4cd8fed3f437 251 wait_ms(10);
younousleconquerant 64:4cd8fed3f437 252 m_RESET = 1;
younousleconquerant 64:4cd8fed3f437 253
younousleconquerant 64:4cd8fed3f437 254 // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms.
younousleconquerant 64:4cd8fed3f437 255 wait_ms(50);
younousleconquerant 64:4cd8fed3f437 256
younousleconquerant 64:4cd8fed3f437 257 // When communicating with a PICC we need a timeout if something goes wrong.
younousleconquerant 64:4cd8fed3f437 258 // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo].
younousleconquerant 64:4cd8fed3f437 259 // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg.
younousleconquerant 64:4cd8fed3f437 260 PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds
younousleconquerant 64:4cd8fed3f437 261 PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25us.
younousleconquerant 64:4cd8fed3f437 262 PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout.
younousleconquerant 64:4cd8fed3f437 263 PCD_WriteRegister(TReloadRegL, 0xE8);
younousleconquerant 64:4cd8fed3f437 264
younousleconquerant 64:4cd8fed3f437 265 PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting
younousleconquerant 64:4cd8fed3f437 266 PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)
younousleconquerant 64:4cd8fed3f437 267
younousleconquerant 64:4cd8fed3f437 268 PCD_WriteRegister(RFCfgReg, (0x07<<4)); // Set Rx Gain to max
younousleconquerant 64:4cd8fed3f437 269
younousleconquerant 64:4cd8fed3f437 270 PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset)
younousleconquerant 64:4cd8fed3f437 271 } // End PCD_Init()
younousleconquerant 64:4cd8fed3f437 272
younousleconquerant 64:4cd8fed3f437 273 /**
younousleconquerant 64:4cd8fed3f437 274 * Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
younousleconquerant 64:4cd8fed3f437 275 */
younousleconquerant 64:4cd8fed3f437 276 void MFRC522::PCD_Reset()
younousleconquerant 64:4cd8fed3f437 277 {
younousleconquerant 64:4cd8fed3f437 278 PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command.
younousleconquerant 64:4cd8fed3f437 279 // The datasheet does not mention how long the SoftRest command takes to complete.
younousleconquerant 64:4cd8fed3f437 280 // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg)
younousleconquerant 64:4cd8fed3f437 281 // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms.
younousleconquerant 64:4cd8fed3f437 282 wait_ms(50);
younousleconquerant 64:4cd8fed3f437 283
younousleconquerant 64:4cd8fed3f437 284 // Wait for the PowerDown bit in CommandReg to be cleared
younousleconquerant 64:4cd8fed3f437 285 while (PCD_ReadRegister(CommandReg) & (1<<4))
younousleconquerant 64:4cd8fed3f437 286 {
younousleconquerant 64:4cd8fed3f437 287 // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry.
younousleconquerant 64:4cd8fed3f437 288 }
younousleconquerant 64:4cd8fed3f437 289 } // End PCD_Reset()
younousleconquerant 64:4cd8fed3f437 290
younousleconquerant 64:4cd8fed3f437 291 /**
younousleconquerant 64:4cd8fed3f437 292 * Turns the antenna on by enabling pins TX1 and TX2.
younousleconquerant 64:4cd8fed3f437 293 * After a reset these pins disabled.
younousleconquerant 64:4cd8fed3f437 294 */
younousleconquerant 64:4cd8fed3f437 295 void MFRC522::PCD_AntennaOn()
younousleconquerant 64:4cd8fed3f437 296 {
younousleconquerant 64:4cd8fed3f437 297 uint8_t value = PCD_ReadRegister(TxControlReg);
younousleconquerant 64:4cd8fed3f437 298 if ((value & 0x03) != 0x03)
younousleconquerant 64:4cd8fed3f437 299 {
younousleconquerant 64:4cd8fed3f437 300 PCD_WriteRegister(TxControlReg, value | 0x03);
younousleconquerant 64:4cd8fed3f437 301 }
younousleconquerant 64:4cd8fed3f437 302 } // End PCD_AntennaOn()
younousleconquerant 64:4cd8fed3f437 303
younousleconquerant 64:4cd8fed3f437 304 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 305 // Functions for communicating with PICCs
younousleconquerant 64:4cd8fed3f437 306 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 307
younousleconquerant 64:4cd8fed3f437 308 /**
younousleconquerant 64:4cd8fed3f437 309 * Executes the Transceive command.
younousleconquerant 64:4cd8fed3f437 310 * CRC validation can only be done if backData and backLen are specified.
younousleconquerant 64:4cd8fed3f437 311 */
younousleconquerant 64:4cd8fed3f437 312 uint8_t MFRC522::PCD_TransceiveData(uint8_t *sendData,
younousleconquerant 64:4cd8fed3f437 313 uint8_t sendLen,
younousleconquerant 64:4cd8fed3f437 314 uint8_t *backData,
younousleconquerant 64:4cd8fed3f437 315 uint8_t *backLen,
younousleconquerant 64:4cd8fed3f437 316 uint8_t *validBits,
younousleconquerant 64:4cd8fed3f437 317 uint8_t rxAlign,
younousleconquerant 64:4cd8fed3f437 318 bool checkCRC)
younousleconquerant 64:4cd8fed3f437 319 {
younousleconquerant 64:4cd8fed3f437 320 uint8_t waitIRq = 0x30; // RxIRq and IdleIRq
younousleconquerant 64:4cd8fed3f437 321 return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC);
younousleconquerant 64:4cd8fed3f437 322 } // End PCD_TransceiveData()
younousleconquerant 64:4cd8fed3f437 323
younousleconquerant 64:4cd8fed3f437 324 /**
younousleconquerant 64:4cd8fed3f437 325 * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO.
younousleconquerant 64:4cd8fed3f437 326 * CRC validation can only be done if backData and backLen are specified.
younousleconquerant 64:4cd8fed3f437 327 */
younousleconquerant 64:4cd8fed3f437 328 uint8_t MFRC522::PCD_CommunicateWithPICC(uint8_t command,
younousleconquerant 64:4cd8fed3f437 329 uint8_t waitIRq,
younousleconquerant 64:4cd8fed3f437 330 uint8_t *sendData,
younousleconquerant 64:4cd8fed3f437 331 uint8_t sendLen,
younousleconquerant 64:4cd8fed3f437 332 uint8_t *backData,
younousleconquerant 64:4cd8fed3f437 333 uint8_t *backLen,
younousleconquerant 64:4cd8fed3f437 334 uint8_t *validBits,
younousleconquerant 64:4cd8fed3f437 335 uint8_t rxAlign,
younousleconquerant 64:4cd8fed3f437 336 bool checkCRC)
younousleconquerant 64:4cd8fed3f437 337 {
younousleconquerant 64:4cd8fed3f437 338 uint8_t n, _validBits = 0;
younousleconquerant 64:4cd8fed3f437 339 uint32_t i;
younousleconquerant 64:4cd8fed3f437 340
younousleconquerant 64:4cd8fed3f437 341 // Prepare values for BitFramingReg
younousleconquerant 64:4cd8fed3f437 342 uint8_t txLastBits = validBits ? *validBits : 0;
younousleconquerant 64:4cd8fed3f437 343 uint8_t bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
younousleconquerant 64:4cd8fed3f437 344
younousleconquerant 64:4cd8fed3f437 345 PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
younousleconquerant 64:4cd8fed3f437 346 PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits
younousleconquerant 64:4cd8fed3f437 347 PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
younousleconquerant 64:4cd8fed3f437 348 PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO
younousleconquerant 64:4cd8fed3f437 349 PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments
younousleconquerant 64:4cd8fed3f437 350 PCD_WriteRegister(CommandReg, command); // Execute the command
younousleconquerant 64:4cd8fed3f437 351 if (command == PCD_Transceive)
younousleconquerant 64:4cd8fed3f437 352 {
younousleconquerant 64:4cd8fed3f437 353 PCD_SetRegisterBits(BitFramingReg, 0x80); // StartSend=1, transmission of data starts
younousleconquerant 64:4cd8fed3f437 354 }
younousleconquerant 64:4cd8fed3f437 355
younousleconquerant 64:4cd8fed3f437 356 // Wait for the command to complete.
younousleconquerant 64:4cd8fed3f437 357 // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting.
younousleconquerant 64:4cd8fed3f437 358 // Each iteration of the do-while-loop takes 17.86us.
younousleconquerant 64:4cd8fed3f437 359 i = 2000;
younousleconquerant 64:4cd8fed3f437 360 while (1)
younousleconquerant 64:4cd8fed3f437 361 {
younousleconquerant 64:4cd8fed3f437 362 n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq
younousleconquerant 64:4cd8fed3f437 363 if (n & waitIRq)
younousleconquerant 64:4cd8fed3f437 364 { // One of the interrupts that signal success has been set.
