BME680 is an integrated environmental sensor developed specifically for mobile applications and wearables where size and low power consumption are key requirements.

Dependents:   Example_DS3231_test

Revision:
0:c70b7ececf93
Child:
1:85088a918342
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/BME680.cpp	Fri Jul 22 17:38:11 2016 +0000
@@ -0,0 +1,725 @@
+#include "BME680.h"
+
+// no idea why this is not the same as the PDF
+//const double BME680::const_array1[16] = {1,1,1,1,1,0.99,1,0.992,1,1,0.998,0.995,1,0.99,1,1};
+//const double BME680::const_array2[16] = {8000000,4000000,2000000,1000000,499500.4995,248262.1648,125000,63004.03226,31281.28128,15625,7812.5,3906.25,1953.125,976.5625,488.28125,244.140625};
+
+
+const uint64_t BME680::lookup_k1_range[16] = {
+        2147483647UL, 2147483647UL, 2147483647UL, 2147483647UL, 2147483647UL,
+        2126008810UL, 2147483647UL, 2130303777UL, 2147483647UL, 2147483647UL,
+        2143188679UL, 2136746228UL, 2147483647UL, 2126008810UL, 2147483647UL,
+        2147483647UL
+                                             };
+
+const uint64_t BME680::lookup_k2_range[16] = {
+        4096000000UL, 2048000000UL, 1024000000UL, 512000000UL,
+        255744255UL, 127110228UL, 64000000UL, 32258064UL, 16016016UL,
+        8000000UL, 4000000UL, 2000000UL, 1000000UL, 500000UL, 250000UL,
+        125000UL
+                                             };
+
+const double BME680::_lookup_k1_range[BME680_GAS_RANGE_RL_LENGTH] = {
+    0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8,
+    0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0
+};
+const double BME680::_lookup_k2_range[BME680_GAS_RANGE_RL_LENGTH] = {
+    0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
+    -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+};
+
+
+#ifdef FIXED_POINT_COMPENSATION
+int32_t BME680::getCompensatedTemperature(int field)
+{
+    uint32_t v_uncomp_temperature_u32 = getTemp1Data(field);
+
+    int32_t var1 = ((int32_t)v_uncomp_temperature_u32 >> 3) - ((int32_t)(par_T1 << 1));
+    int32_t var2 = (var1 * (int32_t) par_T2) >> 11;
+    int32_t var3 = ((((var1 >> 1) * (var1 >> 1)) >> 12) * ((int32_t)(par_T3 << 4))) >> 14;
+    t_fine = var2 + var3;
+    return ((t_fine * 5) + 128) >> 8;
+}
+
+int16_t BME680::getTemperatureInt(int field)
+{
+    getCompensatedTemperature(field);
+    return (((t_fine - 122880) * 25) + 128) >> 8;
+}
+
+int32_t BME680::getCompensateHumidity(int field)
+{
+    uint32_t v_uncomp_humidity_u32 = getHumidityData(field);
+
+    int32_t temp_scaled = (t_fine * 5 + 128) >> 8;
+    int32_t var1 = (int32_t)v_uncomp_humidity_u32 -
+                   ((int32_t)((int32_t)par_H1 << 4)) -
+                   (((temp_scaled * (int32_t)par_H3) /
+                     ((int32_t)100)) >> 1);
+
+    int32_t var2 = ((int32_t)par_H2 *
+                    (((temp_scaled * (int32_t)par_H4) /
+                      ((int32_t)100)) + (((temp_scaled *
+                                           ((temp_scaled * (int32_t)par_H5) /
+                                            ((int32_t)100))) >> 6) / ((int32_t)100)) + (int32_t)(1 << 14))) >> 10;