younousleconquerant 64:4cd8fed3f437 365 break;
younousleconquerant 64:4cd8fed3f437 366 }
younousleconquerant 64:4cd8fed3f437 367
younousleconquerant 64:4cd8fed3f437 368 if (n & 0x01)
younousleconquerant 64:4cd8fed3f437 369 { // Timer interrupt - nothing received in 25ms
younousleconquerant 64:4cd8fed3f437 370 return STATUS_TIMEOUT;
younousleconquerant 64:4cd8fed3f437 371 }
younousleconquerant 64:4cd8fed3f437 372
younousleconquerant 64:4cd8fed3f437 373 if (--i == 0)
younousleconquerant 64:4cd8fed3f437 374 { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down.
younousleconquerant 64:4cd8fed3f437 375 return STATUS_TIMEOUT;
younousleconquerant 64:4cd8fed3f437 376 }
younousleconquerant 64:4cd8fed3f437 377 }
younousleconquerant 64:4cd8fed3f437 378
younousleconquerant 64:4cd8fed3f437 379 // Stop now if any errors except collisions were detected.
younousleconquerant 64:4cd8fed3f437 380 uint8_t errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
younousleconquerant 64:4cd8fed3f437 381 if (errorRegValue & 0x13)
younousleconquerant 64:4cd8fed3f437 382 { // BufferOvfl ParityErr ProtocolErr
younousleconquerant 64:4cd8fed3f437 383 return STATUS_ERROR;
younousleconquerant 64:4cd8fed3f437 384 }
younousleconquerant 64:4cd8fed3f437 385
younousleconquerant 64:4cd8fed3f437 386 // If the caller wants data back, get it from the MFRC522.
younousleconquerant 64:4cd8fed3f437 387 if (backData && backLen)
younousleconquerant 64:4cd8fed3f437 388 {
younousleconquerant 64:4cd8fed3f437 389 n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO
younousleconquerant 64:4cd8fed3f437 390 if (n > *backLen)
younousleconquerant 64:4cd8fed3f437 391 {
younousleconquerant 64:4cd8fed3f437 392 return STATUS_NO_ROOM;
younousleconquerant 64:4cd8fed3f437 393 }
younousleconquerant 64:4cd8fed3f437 394
younousleconquerant 64:4cd8fed3f437 395 *backLen = n; // Number of bytes returned
younousleconquerant 64:4cd8fed3f437 396 PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO
younousleconquerant 64:4cd8fed3f437 397 _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid.
younousleconquerant 64:4cd8fed3f437 398 if (validBits)
younousleconquerant 64:4cd8fed3f437 399 {
younousleconquerant 64:4cd8fed3f437 400 *validBits = _validBits;
younousleconquerant 64:4cd8fed3f437 401 }
younousleconquerant 64:4cd8fed3f437 402 }
younousleconquerant 64:4cd8fed3f437 403
younousleconquerant 64:4cd8fed3f437 404 // Tell about collisions
younousleconquerant 64:4cd8fed3f437 405 if (errorRegValue & 0x08)
younousleconquerant 64:4cd8fed3f437 406 { // CollErr
younousleconquerant 64:4cd8fed3f437 407 return STATUS_COLLISION;
younousleconquerant 64:4cd8fed3f437 408 }
younousleconquerant 64:4cd8fed3f437 409
younousleconquerant 64:4cd8fed3f437 410 // Perform CRC_A validation if requested.
younousleconquerant 64:4cd8fed3f437 411 if (backData && backLen && checkCRC)
younousleconquerant 64:4cd8fed3f437 412 {
younousleconquerant 64:4cd8fed3f437 413 // In this case a MIFARE Classic NAK is not OK.
younousleconquerant 64:4cd8fed3f437 414 if ((*backLen == 1) && (_validBits == 4))
younousleconquerant 64:4cd8fed3f437 415 {
younousleconquerant 64:4cd8fed3f437 416 return STATUS_MIFARE_NACK;
younousleconquerant 64:4cd8fed3f437 417 }
younousleconquerant 64:4cd8fed3f437 418
younousleconquerant 64:4cd8fed3f437 419 // We need at least the CRC_A value and all 8 bits of the last byte must be received.
younousleconquerant 64:4cd8fed3f437 420 if ((*backLen < 2) || (_validBits != 0))
younousleconquerant 64:4cd8fed3f437 421 {
younousleconquerant 64:4cd8fed3f437 422 return STATUS_CRC_WRONG;
younousleconquerant 64:4cd8fed3f437 423 }
younousleconquerant 64:4cd8fed3f437 424
younousleconquerant 64:4cd8fed3f437 425 // Verify CRC_A - do our own calculation and store the control in controlBuffer.
younousleconquerant 64:4cd8fed3f437 426 uint8_t controlBuffer[2];
younousleconquerant 64:4cd8fed3f437 427 n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]);
younousleconquerant 64:4cd8fed3f437 428 if (n != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 429 {
younousleconquerant 64:4cd8fed3f437 430 return n;
younousleconquerant 64:4cd8fed3f437 431 }
younousleconquerant 64:4cd8fed3f437 432
younousleconquerant 64:4cd8fed3f437 433 if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1]))
younousleconquerant 64:4cd8fed3f437 434 {
younousleconquerant 64:4cd8fed3f437 435 return STATUS_CRC_WRONG;
younousleconquerant 64:4cd8fed3f437 436 }
younousleconquerant 64:4cd8fed3f437 437 }
younousleconquerant 64:4cd8fed3f437 438
younousleconquerant 64:4cd8fed3f437 439 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 440 } // End PCD_CommunicateWithPICC()
younousleconquerant 64:4cd8fed3f437 441
younousleconquerant 64:4cd8fed3f437 442 /*
younousleconquerant 64:4cd8fed3f437 443 * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
younousleconquerant 64:4cd8fed3f437 444 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
younousleconquerant 64:4cd8fed3f437 445 */
younousleconquerant 64:4cd8fed3f437 446 uint8_t MFRC522::PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize)
younousleconquerant 64:4cd8fed3f437 447 {
younousleconquerant 64:4cd8fed3f437 448 return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize);
younousleconquerant 64:4cd8fed3f437 449 } // End PICC_RequestA()
younousleconquerant 64:4cd8fed3f437 450
younousleconquerant 64:4cd8fed3f437 451 /**
younousleconquerant 64:4cd8fed3f437 452 * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
younousleconquerant 64:4cd8fed3f437 453 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
younousleconquerant 64:4cd8fed3f437 454 */
younousleconquerant 64:4cd8fed3f437 455 uint8_t MFRC522::PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize)
younousleconquerant 64:4cd8fed3f437 456 {
younousleconquerant 64:4cd8fed3f437 457 return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize);
younousleconquerant 64:4cd8fed3f437 458 } // End PICC_WakeupA()
younousleconquerant 64:4cd8fed3f437 459
younousleconquerant 64:4cd8fed3f437 460 /*
younousleconquerant 64:4cd8fed3f437 461 * Transmits REQA or WUPA commands.
younousleconquerant 64:4cd8fed3f437 462 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
younousleconquerant 64:4cd8fed3f437 463 */
younousleconquerant 64:4cd8fed3f437 464 uint8_t MFRC522::PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize)
younousleconquerant 64:4cd8fed3f437 465 {
younousleconquerant 64:4cd8fed3f437 466 uint8_t validBits;
younousleconquerant 64:4cd8fed3f437 467 uint8_t status;
younousleconquerant 64:4cd8fed3f437 468
younousleconquerant 64:4cd8fed3f437 469 if (bufferATQA == NULL || *bufferSize < 2)
younousleconquerant 64:4cd8fed3f437 470 { // The ATQA response is 2 bytes long.
younousleconquerant 64:4cd8fed3f437 471 return STATUS_NO_ROOM;
younousleconquerant 64:4cd8fed3f437 472 }
younousleconquerant 64:4cd8fed3f437 473
younousleconquerant 64:4cd8fed3f437 474 // ValuesAfterColl=1 => Bits received after collision are cleared.
younousleconquerant 64:4cd8fed3f437 475 PCD_ClrRegisterBits(CollReg, 0x80);
younousleconquerant 64:4cd8fed3f437 476
younousleconquerant 64:4cd8fed3f437 477 // For REQA and WUPA we need the short frame format
younousleconquerant 64:4cd8fed3f437 478 // - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]
younousleconquerant 64:4cd8fed3f437 479 validBits = 7;
younousleconquerant 64:4cd8fed3f437 480
younousleconquerant 64:4cd8fed3f437 481 status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits);
younousleconquerant 64:4cd8fed3f437 482 if (status != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 483 {
younousleconquerant 64:4cd8fed3f437 484 return status;
younousleconquerant 64:4cd8fed3f437 485 }
younousleconquerant 64:4cd8fed3f437 486
younousleconquerant 64:4cd8fed3f437 487 if ((*bufferSize != 2) || (validBits != 0))
younousleconquerant 64:4cd8fed3f437 488 { // ATQA must be exactly 16 bits.
younousleconquerant 64:4cd8fed3f437 489 return STATUS_ERROR;
younousleconquerant 64:4cd8fed3f437 490 }
younousleconquerant 64:4cd8fed3f437 491
younousleconquerant 64:4cd8fed3f437 492 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 493 } // End PICC_REQA_or_WUPA()
younousleconquerant 64:4cd8fed3f437 494
younousleconquerant 64:4cd8fed3f437 495 /*
younousleconquerant 64:4cd8fed3f437 496 * Transmits SELECT/ANTICOLLISION commands to select a single PICC.
younousleconquerant 64:4cd8fed3f437 497 */
younousleconquerant 64:4cd8fed3f437 498 uint8_t MFRC522::PICC_Select(Uid *uid, uint8_t validBits)
younousleconquerant 64:4cd8fed3f437 499 {
younousleconquerant 64:4cd8fed3f437 500 bool uidComplete;
younousleconquerant 64:4cd8fed3f437 501 bool selectDone;
younousleconquerant 64:4cd8fed3f437 502 bool useCascadeTag;
younousleconquerant 64:4cd8fed3f437 503 uint8_t cascadeLevel = 1;
younousleconquerant 64:4cd8fed3f437 504 uint8_t result;
younousleconquerant 64:4cd8fed3f437 505 uint8_t count;
younousleconquerant 64:4cd8fed3f437 506 uint8_t index;
younousleconquerant 64:4cd8fed3f437 507 uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
younousleconquerant 64:4cd8fed3f437 508 uint8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
younousleconquerant 64:4cd8fed3f437 509 uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A
younousleconquerant 64:4cd8fed3f437 510 uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO.
younousleconquerant 64:4cd8fed3f437 511 uint8_t rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received.
younousleconquerant 64:4cd8fed3f437 512 uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte.
younousleconquerant 64:4cd8fed3f437 513 uint8_t *responseBuffer;
younousleconquerant 64:4cd8fed3f437 514 uint8_t responseLength;
younousleconquerant 64:4cd8fed3f437 515
younousleconquerant 64:4cd8fed3f437 516 // Description of buffer structure:
younousleconquerant 64:4cd8fed3f437 517 // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
younousleconquerant 64:4cd8fed3f437 518 // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits.
younousleconquerant 64:4cd8fed3f437 519 // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
younousleconquerant 64:4cd8fed3f437 520 // Byte 3: UID-data
younousleconquerant 64:4cd8fed3f437 521 // Byte 4: UID-data
younousleconquerant 64:4cd8fed3f437 522 // Byte 5: UID-data
younousleconquerant 64:4cd8fed3f437 523 // Byte 6: BCC Block Check Character - XOR of bytes 2-5
younousleconquerant 64:4cd8fed3f437 524 // Byte 7: CRC_A
younousleconquerant 64:4cd8fed3f437 525 // Byte 8: CRC_A
younousleconquerant 64:4cd8fed3f437 526 // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level.
younousleconquerant 64:4cd8fed3f437 527 //
younousleconquerant 64:4cd8fed3f437 528 // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels)
younousleconquerant 64:4cd8fed3f437 529 // UID size Cascade level Byte2 Byte3 Byte4 Byte5
younousleconquerant 64:4cd8fed3f437 530 // ======== ============= ===== ===== ===== =====
younousleconquerant 64:4cd8fed3f437 531 // 4 bytes 1 uid0 uid1 uid2 uid3
younousleconquerant 64:4cd8fed3f437 532 // 7 bytes 1 CT uid0 uid1 uid2
younousleconquerant 64:4cd8fed3f437 533 // 2 uid3 uid4 uid5 uid6
younousleconquerant 64:4cd8fed3f437 534 // 10 bytes 1 CT uid0 uid1 uid2
younousleconquerant 64:4cd8fed3f437 535 // 2 CT uid3 uid4 uid5
younousleconquerant 64:4cd8fed3f437 536 // 3 uid6 uid7 uid8 uid9
younousleconquerant 64:4cd8fed3f437 537
younousleconquerant 64:4cd8fed3f437 538 // Sanity checks
younousleconquerant 64:4cd8fed3f437 539 if (validBits > 80)
younousleconquerant 64:4cd8fed3f437 540 {
younousleconquerant 64:4cd8fed3f437 541 return STATUS_INVALID;
younousleconquerant 64:4cd8fed3f437 542 }
younousleconquerant 64:4cd8fed3f437 543
younousleconquerant 64:4cd8fed3f437 544 // Prepare MFRC522
younousleconquerant 64:4cd8fed3f437 545 // ValuesAfterColl=1 => Bits received after collision are cleared.
younousleconquerant 64:4cd8fed3f437 546 PCD_ClrRegisterBits(CollReg, 0x80);
younousleconquerant 64:4cd8fed3f437 547
younousleconquerant 64:4cd8fed3f437 548 // Repeat Cascade Level loop until we have a complete UID.
younousleconquerant 64:4cd8fed3f437 549 uidComplete = false;
younousleconquerant 64:4cd8fed3f437 550 while ( ! uidComplete)
younousleconquerant 64:4cd8fed3f437 551 {
younousleconquerant 64:4cd8fed3f437 552 // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2.
younousleconquerant 64:4cd8fed3f437 553 switch (cascadeLevel)
younousleconquerant 64:4cd8fed3f437 554 {
younousleconquerant 64:4cd8fed3f437 555 case 1:
younousleconquerant 64:4cd8fed3f437 556 buffer[0] = PICC_CMD_SEL_CL1;
younousleconquerant 64:4cd8fed3f437 557 uidIndex = 0;
younousleconquerant 64:4cd8fed3f437 558 useCascadeTag = validBits && (uid->size > 4); // When we know that the UID has more than 4 bytes
younousleconquerant 64:4cd8fed3f437 559 break;
younousleconquerant 64:4cd8fed3f437 560
younousleconquerant 64:4cd8fed3f437 561 case 2:
younousleconquerant 64:4cd8fed3f437 562 buffer[0] = PICC_CMD_SEL_CL2;
younousleconquerant 64:4cd8fed3f437 563 uidIndex = 3;
younousleconquerant 64:4cd8fed3f437 564 useCascadeTag = validBits && (uid->size > 7); // When we know that the UID has more than 7 bytes
younousleconquerant 64:4cd8fed3f437 565 break;
younousleconquerant 64:4cd8fed3f437 566
younousleconquerant 64:4cd8fed3f437 567 case 3:
younousleconquerant 64:4cd8fed3f437 568 buffer[0] = PICC_CMD_SEL_CL3;
younousleconquerant 64:4cd8fed3f437 569 uidIndex = 6;
younousleconquerant 64:4cd8fed3f437 570 useCascadeTag = false; // Never used in CL3.
younousleconquerant 64:4cd8fed3f437 571 break;
younousleconquerant 64:4cd8fed3f437 572
younousleconquerant 64:4cd8fed3f437 573 default:
younousleconquerant 64:4cd8fed3f437 574 return STATUS_INTERNAL_ERROR;
younousleconquerant 64:4cd8fed3f437 575 //break;
younousleconquerant 64:4cd8fed3f437 576 }
younousleconquerant 64:4cd8fed3f437 577
younousleconquerant 64:4cd8fed3f437 578 // How many UID bits are known in this Cascade Level?
younousleconquerant 64:4cd8fed3f437 579 if(validBits > (8 * uidIndex))
younousleconquerant 64:4cd8fed3f437 580 {
younousleconquerant 64:4cd8fed3f437 581 currentLevelKnownBits = validBits - (8 * uidIndex);
younousleconquerant 64:4cd8fed3f437 582 }
younousleconquerant 64:4cd8fed3f437 583 else
younousleconquerant 64:4cd8fed3f437 584 {
younousleconquerant 64:4cd8fed3f437 585 currentLevelKnownBits = 0;
younousleconquerant 64:4cd8fed3f437 586 }
younousleconquerant 64:4cd8fed3f437 587
younousleconquerant 64:4cd8fed3f437 588 // Copy the known bits from uid->uidByte[] to buffer[]
younousleconquerant 64:4cd8fed3f437 589 index = 2; // destination index in buffer[]
younousleconquerant 64:4cd8fed3f437 590 if (useCascadeTag)
younousleconquerant 64:4cd8fed3f437 591 {
younousleconquerant 64:4cd8fed3f437 592 buffer[index++] = PICC_CMD_CT;
younousleconquerant 64:4cd8fed3f437 593 }
younousleconquerant 64:4cd8fed3f437 594
younousleconquerant 64:4cd8fed3f437 595 uint8_t bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level.