+
+    int32_t var3 = var1 * var2;
+
+    int32_t var4 = ((((int32_t)par_H6) << 7) +
+                    ((temp_scaled * (int32_t)par_H7) /
+                     ((int32_t)100))) >> 4;
+
+    int32_t var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
+    int32_t var6 = (var4 * var5) >> 1;
+
+    int32_t humidity_comp = (var3 + var6) >> 12;
+    if (humidity_comp > BME680_MAX_HUMIDITY_VALUE)
+        humidity_comp = BME680_MAX_HUMIDITY_VALUE;
+    else if (humidity_comp < BME680_MIN_HUMIDITY_VALUE)
+        humidity_comp = BME680_MIN_HUMIDITY_VALUE;
+
+    return humidity_comp;
+}
+
+uint16_t BME680::getHumidityInt(int field)
+{
+    uint32_t v_x1_u32 = (uint32_t) getCompensateHumidity(field);
+    uint16_t v_x2_u32 = (uint16_t)(v_x1_u32 >> 1);
+    return v_x2_u32;
+}
+
+int32_t BME680::getCompensatePressure(int field)
+{
+    uint32_t v_uncomp_pressure_u32 = getPressureData(field);
+
+    int32_t var1 = (((int32_t)t_fine) >> 1) - 64000;
+    int32_t var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * (int32_t)par_P6) >> 2;
+    var2 = var2 + ((var1 * (int32_t)par_P5) << 1);
+    var2 = (var2 >> 2) + ((int32_t)par_P4 << 16);
+    var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
+             ((int32_t)par_P3 << 5)) >> 3) +
+           (((int32_t)par_P2 * var1) >> 1);
+    var1 = var1 >> 18;
+    var1 = ((32768 + var1) * (int32_t)par_P1) >> 15;
+    int32_t pressure_comp = 1048576 - v_uncomp_pressure_u32;
+    pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((int32_t)3125));
+    int32_t var4 = (1 << 31);
+    if (pressure_comp >= var4)
+        pressure_comp = ((pressure_comp / (int32_t)var1) << 1);
+    else
+        pressure_comp = ((pressure_comp << 1) / (int32_t)var1);
+    var1 = ((int32_t)par_P9 * (int32_t)(((pressure_comp >> 3) *
+                                         (pressure_comp >> 3)) >> 13)) >> 12;
+    var2 = ((int32_t)(pressure_comp >> 2) *
+            (int32_t)par_P8) >> 13;
+    int32_t var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) *
+                    (int32_t)(pressure_comp >> 8) *
+                    (int32_t)par_P10) >> 17;
+
+    pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 +
+                    ((int32_t)par_P7 << 7)) >> 4);
+
+    return pressure_comp;
+}
+
+uint32_t BME680::getPressureInt(int field)
+{
+    uint32_t pressure = (uint32_t)getCompensatePressure(field);
+    pressure = (uint32_t)(pressure >> 1);
+    return pressure;
+}
+
+uint8_t BME680::convertTemperatureResistanceInt(uint16_t heater, int16_t ambient)
+{
+    uint8_t res_heat = 0;
+
+
+    if ((heater >= BME680_GAS_PROFILE_TEMPERATURE_MIN)
+            && (heater <= BME680_GAS_PROFILE_TEMPERATURE_MAX)) {
+
+        int32_t var1 = (((int32_t)ambient * par_GH3) / 10) << 8;
+        int32_t var2 = (par_GH1 + 784) *
+                       (((((par_GH2 + 154009) *
+                           heater * 5) / 100) + 3276800) / 10);
+        int32_t var3 = var1 + (var2 >> 1);
+        int32_t var4 = (var3 / (res_heat_range + 4));
+