younousleconquerant 64:4cd8fed3f437 596 if (bytesToCopy)
younousleconquerant 64:4cd8fed3f437 597 {
younousleconquerant 64:4cd8fed3f437 598 // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag
younousleconquerant 64:4cd8fed3f437 599 uint8_t maxBytes = useCascadeTag ? 3 : 4;
younousleconquerant 64:4cd8fed3f437 600 if (bytesToCopy > maxBytes)
younousleconquerant 64:4cd8fed3f437 601 {
younousleconquerant 64:4cd8fed3f437 602 bytesToCopy = maxBytes;
younousleconquerant 64:4cd8fed3f437 603 }
younousleconquerant 64:4cd8fed3f437 604
younousleconquerant 64:4cd8fed3f437 605 for (count = 0; count < bytesToCopy; count++)
younousleconquerant 64:4cd8fed3f437 606 {
younousleconquerant 64:4cd8fed3f437 607 buffer[index++] = uid->uidByte[uidIndex + count];
younousleconquerant 64:4cd8fed3f437 608 }
younousleconquerant 64:4cd8fed3f437 609 }
younousleconquerant 64:4cd8fed3f437 610
younousleconquerant 64:4cd8fed3f437 611 // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits
younousleconquerant 64:4cd8fed3f437 612 if (useCascadeTag)
younousleconquerant 64:4cd8fed3f437 613 {
younousleconquerant 64:4cd8fed3f437 614 currentLevelKnownBits += 8;
younousleconquerant 64:4cd8fed3f437 615 }
younousleconquerant 64:4cd8fed3f437 616
younousleconquerant 64:4cd8fed3f437 617 // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
younousleconquerant 64:4cd8fed3f437 618 selectDone = false;
younousleconquerant 64:4cd8fed3f437 619 while ( ! selectDone)
younousleconquerant 64:4cd8fed3f437 620 {
younousleconquerant 64:4cd8fed3f437 621 // Find out how many bits and bytes to send and receive.
younousleconquerant 64:4cd8fed3f437 622 if (currentLevelKnownBits >= 32)
younousleconquerant 64:4cd8fed3f437 623 { // All UID bits in this Cascade Level are known. This is a SELECT.
younousleconquerant 64:4cd8fed3f437 624 //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC);
younousleconquerant 64:4cd8fed3f437 625 buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
younousleconquerant 64:4cd8fed3f437 626
younousleconquerant 64:4cd8fed3f437 627 // Calulate BCC - Block Check Character
younousleconquerant 64:4cd8fed3f437 628 buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
younousleconquerant 64:4cd8fed3f437 629
younousleconquerant 64:4cd8fed3f437 630 // Calculate CRC_A
younousleconquerant 64:4cd8fed3f437 631 result = PCD_CalculateCRC(buffer, 7, &buffer[7]);
younousleconquerant 64:4cd8fed3f437 632 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 633 {
younousleconquerant 64:4cd8fed3f437 634 return result;
younousleconquerant 64:4cd8fed3f437 635 }
younousleconquerant 64:4cd8fed3f437 636
younousleconquerant 64:4cd8fed3f437 637 txLastBits = 0; // 0 => All 8 bits are valid.
younousleconquerant 64:4cd8fed3f437 638 bufferUsed = 9;
younousleconquerant 64:4cd8fed3f437 639
younousleconquerant 64:4cd8fed3f437 640 // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
younousleconquerant 64:4cd8fed3f437 641 responseBuffer = &buffer[6];
younousleconquerant 64:4cd8fed3f437 642 responseLength = 3;
younousleconquerant 64:4cd8fed3f437 643 }
younousleconquerant 64:4cd8fed3f437 644 else
younousleconquerant 64:4cd8fed3f437 645 { // This is an ANTICOLLISION.
younousleconquerant 64:4cd8fed3f437 646 //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC);
younousleconquerant 64:4cd8fed3f437 647 txLastBits = currentLevelKnownBits % 8;
younousleconquerant 64:4cd8fed3f437 648 count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
younousleconquerant 64:4cd8fed3f437 649 index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
younousleconquerant 64:4cd8fed3f437 650 buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
younousleconquerant 64:4cd8fed3f437 651 bufferUsed = index + (txLastBits ? 1 : 0);
younousleconquerant 64:4cd8fed3f437 652
younousleconquerant 64:4cd8fed3f437 653 // Store response in the unused part of buffer
younousleconquerant 64:4cd8fed3f437 654 responseBuffer = &buffer[index];
younousleconquerant 64:4cd8fed3f437 655 responseLength = sizeof(buffer) - index;
younousleconquerant 64:4cd8fed3f437 656 }
younousleconquerant 64:4cd8fed3f437 657
younousleconquerant 64:4cd8fed3f437 658 // Set bit adjustments
younousleconquerant 64:4cd8fed3f437 659 rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read.
younousleconquerant 64:4cd8fed3f437 660 PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
younousleconquerant 64:4cd8fed3f437 661
younousleconquerant 64:4cd8fed3f437 662 // Transmit the buffer and receive the response.
younousleconquerant 64:4cd8fed3f437 663 result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign);
younousleconquerant 64:4cd8fed3f437 664 if (result == STATUS_COLLISION)
younousleconquerant 64:4cd8fed3f437 665 { // More than one PICC in the field => collision.
younousleconquerant 64:4cd8fed3f437 666 result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
younousleconquerant 64:4cd8fed3f437 667 if (result & 0x20)
younousleconquerant 64:4cd8fed3f437 668 { // CollPosNotValid
younousleconquerant 64:4cd8fed3f437 669 return STATUS_COLLISION; // Without a valid collision position we cannot continue
younousleconquerant 64:4cd8fed3f437 670 }
younousleconquerant 64:4cd8fed3f437 671
younousleconquerant 64:4cd8fed3f437 672 uint8_t collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32.
younousleconquerant 64:4cd8fed3f437 673 if (collisionPos == 0)
younousleconquerant 64:4cd8fed3f437 674 {
younousleconquerant 64:4cd8fed3f437 675 collisionPos = 32;
younousleconquerant 64:4cd8fed3f437 676 }
younousleconquerant 64:4cd8fed3f437 677
younousleconquerant 64:4cd8fed3f437 678 if (collisionPos <= currentLevelKnownBits)
younousleconquerant 64:4cd8fed3f437 679 { // No progress - should not happen
younousleconquerant 64:4cd8fed3f437 680 return STATUS_INTERNAL_ERROR;
younousleconquerant 64:4cd8fed3f437 681 }
younousleconquerant 64:4cd8fed3f437 682
younousleconquerant 64:4cd8fed3f437 683 // Choose the PICC with the bit set.
younousleconquerant 64:4cd8fed3f437 684 currentLevelKnownBits = collisionPos;
younousleconquerant 64:4cd8fed3f437 685 count = (currentLevelKnownBits - 1) % 8; // The bit to modify
younousleconquerant 64:4cd8fed3f437 686 index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
younousleconquerant 64:4cd8fed3f437 687 buffer[index] |= (1 << count);
younousleconquerant 64:4cd8fed3f437 688 }
younousleconquerant 64:4cd8fed3f437 689 else if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 690 {
younousleconquerant 64:4cd8fed3f437 691 return result;
younousleconquerant 64:4cd8fed3f437 692 }
younousleconquerant 64:4cd8fed3f437 693 else
younousleconquerant 64:4cd8fed3f437 694 { // STATUS_OK
younousleconquerant 64:4cd8fed3f437 695 if (currentLevelKnownBits >= 32)
younousleconquerant 64:4cd8fed3f437 696 { // This was a SELECT.
younousleconquerant 64:4cd8fed3f437 697 selectDone = true; // No more anticollision
younousleconquerant 64:4cd8fed3f437 698 // We continue below outside the while.
younousleconquerant 64:4cd8fed3f437 699 }
younousleconquerant 64:4cd8fed3f437 700 else
younousleconquerant 64:4cd8fed3f437 701 { // This was an ANTICOLLISION.
younousleconquerant 64:4cd8fed3f437 702 // We now have all 32 bits of the UID in this Cascade Level
younousleconquerant 64:4cd8fed3f437 703 currentLevelKnownBits = 32;
younousleconquerant 64:4cd8fed3f437 704 // Run loop again to do the SELECT.
younousleconquerant 64:4cd8fed3f437 705 }
younousleconquerant 64:4cd8fed3f437 706 }
younousleconquerant 64:4cd8fed3f437 707 } // End of while ( ! selectDone)
younousleconquerant 64:4cd8fed3f437 708
younousleconquerant 64:4cd8fed3f437 709 // We do not check the CBB - it was constructed by us above.
younousleconquerant 64:4cd8fed3f437 710
younousleconquerant 64:4cd8fed3f437 711 // Copy the found UID bytes from buffer[] to uid->uidByte[]
younousleconquerant 64:4cd8fed3f437 712 index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
younousleconquerant 64:4cd8fed3f437 713 bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
younousleconquerant 64:4cd8fed3f437 714 for (count = 0; count < bytesToCopy; count++)
younousleconquerant 64:4cd8fed3f437 715 {
younousleconquerant 64:4cd8fed3f437 716 uid->uidByte[uidIndex + count] = buffer[index++];
younousleconquerant 64:4cd8fed3f437 717 }
younousleconquerant 64:4cd8fed3f437 718
younousleconquerant 64:4cd8fed3f437 719 // Check response SAK (Select Acknowledge)
younousleconquerant 64:4cd8fed3f437 720 if (responseLength != 3 || txLastBits != 0)
younousleconquerant 64:4cd8fed3f437 721 { // SAK must be exactly 24 bits (1 byte + CRC_A).
younousleconquerant 64:4cd8fed3f437 722 return STATUS_ERROR;
younousleconquerant 64:4cd8fed3f437 723 }
younousleconquerant 64:4cd8fed3f437 724
younousleconquerant 64:4cd8fed3f437 725 // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
younousleconquerant 64:4cd8fed3f437 726 result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]);
younousleconquerant 64:4cd8fed3f437 727 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 728 {
younousleconquerant 64:4cd8fed3f437 729 return result;
younousleconquerant 64:4cd8fed3f437 730 }
younousleconquerant 64:4cd8fed3f437 731
younousleconquerant 64:4cd8fed3f437 732 if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2]))
younousleconquerant 64:4cd8fed3f437 733 {
younousleconquerant 64:4cd8fed3f437 734 return STATUS_CRC_WRONG;
younousleconquerant 64:4cd8fed3f437 735 }
younousleconquerant 64:4cd8fed3f437 736
younousleconquerant 64:4cd8fed3f437 737 if (responseBuffer[0] & 0x04)
younousleconquerant 64:4cd8fed3f437 738 { // Cascade bit set - UID not complete yes
younousleconquerant 64:4cd8fed3f437 739 cascadeLevel++;
younousleconquerant 64:4cd8fed3f437 740 }
younousleconquerant 64:4cd8fed3f437 741 else
younousleconquerant 64:4cd8fed3f437 742 {
younousleconquerant 64:4cd8fed3f437 743 uidComplete = true;
younousleconquerant 64:4cd8fed3f437 744 uid->sak = responseBuffer[0];
younousleconquerant 64:4cd8fed3f437 745 }
younousleconquerant 64:4cd8fed3f437 746 } // End of while ( ! uidComplete)
younousleconquerant 64:4cd8fed3f437 747
younousleconquerant 64:4cd8fed3f437 748 // Set correct uid->size
younousleconquerant 64:4cd8fed3f437 749 uid->size = 3 * cascadeLevel + 1;
younousleconquerant 64:4cd8fed3f437 750
younousleconquerant 64:4cd8fed3f437 751 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 752 } // End PICC_Select()
younousleconquerant 64:4cd8fed3f437 753
younousleconquerant 64:4cd8fed3f437 754 /*
younousleconquerant 64:4cd8fed3f437 755 * Instructs a PICC in state ACTIVE(*) to go to state HALT.
younousleconquerant 64:4cd8fed3f437 756 */
younousleconquerant 64:4cd8fed3f437 757 uint8_t MFRC522::PICC_HaltA()
younousleconquerant 64:4cd8fed3f437 758 {
younousleconquerant 64:4cd8fed3f437 759 uint8_t result;
younousleconquerant 64:4cd8fed3f437 760 uint8_t buffer[4];
younousleconquerant 64:4cd8fed3f437 761
younousleconquerant 64:4cd8fed3f437 762 // Build command buffer
younousleconquerant 64:4cd8fed3f437 763 buffer[0] = PICC_CMD_HLTA;
younousleconquerant 64:4cd8fed3f437 764 buffer[1] = 0;
younousleconquerant 64:4cd8fed3f437 765
younousleconquerant 64:4cd8fed3f437 766 // Calculate CRC_A
younousleconquerant 64:4cd8fed3f437 767 result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
younousleconquerant 64:4cd8fed3f437 768 if (result == STATUS_OK)
younousleconquerant 64:4cd8fed3f437 769 {
younousleconquerant 64:4cd8fed3f437 770 // Send the command.
younousleconquerant 64:4cd8fed3f437 771 // The standard says:
younousleconquerant 64:4cd8fed3f437 772 // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the
younousleconquerant 64:4cd8fed3f437 773 // HLTA command, this response shall be interpreted as 'not acknowledge'.
younousleconquerant 64:4cd8fed3f437 774 // We interpret that this way: Only STATUS_TIMEOUT is an success.
younousleconquerant 64:4cd8fed3f437 775 result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0);
younousleconquerant 64:4cd8fed3f437 776 if (result == STATUS_TIMEOUT)
younousleconquerant 64:4cd8fed3f437 777 {
younousleconquerant 64:4cd8fed3f437 778 result = STATUS_OK;
younousleconquerant 64:4cd8fed3f437 779 }
younousleconquerant 64:4cd8fed3f437 780 else if (result == STATUS_OK)
younousleconquerant 64:4cd8fed3f437 781 { // That is ironically NOT ok in this case ;-)
younousleconquerant 64:4cd8fed3f437 782 result = STATUS_ERROR;
younousleconquerant 64:4cd8fed3f437 783 }
younousleconquerant 64:4cd8fed3f437 784 }
younousleconquerant 64:4cd8fed3f437 785
younousleconquerant 64:4cd8fed3f437 786 return result;
younousleconquerant 64:4cd8fed3f437 787 } // End PICC_HaltA()
younousleconquerant 64:4cd8fed3f437 788
younousleconquerant 64:4cd8fed3f437 789
younousleconquerant 64:4cd8fed3f437 790 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 791 // Functions for communicating with MIFARE PICCs
younousleconquerant 64:4cd8fed3f437 792 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 793
younousleconquerant 64:4cd8fed3f437 794 /*
younousleconquerant 64:4cd8fed3f437 795 * Executes the MFRC522 MFAuthent command.
younousleconquerant 64:4cd8fed3f437 796 */
younousleconquerant 64:4cd8fed3f437 797 uint8_t MFRC522::PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid)
younousleconquerant 64:4cd8fed3f437 798 {
younousleconquerant 64:4cd8fed3f437 799 uint8_t i, waitIRq = 0x10; // IdleIRq
younousleconquerant 64:4cd8fed3f437 800
younousleconquerant 64:4cd8fed3f437 801 // Build command buffer
younousleconquerant 64:4cd8fed3f437 802 uint8_t sendData[12];
younousleconquerant 64:4cd8fed3f437 803 sendData[0] = command;
younousleconquerant 64:4cd8fed3f437 804 sendData[1] = blockAddr;
younousleconquerant 64:4cd8fed3f437 805
younousleconquerant 64:4cd8fed3f437 806 for (i = 0; i < MF_KEY_SIZE; i++)
younousleconquerant 64:4cd8fed3f437 807 { // 6 key bytes
younousleconquerant 64:4cd8fed3f437 808 sendData[2+i] = key->keyByte[i];
younousleconquerant 64:4cd8fed3f437 809 }
younousleconquerant 64:4cd8fed3f437 810
younousleconquerant 64:4cd8fed3f437 811 for (i = 0; i < 4; i++)
younousleconquerant 64:4cd8fed3f437 812 { // The first 4 bytes of the UID
younousleconquerant 64:4cd8fed3f437 813 sendData[8+i] = uid->uidByte[i];
younousleconquerant 64:4cd8fed3f437 814 }
younousleconquerant 64:4cd8fed3f437 815
younousleconquerant 64:4cd8fed3f437 816 // Start the authentication.
younousleconquerant 64:4cd8fed3f437 817 return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData));
younousleconquerant 64:4cd8fed3f437 818 } // End PCD_Authenticate()
younousleconquerant 64:4cd8fed3f437 819
younousleconquerant 64:4cd8fed3f437 820 /*
younousleconquerant 64:4cd8fed3f437 821 * Used to exit the PCD from its authenticated state.