+        int32_t var5 = (131 * res_heat_val) + 65536;
+
+        int32_t res_heat_x100 = (int32_t)(((var4 / var5) - 250) * 34);
+        res_heat = (uint8_t) ((res_heat_x100 + 50) / 100);
+
+    }
+    return res_heat;
+}
+
+int32_t BME680::getCalculateGasInt(int field)
+{
+    uint8_t gas_range_u8 = getGasResistanceRange(field);
+    uint16_t gas_adc_u16 = getGasResistanceData(field);
+
+    int64_t var1 = (int64_t)((1340 + (5 * (int64_t)range_switching_error)) *
+                             ((int64_t)lookup_k1_range[gas_range_u8])) >> 16;
+    int64_t var2 = (int64_t)((int64_t)gas_adc_u16 << 15) - (int64_t)(1 << 24) + var1;
+    int32_t gas_res = (int32_t)(((((int64_t)lookup_k2_range[gas_range_u8] *
+                                   (int64_t)var1) >> 9) + (var2 >> 1)) / var2);
+    return gas_res;
+}
+
+#else
+double BME680::getTemperatureDouble(int field)
+{
+    uint32_t uncom_temperature_u32 = getTemp1Data(field);
+
+    double data1_d  = ((((double)uncom_temperature_u32 / 16384.0)
+                        - ((double)par_T1 / 1024.0))
+                       * ((double)par_T2));
+    /* calculate x2 data */
+    double data2_d  = (((((double)uncom_temperature_u32 / 131072.0) -
+                         ((double)par_T1 / 8192.0)) *
+                        (((double)uncom_temperature_u32 / 131072.0) -
+                         ((double)par_T1 / 8192.0))) *
+                       ((double)par_T3 * 16.0));
+    /* t fine value*/
+    t_fine = (int32_t)(data1_d + data2_d);
+    /* compensated temperature data*/
+    return (data1_d + data2_d) / 5120.0;
+}
+
+double BME680::getHumidityDouble(int field)
+{
+    double comp_temperature = getTemperatureDouble(field);
+    uint16_t uncom_humidity_u16 = getHumidityData(field);
+
+    double var1 = (double)((double)uncom_humidity_u16) - (((double)
+                  par_H1 * 16.0) +
+                  (((double)par_H3 / 2.0)
+                   * comp_temperature));
+
+    double var2 = var1 * ((double)(
+                              ((double) par_H2 / 262144.0)
+                              *(1.0 + (((double)par_H4 / 16384.0)
+                                       * comp_temperature) + (((double)par_H5
+                                               / 1048576.0) * comp_temperature
+                                               * comp_temperature))));
+    double var3 = (double) par_H6 / 16384.0;
+    double var4 = (double) par_H7 / 2097152.0;
+
+    double humidity_comp = var2 +
+                           ((var3 + (var4 * comp_temperature)) * var2 * var2);
+    if (humidity_comp > BME680_MAX_HUMIDITY_VALUE)
+        humidity_comp = BME680_MAX_HUMIDITY_VALUE;
+    else if (humidity_comp < BME680_MIN_HUMIDITY_VALUE)
+        humidity_comp = BME680_MIN_HUMIDITY_VALUE;
+    return humidity_comp;
+}
+
+double BME680::getPressureDouble(int field)
+{
+    uint32_t uncom_pressure_u32 = getPressureData(field);
+
+    double data1_d = (((double)t_fine / 2.0) - 64000.0);
+    double data2_d = data1_d * data1_d * (((double)par_P6) / (131072.0));
+    data2_d = data2_d + (data1_d * ((double)par_P5) * 2.0);
+    data2_d = (data2_d / 4.0) + (((double)par_P4) * 65536.0);
+    data1_d = (((((double)par_P3 * data1_d * data1_d) / 16384.0) + ((double)par_P2 * data1_d)) / 524288.0);
+    data1_d = ((1.0 + (data1_d / 32768.0)) * ((double)par_P1));
+    double pressure_comp = (1048576.0 - ((double)uncom_pressure_u32));
+    /* Avoid exception caused by division by zero */
+    if ((int)data1_d != 0) {
+        pressure_comp = (((pressure_comp - (data2_d / 4096.0)) * 6250.0) / data1_d);
+        data1_d = (((double)par_P9) * pressure_comp * pressure_comp) /  2147483648.0;
+        data2_d = pressure_comp * (((double)par_P8) / 32768.0);
+        double data3_d = ((pressure_comp / 256.0) * (pressure_comp / 256.0) * (pressure_comp / 256.0) * (par_P10 / 131072.0));
+        pressure_comp = (pressure_comp + (data1_d + data2_d + data3_d + ((double)par_P7 * 128.0)) / 16.0);
+        return pressure_comp;
+    } else
+        return 0;
+}
+
+double BME680::convertTemperatureResistanceDouble(uint16_t heater, int16_t ambient)
+{
+    double var1 = 0;
+    double var2 = 0;
+    double var3 = 0;
+    double var4 = 0;
+    double var5 = 0;
+    double res_heat = 0;
+
+    if ((heater >= BME680_GAS_PROFILE_TEMPERATURE_MIN)
+            && (heater <= BME680_GAS_PROFILE_TEMPERATURE_MAX)) {
+#ifdef  HEATER_C1_ENABLE
+        var1 = (((double)par_GH1 / (16.0)) + 49.0);
+        var2 = ((((double)par_GH2 / (32768.0)) * (0.0005)) + 0.00235);
+#endif
+        var3 = ((double)par_GH3 / (1024.0));
+        var4 = (var1 * (1.0 + (var2 * (double)heater)));
+        var5 = (var4 + (var3 * (double)ambient));
+
+#ifdef  HEATER_C1_ENABLE
+        res_heat = (uint8_t)(3.4 * ((var5 * (4 / (4 + (double)res_heat_range)) * (1/(1 + ((double)res_heat_val * 0.002)))) - 25));
+#else
+        res_heat = (((var5 * (4.0 / (4.0 + (double)res_heat_range))) - 25.0) * 3.4);
+#endif
+
+    }
+    return (uint8_t)res_heat;
+}
+
+double BME680::getCalculateGasDouble(int field)
+{
+    uint8_t gas_range_u8 = getGasResistanceRange(field);
+    uint16_t gas_adc_u16 = getGasResistanceData(field);
+    double gas_res_d = 0;
+
+
+#ifdef HEATER_C1_ENABLE
+
+    double var1 = 0;
+    double var2 = 0;
+    double var3 = 0;
+
+
+    var1 = (1340.0 + (5.0 * range_switching_error));
+    var2 = (var1) * (1.0 + _lookup_k1_range[gas_range_u8]/100.0);
+    var3 = 1.0 + (_lookup_k2_range[gas_range_u8]/100.0);
+
+    gas_res_d = 1.0 / (double)(var3 * (0.000000125) *
+                               (double)(1 << gas_range_u8)
+                               * (((((double)gas_adc_u16) - 512.00)/var2) + 1.0));
+
+#else
+    gas_res_d = 1.0 / ((0.000000125) * (double)(1 << gas_range_u8) *
+                       ((((double)(gas_adc_u16) - 512.00) / 1365.3333) + 1.0));
+#endif
+    return gas_res_d;
+}
+#endif
+
+
+
+BME680::BME680(PinName sda, PinName scl, bool SDO)
+    :_i2c_bus(sda, scl)
+{
+    if (SDO)
+        _addr = 0x77 << 1;
+    else _addr = 0x76 << 1;
+
+    _i2c_bus.frequency(FREQUENCY_FAST);
+}
+
+bool BME680::init()
+{
+    if (getChipID() != 0x61)
+        return false;
+