younousleconquerant 64:4cd8fed3f437 822 * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start.
younousleconquerant 64:4cd8fed3f437 823 */
younousleconquerant 64:4cd8fed3f437 824 void MFRC522::PCD_StopCrypto1()
younousleconquerant 64:4cd8fed3f437 825 {
younousleconquerant 64:4cd8fed3f437 826 // Clear MFCrypto1On bit
younousleconquerant 64:4cd8fed3f437 827 PCD_ClrRegisterBits(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0]
younousleconquerant 64:4cd8fed3f437 828 } // End PCD_StopCrypto1()
younousleconquerant 64:4cd8fed3f437 829
younousleconquerant 64:4cd8fed3f437 830 /*
younousleconquerant 64:4cd8fed3f437 831 * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC.
younousleconquerant 64:4cd8fed3f437 832 */
younousleconquerant 64:4cd8fed3f437 833 uint8_t MFRC522::MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize)
younousleconquerant 64:4cd8fed3f437 834 {
younousleconquerant 64:4cd8fed3f437 835 uint8_t result = STATUS_NO_ROOM;
younousleconquerant 64:4cd8fed3f437 836
younousleconquerant 64:4cd8fed3f437 837 // Sanity check
younousleconquerant 64:4cd8fed3f437 838 if ((buffer == NULL) || (*bufferSize < 18))
younousleconquerant 64:4cd8fed3f437 839 {
younousleconquerant 64:4cd8fed3f437 840 return result;
younousleconquerant 64:4cd8fed3f437 841 }
younousleconquerant 64:4cd8fed3f437 842
younousleconquerant 64:4cd8fed3f437 843 // Build command buffer
younousleconquerant 64:4cd8fed3f437 844 buffer[0] = PICC_CMD_MF_READ;
younousleconquerant 64:4cd8fed3f437 845 buffer[1] = blockAddr;
younousleconquerant 64:4cd8fed3f437 846
younousleconquerant 64:4cd8fed3f437 847 // Calculate CRC_A
younousleconquerant 64:4cd8fed3f437 848 result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
younousleconquerant 64:4cd8fed3f437 849 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 850 {
younousleconquerant 64:4cd8fed3f437 851 return result;
younousleconquerant 64:4cd8fed3f437 852 }
younousleconquerant 64:4cd8fed3f437 853
younousleconquerant 64:4cd8fed3f437 854 // Transmit the buffer and receive the response, validate CRC_A.
younousleconquerant 64:4cd8fed3f437 855 return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true);
younousleconquerant 64:4cd8fed3f437 856 } // End MIFARE_Read()
younousleconquerant 64:4cd8fed3f437 857
younousleconquerant 64:4cd8fed3f437 858 /*
younousleconquerant 64:4cd8fed3f437 859 * Writes 16 bytes to the active PICC.
younousleconquerant 64:4cd8fed3f437 860 */
younousleconquerant 64:4cd8fed3f437 861 uint8_t MFRC522::MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize)
younousleconquerant 64:4cd8fed3f437 862 {
younousleconquerant 64:4cd8fed3f437 863 uint8_t result;
younousleconquerant 64:4cd8fed3f437 864
younousleconquerant 64:4cd8fed3f437 865 // Sanity check
younousleconquerant 64:4cd8fed3f437 866 if (buffer == NULL || bufferSize < 16)
younousleconquerant 64:4cd8fed3f437 867 {
younousleconquerant 64:4cd8fed3f437 868 return STATUS_INVALID;
younousleconquerant 64:4cd8fed3f437 869 }
younousleconquerant 64:4cd8fed3f437 870
younousleconquerant 64:4cd8fed3f437 871 // Mifare Classic protocol requires two communications to perform a write.
younousleconquerant 64:4cd8fed3f437 872 // Step 1: Tell the PICC we want to write to block blockAddr.
younousleconquerant 64:4cd8fed3f437 873 uint8_t cmdBuffer[2];
younousleconquerant 64:4cd8fed3f437 874 cmdBuffer[0] = PICC_CMD_MF_WRITE;
younousleconquerant 64:4cd8fed3f437 875 cmdBuffer[1] = blockAddr;
younousleconquerant 64:4cd8fed3f437 876 // Adds CRC_A and checks that the response is MF_ACK.
younousleconquerant 64:4cd8fed3f437 877 result = PCD_MIFARE_Transceive(cmdBuffer, 2);
younousleconquerant 64:4cd8fed3f437 878 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 879 {
younousleconquerant 64:4cd8fed3f437 880 return result;
younousleconquerant 64:4cd8fed3f437 881 }
younousleconquerant 64:4cd8fed3f437 882
younousleconquerant 64:4cd8fed3f437 883 // Step 2: Transfer the data
younousleconquerant 64:4cd8fed3f437 884 // Adds CRC_A and checks that the response is MF_ACK.
younousleconquerant 64:4cd8fed3f437 885 result = PCD_MIFARE_Transceive(buffer, bufferSize);
younousleconquerant 64:4cd8fed3f437 886 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 887 {
younousleconquerant 64:4cd8fed3f437 888 return result;
younousleconquerant 64:4cd8fed3f437 889 }
younousleconquerant 64:4cd8fed3f437 890
younousleconquerant 64:4cd8fed3f437 891 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 892 } // End MIFARE_Write()
younousleconquerant 64:4cd8fed3f437 893
younousleconquerant 64:4cd8fed3f437 894 /*
younousleconquerant 64:4cd8fed3f437 895 * Writes a 4 byte page to the active MIFARE Ultralight PICC.
younousleconquerant 64:4cd8fed3f437 896 */
younousleconquerant 64:4cd8fed3f437 897 uint8_t MFRC522::MIFARE_UltralightWrite(uint8_t page, uint8_t *buffer, uint8_t bufferSize)
younousleconquerant 64:4cd8fed3f437 898 {
younousleconquerant 64:4cd8fed3f437 899 uint8_t result;
younousleconquerant 64:4cd8fed3f437 900
younousleconquerant 64:4cd8fed3f437 901 // Sanity check
younousleconquerant 64:4cd8fed3f437 902 if (buffer == NULL || bufferSize < 4)
younousleconquerant 64:4cd8fed3f437 903 {
younousleconquerant 64:4cd8fed3f437 904 return STATUS_INVALID;
younousleconquerant 64:4cd8fed3f437 905 }
younousleconquerant 64:4cd8fed3f437 906
younousleconquerant 64:4cd8fed3f437 907 // Build commmand buffer
younousleconquerant 64:4cd8fed3f437 908 uint8_t cmdBuffer[6];
younousleconquerant 64:4cd8fed3f437 909 cmdBuffer[0] = PICC_CMD_UL_WRITE;
younousleconquerant 64:4cd8fed3f437 910 cmdBuffer[1] = page;
younousleconquerant 64:4cd8fed3f437 911 memcpy(&cmdBuffer[2], buffer, 4);
younousleconquerant 64:4cd8fed3f437 912
younousleconquerant 64:4cd8fed3f437 913 // Perform the write
younousleconquerant 64:4cd8fed3f437 914 result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK.
younousleconquerant 64:4cd8fed3f437 915 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 916 {
younousleconquerant 64:4cd8fed3f437 917 return result;
younousleconquerant 64:4cd8fed3f437 918 }
younousleconquerant 64:4cd8fed3f437 919
younousleconquerant 64:4cd8fed3f437 920 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 921 } // End MIFARE_Ultralight_Write()
younousleconquerant 64:4cd8fed3f437 922
younousleconquerant 64:4cd8fed3f437 923 /*
younousleconquerant 64:4cd8fed3f437 924 * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory.
younousleconquerant 64:4cd8fed3f437 925 */
younousleconquerant 64:4cd8fed3f437 926 uint8_t MFRC522::MIFARE_Decrement(uint8_t blockAddr, uint32_t delta)
younousleconquerant 64:4cd8fed3f437 927 {
younousleconquerant 64:4cd8fed3f437 928 return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta);
younousleconquerant 64:4cd8fed3f437 929 } // End MIFARE_Decrement()
younousleconquerant 64:4cd8fed3f437 930
younousleconquerant 64:4cd8fed3f437 931 /*
younousleconquerant 64:4cd8fed3f437 932 * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory.
younousleconquerant 64:4cd8fed3f437 933 */
younousleconquerant 64:4cd8fed3f437 934 uint8_t MFRC522::MIFARE_Increment(uint8_t blockAddr, uint32_t delta)
younousleconquerant 64:4cd8fed3f437 935 {
younousleconquerant 64:4cd8fed3f437 936 return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta);
younousleconquerant 64:4cd8fed3f437 937 } // End MIFARE_Increment()
younousleconquerant 64:4cd8fed3f437 938
younousleconquerant 64:4cd8fed3f437 939 /**
younousleconquerant 64:4cd8fed3f437 940 * MIFARE Restore copies the value of the addressed block into a volatile memory.