+    uint8_t cali[41];
+    readRegister(0x89, 25);
+    memcpy(cali, data, 25);
+    readRegister(0xE1, 16);
+    memcpy(cali + 25, data, 16);
+
+    /* read temperature calibration*/
+    par_T1 = (cali[DIG_T1_MSB_REG] << 8) | cali[DIG_T1_LSB_REG];
+    par_T2 = (cali[DIG_T2_MSB_REG] << 8) | cali[DIG_T2_LSB_REG];
+    par_T3 = cali[DIG_T3_REG];
+
+    /* read pressure calibration*/
+    par_P1 = (cali[DIG_P1_MSB_REG] << 8) | cali[DIG_P1_LSB_REG];
+    par_P2 = (cali[DIG_P2_MSB_REG] << 8) | cali[DIG_P2_LSB_REG];
+    par_P3 = cali[DIG_P3_REG];
+    par_P4 = (cali[DIG_P4_MSB_REG] << 8) | cali[DIG_P4_LSB_REG];
+    par_P5 = (cali[DIG_P5_MSB_REG] << 8) | cali[DIG_P5_LSB_REG];
+    par_P6 = cali[DIG_P6_REG];
+    par_P7 = cali[DIG_P7_REG];
+    par_P8 = (cali[DIG_P8_MSB_REG] << 8) | cali[DIG_P8_LSB_REG];
+    par_P9 = (cali[DIG_P9_MSB_REG] << 8) | cali[DIG_P9_LSB_REG];
+    par_P10 = cali[DIG_P10_REG];
+
+    /* read humidity calibration*/
+    par_H1 = (cali[DIG_H1_MSB_REG] << 4) | (cali[DIG_H1_LSB_REG] & BME680_BIT_MASK_H1_DATA);
+    par_H2 = (cali[DIG_H2_MSB_REG] << 4) | (cali[DIG_H2_LSB_REG] >> 4);
+    par_H3 = cali[DIG_H3_REG];
+    par_H4 = cali[DIG_H4_REG];
+    par_H5 = cali[DIG_H5_REG];
+    par_H6 = cali[DIG_H6_REG];
+    par_H7 = cali[DIG_H7_REG];
+
+    /* read gas calibration*/
+    par_GH1 = cali[DIG_GH1_REG];
+    par_GH2 = (cali[DIG_GH2_MSB_REG] <<8) | cali[DIG_GH2_LSB_REG];
+    par_GH3 = cali[DIG_GH3_REG];
+
+    /**<resistance calculation*/
+    readRegister(0x02);
+    res_heat_range = (data[0] >> 4) & 0x03;
+
+    /**<correction factor*/
+    readRegister(0x00);
+    res_heat_val = data[0];
+
+    /**<range switching error*/
+    readRegister(0x04);
+    range_switching_error = (data[0] & 0xF0) >> 4;
+    /*
+       uint16_t BME680::getParG1()
+    {
+       readRegister(0xEB, 2);
+       return (data[1] << 8) | data[0];
+    }
+
+    uint8_t BME680::getParG2()
+    {
+       readRegister(0xED);
+       return data[0];
+    }
+
+    uint8_t BME680::getParG3()
+    {
+       readRegister(0xEE);
+       return data[0];
+    }
+    */
+    return true;
+}
+
+uint32_t BME680::getPressureData(int field)
+{
+    readRegister(0x1F + field * 0x11, 3);
+    return (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
+}
+
+uint32_t BME680::getTemp1Data(int field)
+{
+    readRegister(0x22 + field * 0x11, 3);
+    return (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
+}
+
+uint32_t BME680::getHumidityData(int field)
+{
+    readRegister(0x25 + field * 0x11, 2);
+    return (data[0] << 8) | data[1];
+}
+
+uint16_t BME680::getGasResistanceData(int field)
+{
+    readRegister(0x2A + field * 0x11, 2);
+    return (data[0] << 2) | (data[1] >> 6);
+}
+
+uint8_t BME680::getGasResistanceRange(int field)
+{
+    readRegister(0x2B + field * 0x11);
+    return data[0] & 0x0F;
+}
+
+bool BME680::isNewData(int field)
+{
+    readRegister(0x1D + field * 0x11);
+    return (data[0] & 0x80) == 0x80 ? true : false;
+}
+
+bool BME680::isGasMeasuring(int field)
+{
+    readRegister(0x1D + field * 0x11);
+    return (data[0] & 0x40) == 0x40 ? true : false;
+}
+
+bool BME680::isMeasuring(int field)
+{
+    readRegister(0x1D + field * 0x11);
+    return (data[0] & 0x20) == 0x20 ? true : false;
+}
+
+int BME680::getGasMeasurementIndex(int field)
+{
+    readRegister(0x1D + field * 0x11);
+    return data[0] & 0x0F;
+}
+
+int BME680::getSubMeasurementIndex(int field)
+{
+    readRegister(0x1E + field * 0x11);
+    return data[0];
+}
+
+bool BME680::isGasValid(int field)
+{
+    readRegister(0x2B + field * 0x11);
+    return (data[0] & 0x20) == 0x20 ? true : false;
+}
+
+bool BME680::isHeaterStable(int field)
+{
+    readRegister(0x2B + field * 0x11);
+    return (data[0] & 0x10) == 0x10 ? true : false;
+}
+
+uint8_t BME680::getHeaterCurrent(int setPoint)
+{
+    readRegister(0x50 + setPoint);
+    return data[0] >> 1;
+}
+
+void BME680::setHeaterCurrent(int setPoint, uint8_t value)
+{
+    writeRegister(0x50 + setPoint, value << 1);
+}
+
+int8_t BME680::getTargetHeaterResistance(int setPoint)
+{
+    readRegister(0x5A + setPoint);
+    return data[0];
+}
+
+void BME680::setTargetHeaterResistance(int setPoint, int8_t value)
+{
+    writeRegister(0x5A + setPoint, value);
+}
+
+int BME680::getGasWaitTime(int setPoint)
+{
+    readRegister(0x64 + setPoint);
+    return (data[0] & 0x3F) * (data[0] >> 6);
+}
+
+void BME680::setGasWaitTime(int setPoint, int time, int multiplication)
+{
+    writeRegister(0x64 + setPoint, (multiplication << 6) | (time & 0x3F));
+}
+
+int BME680::getGasWaitShared()
+{
+    readRegister(0x6E);
+    return (data[0] & 0x1F) * (data[0] >> 6);
+}
+
+void BME680::setGasWaitShared(int time, int multiplication)
+{
+    writeRegister(0x6E, (multiplication << 6) | (time & 0x1F));
+}
+
+void BME680::setHeaterOff()
+{
+    readRegister(0x70);
+    data[0] |= 0x08;
+    writeRegister(0x70, data[0]);
+}
+
+int BME680::getHeaterProfile()
+{
+    readRegister(0x70);
+    return data[0] &= 0x08;
+}
+
+void BME680::setHeaterProfile(int vlaue)
+{
+    readRegister(0x71);
+    data[0] &= 0xF0;
+    data[0] |= vlaue & 0x0F;
+    writeRegister(0x71, data[0]);
+}
+
+void BME680::runGasConversion()
+{
+    readRegister(0x71);
+    data[0] |= 0x10;
+    writeRegister(0x71, data[0]);
+}
+
+float BME680::getWakePeriod()
+{
+    readRegister(0x71);
+    int temp = (data[0] & 0x80) >> 4;
+    readRegister(0x75);
+    temp |= data[0] >> 5;
+
+    switch(temp) {
+        case 0:
+            return 0.59f;
+        case 1:
+            return 62.5f;
+        case 2:
+            return 125;
+        case 3:
+            return 250;
+        case 4:
+            return 500;
+        case 5:
+            return 1000;
+        case 6:
+            return 10;
+        case 7:
+            return 20;
+        default:
+            return 0;
+    }
+}
+
+void  BME680::setWakePeriod(int value)
+{
+    readRegister(0x71);
+    data[0] = (data[0] & 0x7F) | ((value & 0x0F) >> 3);
+    writeRegister(0x71, data[0]);
+
+    readRegister(0x75);
+    data[0] = (data[0] & 0x1F) | ((value & 0x07) << 5);
+    writeRegister(0x75, data[0]);
+}
+
+int BME680::getOversamplingHumidity()