younousleconquerant 64:4cd8fed3f437 941 */
younousleconquerant 64:4cd8fed3f437 942 uint8_t MFRC522::MIFARE_Restore(uint8_t blockAddr)
younousleconquerant 64:4cd8fed3f437 943 {
younousleconquerant 64:4cd8fed3f437 944 // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2.
younousleconquerant 64:4cd8fed3f437 945 // Doing only a single step does not work, so I chose to transfer 0L in step two.
younousleconquerant 64:4cd8fed3f437 946 return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L);
younousleconquerant 64:4cd8fed3f437 947 } // End MIFARE_Restore()
younousleconquerant 64:4cd8fed3f437 948
younousleconquerant 64:4cd8fed3f437 949 /*
younousleconquerant 64:4cd8fed3f437 950 * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore.
younousleconquerant 64:4cd8fed3f437 951 */
younousleconquerant 64:4cd8fed3f437 952 uint8_t MFRC522::MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data)
younousleconquerant 64:4cd8fed3f437 953 {
younousleconquerant 64:4cd8fed3f437 954 uint8_t result;
younousleconquerant 64:4cd8fed3f437 955 uint8_t cmdBuffer[2]; // We only need room for 2 bytes.
younousleconquerant 64:4cd8fed3f437 956
younousleconquerant 64:4cd8fed3f437 957 // Step 1: Tell the PICC the command and block address
younousleconquerant 64:4cd8fed3f437 958 cmdBuffer[0] = command;
younousleconquerant 64:4cd8fed3f437 959 cmdBuffer[1] = blockAddr;
younousleconquerant 64:4cd8fed3f437 960
younousleconquerant 64:4cd8fed3f437 961 // Adds CRC_A and checks that the response is MF_ACK.
younousleconquerant 64:4cd8fed3f437 962 result = PCD_MIFARE_Transceive(cmdBuffer, 2);
younousleconquerant 64:4cd8fed3f437 963 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 964 {
younousleconquerant 64:4cd8fed3f437 965 return result;
younousleconquerant 64:4cd8fed3f437 966 }
younousleconquerant 64:4cd8fed3f437 967
younousleconquerant 64:4cd8fed3f437 968 // Step 2: Transfer the data
younousleconquerant 64:4cd8fed3f437 969 // Adds CRC_A and accept timeout as success.
younousleconquerant 64:4cd8fed3f437 970 result = PCD_MIFARE_Transceive((uint8_t *) &data, 4, true);
younousleconquerant 64:4cd8fed3f437 971 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 972 {
younousleconquerant 64:4cd8fed3f437 973 return result;
younousleconquerant 64:4cd8fed3f437 974 }
younousleconquerant 64:4cd8fed3f437 975
younousleconquerant 64:4cd8fed3f437 976 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 977 } // End MIFARE_TwoStepHelper()
younousleconquerant 64:4cd8fed3f437 978
younousleconquerant 64:4cd8fed3f437 979 /*
younousleconquerant 64:4cd8fed3f437 980 * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block.
younousleconquerant 64:4cd8fed3f437 981 */
younousleconquerant 64:4cd8fed3f437 982 uint8_t MFRC522::MIFARE_Transfer(uint8_t blockAddr)
younousleconquerant 64:4cd8fed3f437 983 {
younousleconquerant 64:4cd8fed3f437 984 uint8_t cmdBuffer[2]; // We only need room for 2 bytes.
younousleconquerant 64:4cd8fed3f437 985
younousleconquerant 64:4cd8fed3f437 986 // Tell the PICC we want to transfer the result into block blockAddr.
younousleconquerant 64:4cd8fed3f437 987 cmdBuffer[0] = PICC_CMD_MF_TRANSFER;
younousleconquerant 64:4cd8fed3f437 988 cmdBuffer[1] = blockAddr;
younousleconquerant 64:4cd8fed3f437 989
younousleconquerant 64:4cd8fed3f437 990 // Adds CRC_A and checks that the response is MF_ACK.
younousleconquerant 64:4cd8fed3f437 991 return PCD_MIFARE_Transceive(cmdBuffer, 2);
younousleconquerant 64:4cd8fed3f437 992 } // End MIFARE_Transfer()
younousleconquerant 64:4cd8fed3f437 993
younousleconquerant 64:4cd8fed3f437 994
younousleconquerant 64:4cd8fed3f437 995 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 996 // Support functions
younousleconquerant 64:4cd8fed3f437 997 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 998
younousleconquerant 64:4cd8fed3f437 999 /*
younousleconquerant 64:4cd8fed3f437 1000 * Wrapper for MIFARE protocol communication.
younousleconquerant 64:4cd8fed3f437 1001 * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout.
younousleconquerant 64:4cd8fed3f437 1002 */
younousleconquerant 64:4cd8fed3f437 1003 uint8_t MFRC522::PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout)
younousleconquerant 64:4cd8fed3f437 1004 {
younousleconquerant 64:4cd8fed3f437 1005 uint8_t result;
younousleconquerant 64:4cd8fed3f437 1006 uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A.
younousleconquerant 64:4cd8fed3f437 1007
younousleconquerant 64:4cd8fed3f437 1008 // Sanity check
younousleconquerant 64:4cd8fed3f437 1009 if (sendData == NULL || sendLen > 16)
younousleconquerant 64:4cd8fed3f437 1010 {
younousleconquerant 64:4cd8fed3f437 1011 return STATUS_INVALID;
younousleconquerant 64:4cd8fed3f437 1012 }
younousleconquerant 64:4cd8fed3f437 1013
younousleconquerant 64:4cd8fed3f437 1014 // Copy sendData[] to cmdBuffer[] and add CRC_A
younousleconquerant 64:4cd8fed3f437 1015 memcpy(cmdBuffer, sendData, sendLen);
younousleconquerant 64:4cd8fed3f437 1016 result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]);
younousleconquerant 64:4cd8fed3f437 1017 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 1018 {
younousleconquerant 64:4cd8fed3f437 1019 return result;
younousleconquerant 64:4cd8fed3f437 1020 }
younousleconquerant 64:4cd8fed3f437 1021
younousleconquerant 64:4cd8fed3f437 1022 sendLen += 2;
younousleconquerant 64:4cd8fed3f437 1023
younousleconquerant 64:4cd8fed3f437 1024 // Transceive the data, store the reply in cmdBuffer[]
younousleconquerant 64:4cd8fed3f437 1025 uint8_t waitIRq = 0x30; // RxIRq and IdleIRq
younousleconquerant 64:4cd8fed3f437 1026 uint8_t cmdBufferSize = sizeof(cmdBuffer);
younousleconquerant 64:4cd8fed3f437 1027 uint8_t validBits = 0;
younousleconquerant 64:4cd8fed3f437 1028 result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits);
younousleconquerant 64:4cd8fed3f437 1029 if (acceptTimeout && result == STATUS_TIMEOUT)
younousleconquerant 64:4cd8fed3f437 1030 {
younousleconquerant 64:4cd8fed3f437 1031 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 1032 }
younousleconquerant 64:4cd8fed3f437 1033
younousleconquerant 64:4cd8fed3f437 1034 if (result != STATUS_OK)
younousleconquerant 64:4cd8fed3f437 1035 {
younousleconquerant 64:4cd8fed3f437 1036 return result;
younousleconquerant 64:4cd8fed3f437 1037 }
younousleconquerant 64:4cd8fed3f437 1038
younousleconquerant 64:4cd8fed3f437 1039 // The PICC must reply with a 4 bit ACK
younousleconquerant 64:4cd8fed3f437 1040 if (cmdBufferSize != 1 || validBits != 4)
younousleconquerant 64:4cd8fed3f437 1041 {
younousleconquerant 64:4cd8fed3f437 1042 return STATUS_ERROR;
younousleconquerant 64:4cd8fed3f437 1043 }
younousleconquerant 64:4cd8fed3f437 1044
younousleconquerant 64:4cd8fed3f437 1045 if (cmdBuffer[0] != MF_ACK)
younousleconquerant 64:4cd8fed3f437 1046 {
younousleconquerant 64:4cd8fed3f437 1047 return STATUS_MIFARE_NACK;
younousleconquerant 64:4cd8fed3f437 1048 }
younousleconquerant 64:4cd8fed3f437 1049
younousleconquerant 64:4cd8fed3f437 1050 return STATUS_OK;
younousleconquerant 64:4cd8fed3f437 1051 } // End PCD_MIFARE_Transceive()
younousleconquerant 64:4cd8fed3f437 1052
younousleconquerant 64:4cd8fed3f437 1053
younousleconquerant 64:4cd8fed3f437 1054 /*
younousleconquerant 64:4cd8fed3f437 1055 * Translates the SAK (Select Acknowledge) to a PICC type.
younousleconquerant 64:4cd8fed3f437 1056 */
younousleconquerant 64:4cd8fed3f437 1057 uint8_t MFRC522::PICC_GetType(uint8_t sak)
younousleconquerant 64:4cd8fed3f437 1058 {
younousleconquerant 64:4cd8fed3f437 1059 uint8_t retType = PICC_TYPE_UNKNOWN;
younousleconquerant 64:4cd8fed3f437 1060
younousleconquerant 64:4cd8fed3f437 1061 if (sak & 0x04)
younousleconquerant 64:4cd8fed3f437 1062 { // UID not complete
younousleconquerant 64:4cd8fed3f437 1063 retType = PICC_TYPE_NOT_COMPLETE;
younousleconquerant 64:4cd8fed3f437 1064 }
younousleconquerant 64:4cd8fed3f437 1065 else
younousleconquerant 64:4cd8fed3f437 1066 {
younousleconquerant 64:4cd8fed3f437 1067 switch (sak)
younousleconquerant 64:4cd8fed3f437 1068 {
younousleconquerant 64:4cd8fed3f437 1069 case 0x09: retType = PICC_TYPE_MIFARE_MINI; break;
younousleconquerant 64:4cd8fed3f437 1070 case 0x08: retType = PICC_TYPE_MIFARE_1K; break;
younousleconquerant 64:4cd8fed3f437 1071 case 0x18: retType = PICC_TYPE_MIFARE_4K; break;
younousleconquerant 64:4cd8fed3f437 1072 case 0x00: retType = PICC_TYPE_MIFARE_UL; break;
younousleconquerant 64:4cd8fed3f437 1073 case 0x10:
younousleconquerant 64:4cd8fed3f437 1074 case 0x11: retType = PICC_TYPE_MIFARE_PLUS; break;
younousleconquerant 64:4cd8fed3f437 1075 case 0x01: retType = PICC_TYPE_TNP3XXX; break;
younousleconquerant 64:4cd8fed3f437 1076 default:
younousleconquerant 64:4cd8fed3f437 1077 if (sak & 0x20)
younousleconquerant 64:4cd8fed3f437 1078 {
younousleconquerant 64:4cd8fed3f437 1079 retType = PICC_TYPE_ISO_14443_4;
younousleconquerant 64:4cd8fed3f437 1080 }
younousleconquerant 64:4cd8fed3f437 1081 else if (sak & 0x40)
younousleconquerant 64:4cd8fed3f437 1082 {
younousleconquerant 64:4cd8fed3f437 1083 retType = PICC_TYPE_ISO_18092;
younousleconquerant 64:4cd8fed3f437 1084 }
younousleconquerant 64:4cd8fed3f437 1085 break;
younousleconquerant 64:4cd8fed3f437 1086 }
younousleconquerant 64:4cd8fed3f437 1087 }
younousleconquerant 64:4cd8fed3f437 1088
younousleconquerant 64:4cd8fed3f437 1089 return (retType);
younousleconquerant 64:4cd8fed3f437 1090 } // End PICC_GetType()
younousleconquerant 64:4cd8fed3f437 1091
younousleconquerant 64:4cd8fed3f437 1092 /*
younousleconquerant 64:4cd8fed3f437 1093 * Returns a string pointer to the PICC type name.
younousleconquerant 64:4cd8fed3f437 1094 */
younousleconquerant 64:4cd8fed3f437 1095 char* MFRC522::PICC_GetTypeName(uint8_t piccType)
younousleconquerant 64:4cd8fed3f437 1096 {
younousleconquerant 64:4cd8fed3f437 1097 if(piccType == PICC_TYPE_NOT_COMPLETE)
younousleconquerant 64:4cd8fed3f437 1098 {
younousleconquerant 64:4cd8fed3f437 1099 piccType = MFRC522_MaxPICCs - 1;
younousleconquerant 64:4cd8fed3f437 1100 }
younousleconquerant 64:4cd8fed3f437 1101
younousleconquerant 64:4cd8fed3f437 1102 return((char *) _TypeNamePICC[piccType]);
younousleconquerant 64:4cd8fed3f437 1103 } // End PICC_GetTypeName()
younousleconquerant 64:4cd8fed3f437 1104
younousleconquerant 64:4cd8fed3f437 1105 /*
younousleconquerant 64:4cd8fed3f437 1106 * Returns a string pointer to a status code name.
younousleconquerant 64:4cd8fed3f437 1107 */
younousleconquerant 64:4cd8fed3f437 1108 char* MFRC522::GetStatusCodeName(uint8_t code)
younousleconquerant 64:4cd8fed3f437 1109 {
younousleconquerant 64:4cd8fed3f437 1110 return((char *) _ErrorMessage[code]);
younousleconquerant 64:4cd8fed3f437 1111 } // End GetStatusCodeName()
younousleconquerant 64:4cd8fed3f437 1112
younousleconquerant 64:4cd8fed3f437 1113 /*
younousleconquerant 64:4cd8fed3f437 1114 * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1).
younousleconquerant 64:4cd8fed3f437 1115 */
younousleconquerant 64:4cd8fed3f437 1116 void MFRC522::MIFARE_SetAccessBits(uint8_t *accessBitBuffer,
younousleconquerant 64:4cd8fed3f437 1117 uint8_t g0,
younousleconquerant 64:4cd8fed3f437 1118 uint8_t g1,
younousleconquerant 64:4cd8fed3f437 1119 uint8_t g2,
younousleconquerant 64:4cd8fed3f437 1120 uint8_t g3)
younousleconquerant 64:4cd8fed3f437 1121 {
younousleconquerant 64:4cd8fed3f437 1122 uint8_t c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2);
younousleconquerant 64:4cd8fed3f437 1123 uint8_t c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1);
younousleconquerant 64:4cd8fed3f437 1124 uint8_t c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0);
younousleconquerant 64:4cd8fed3f437 1125
younousleconquerant 64:4cd8fed3f437 1126 accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF);
younousleconquerant 64:4cd8fed3f437 1127 accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF);
younousleconquerant 64:4cd8fed3f437 1128 accessBitBuffer[2] = c3 << 4 | c2;
younousleconquerant 64:4cd8fed3f437 1129 } // End MIFARE_SetAccessBits()
younousleconquerant 64:4cd8fed3f437 1130
younousleconquerant 64:4cd8fed3f437 1131 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 1132 // Convenience functions - does not add extra functionality
younousleconquerant 64:4cd8fed3f437 1133 /////////////////////////////////////////////////////////////////////////////////////
younousleconquerant 64:4cd8fed3f437 1134
younousleconquerant 64:4cd8fed3f437 1135 /*
younousleconquerant 64:4cd8fed3f437 1136 * Returns true if a PICC responds to PICC_CMD_REQA.
younousleconquerant 64:4cd8fed3f437 1137 * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
younousleconquerant 64:4cd8fed3f437 1138 */
younousleconquerant 64:4cd8fed3f437 1139 bool MFRC522::PICC_IsNewCardPresent(void)
younousleconquerant 64:4cd8fed3f437 1140 {
younousleconquerant 64:4cd8fed3f437 1141 uint8_t bufferATQA[2];
younousleconquerant 64:4cd8fed3f437 1142 uint8_t bufferSize = sizeof(bufferATQA);
younousleconquerant 64:4cd8fed3f437 1143 uint8_t result = PICC_RequestA(bufferATQA, &bufferSize);
younousleconquerant 64:4cd8fed3f437 1144 return ((result == STATUS_OK) || (result == STATUS_COLLISION));
younousleconquerant 64:4cd8fed3f437 1145 } // End PICC_IsNewCardPresent()
younousleconquerant 64:4cd8fed3f437 1146
younousleconquerant 64:4cd8fed3f437 1147 /*
younousleconquerant 64:4cd8fed3f437 1148 * Simple wrapper around PICC_Select.
younousleconquerant 64:4cd8fed3f437 1149 */
younousleconquerant 64:4cd8fed3f437 1150 bool MFRC522::PICC_ReadCardSerial(void)
younousleconquerant 64:4cd8fed3f437 1151 {
younousleconquerant 64:4cd8fed3f437 1152 uint8_t result = PICC_Select(&uid);
younousleconquerant 64:4cd8fed3f437 1153 return (result == STATUS_OK);
younousleconquerant 64:4cd8fed3f437 1154 } // End PICC_ReadCardSerial()