+{
+    readRegister(0x72);
+    switch (data[0] & 0x07) {
+        case 0:
+            return 0;
+        case 1:
+            return 1;
+        case 2:
+            return 2;
+        case 3:
+            return 4;
+        case 4:
+            return 8;
+        case 5:
+            return 16;
+    }
+
+    return 0;
+}
+
+void BME680::setOversamplingHumidity(int value)
+{
+    readRegister(0x72);
+    data[0] = (data[0] & 0xF8) | (value & 0x07);
+    writeRegister(0x72, data[0]);
+}
+
+int BME680::getOversamplingPressure()
+{
+    readRegister(0x74);
+    switch ((data[0] & 0x1C) >> 2) {
+        case 0:
+            return 0;
+        case 1:
+            return 1;
+        case 2:
+            return 2;
+        case 3:
+            return 4;
+        case 4:
+            return 8;
+        case 5:
+            return 16;
+    }
+
+    return 0;
+}
+
+void BME680::setOversamplingPressure(int value)
+{
+    readRegister(0x74);
+    data[0] = (data[0] & 0xE3) | ((value & 0x07) << 2);
+    writeRegister(0x74, data[0]);
+}
+
+int BME680::getOversamplingTemperature()
+{
+    readRegister(0x74);
+    switch ((data[0] & 0xE0) >> 5) {
+        case 0:
+            return 0;
+        case 1:
+            return 1;
+        case 2:
+            return 2;
+        case 3:
+            return 4;
+        case 4:
+            return 8;
+        case 5:
+            return 16;
+    }
+
+    return 0;
+}
+
+void BME680::setOversamplingTemperature(int value)
+{
+    readRegister(0x74);
+    data[0] = (data[0] & 0x1F) | ((value & 0x07) << 5);
+    writeRegister(0x74, data[0]);
+}
+
+int BME680::getIIRfilterCoefficient()
+{
+    readRegister(0x75);
+    switch ((data[0] & 0x1C) >> 2) {
+        case 0:
+            return 0;
+        case 1:
+            return 1;
+        case 2:
+            return 3;
+        case 3:
+            return 7;
+        case 4:
+            return 15;
+        case 5:
+            return 31;
+        case 6:
+            return 63;
+        case 7:
+            return 127;
+    }
+    return 0;
+}
+
+void BME680::setIIRfilterCoefficient(int value)
+{
+    readRegister(0x75);
+    data[0] = (data[0] & 0xE3) | ((value & 0x07) << 2);
+    writeRegister(0x75, data[0]);
+}
+
+int BME680::getMode()
+{
+    readRegister(0x74);
+    return data[0] & 0x03;
+}
+
+void BME680::setMode(int mode)
+{
+    readRegister(0x74);
+    data[0] = (data[0] & 0xFC) | (mode & 0x03);
+    writeRegister(0x74, data[0]);
+}
+
+int BME680::getChipID()
+{
+    readRegister(0xD0);
+    return data[0];
+}
+
+void BME680::readRegister(int reg, int size)
+{
+    _i2c_bus.start();
+    _i2c_bus.write(_addr);
+    _i2c_bus.write(reg);
+    _i2c_bus.start();
+    _i2c_bus.write(_addr | 0x01);
+    int i = 0;
+    for (; i< size -1; i++)
+        data[i] = _i2c_bus.read(1);
+    data[i] = _i2c_bus.read(0);
+    _i2c_bus.stop();
+}
+
+void BME680::writeRegister(int reg, int value)
+{
+    _i2c_bus.start();
+    _i2c_bus.write(_addr);
+    _i2c_bus.write(reg);
+    _i2c_bus.write(value);
+    _i2c_bus.stop();
+}
\ No newline at end of file