Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
System/Process/Process.cpp
- Committer:
- kishibekairohan
- Date:
- 2018-10-01
- Revision:
- 5:3ae504b88679
- Parent:
- 3:e10d8736fd22
File content as of revision 5:3ae504b88679:
#include "mbed.h"
#include "Process.h"
#include "../../Communication/RS485/ActuatorHub/ActuatorHub.h"
#include "../../Communication/Controller/Controller.h"
#include "../../Input/ExternalInt/ExternalInt.h"
#include "../../Input/Switch/Switch.h"
#include "../../Input/ColorSensor/ColorSensor.h"
#include "../../Input/AccelerationSensor/AccelerationSensor.h"
#include "../../Input/Potentiometer/Potentiometer.h"
#include "../../Input/Rotaryencoder/Rotaryencoder.h"
#include "../../LED/LED.h"
#include "../../Safty/Safty.h"
#include "../Using.h"
#include "../../Communication/PID/PID.h"
using namespace SWITCH;
using namespace COLORSENSOR;
using namespace ACCELERATIONSENSOR;
using namespace PID_SPACE;
using namespace ROTARYENCODER;
static CONTROLLER::ControllerData *controller;
ACTUATORHUB::MOTOR::MotorStatus motor[MOUNTING_MOTOR_NUM];
ACTUATORHUB::SOLENOID::SolenoidStatus solenoid;
static bool lock;
static bool processChangeComp;
static int current;
static void AllActuatorReset();
#ifdef USE_SUBPROCESS
static void (*Process[USE_PROCESS_NUM])(void);
#endif
#pragma region USER-DEFINED_VARIABLES_AND_PROTOTYPE
/*Replace here with the definition code of your variables.*/
Serial pc(USBTX, USBRX);
unsigned long ColorIn(int index)
{
int result = 0;
bool rtn = false;
for(int i=0; i<12; i++)
{
CK[index] = 1;
rtn = DOUT[index];
CK[index] = 0;
if(rtn)
{
result|=(1 << i);
}
}
return result;
}
#define TIRE_FR 0 //足回り前右
#define TIRE_FL 1 //足回り前左
#define TIRE_BR 2 //足回り後右
#define TIRE_BL 3 //足回り後左
#define Angle_R 4 //角度調節右
#define Angle_L 5 //角度調節左
#define Lim_AR 3 //角度調節右
#define Lim_AL 4 //角度調節左
#define Lim_R 0 //センター右
#define Lim_L 1 //センター左
//************メカナム********************
const int mecanum[15][15]=
{
{ 0, 5, 21, 47, 83, 130, 187, 255, 255, 255, 255, 255, 255, 255, 255},
{ -5, 0, 5, 21, 47, 83, 130, 187, 193, 208, 234, 255, 255, 255, 255},
{ -21, -5, 0, 5, 21, 47, 83, 130, 135, 151, 177, 213, 255, 255, 255},
{ -47, -21, 5, 0, 5, 21, 47, 83, 88, 104, 130, 167, 213, 255, 255},
{ -83, -47, -21, 5, 0, 5, 21, 47, 52, 68, 94, 130, 177, 234, 255},
{-130, -83, -47, -21, 5, 0, 5, 21, 26, 42, 68, 104, 151, 208, 255},
{-187, -130, -83, -47, -21, -5, 0, 5, 10, 26, 52, 88, 135, 193, 255},
{-255, -187, -130, -83, -47, -21, -5, 0, 5, 21, 47, 83, 130, 187, 255},
{-255, -193, -135, -88, -52, -26, -10, -5, 0, 5, 21, 47, 83, 130, 187},
{-255, -208, -151, -104, -68, -42, -26, -21, -5, 0, 5, 21, 47, 83, 130},
{-255, -234, -177, -130, -94, -68, -52, -47, -21, -7, 0, 7, 21, 47, 83},
{-255, -255, -213, -167, -130, -104, -88, -83, -47, -21, -5, 0, 5, 21, 47},
{-255, -255, -255, -213, -177, -151, -135, -130, -83, -47, -21, -5, 0, 5, 21},
{-255, -255, -255, -255, -234, -208, -193, -187, -130, -83, -47, -21, -5, 0, 5},
{-255, -255, -255, -255, -255, -255, -255, -255, -187, -130, -83, -47, -21, -5, 0}
};
const int curve[15] = {-204, -150, -104, -66, -38, -17, -4, 0, 4, 17, 38, 66, 104, 150, 204};
uint8_t SetStatus(int);
uint8_t SetStatus(int pwmVal){
if(pwmVal < 0) return BACK;
else if(pwmVal > 0) return FOR;
else if(pwmVal == 0) return BRAKE;
else return BRAKE;
}
uint8_t SetPWM(int);
uint8_t SetPWM(int pwmVal){
if(pwmVal == 0 || pwmVal > 255 || pwmVal < -255) return 255;
else return abs(pwmVal);
}
//************メカナム********************
//************カラーセンサ変数********************
int Color_A[3]; //[赤,緑,青]
int Color_B[3];
int Color_C[3];
int Color_D[3];
int intergration = 50;
/*int averageR_A;
int averageG_A;
int averageB_A;
int averageR_B;
int averageG_B;
int averageB_B;
int averageR_C;
int averageG_C;
int averageB_C;
int averageR_D;
int averageG_D;
int averageB_D;*/
void ColorDetection();
/*DigitalIn www(RT11_PIN);
DigitalIn mmm(RT12_PIN);
int pp = 0;
int bb = 0;
*/
//************カラーセンサ変数********************
//************ライントレース変数*******************
int Point[3] = {234, 466, 590};//赤,緑,青
int colorSN;
int startP = 35;
int downP = 5;
bool Goal_flag = false;
PID goal = PID(0.03,-255,255,0,0,0);
void GoalArrival();
//************ライントレース変数*******************
//************ジャイロ*******************
//void AngleDetection();
//void AngleControl();
float AngleY;
PID gyro = PID(0.03, -150 , 150 , 8 , 0.03, 0);
bool Angle_flag = false;
float rotateY;
int AngletargetX = 50;
int AngletargetY = -50;
int Angle_I;
//************ジャイロ*******************
//************ロタコン*******************
int MemoRt;
int Rt0;
int Rt1;
int Rt_A;
int Rt_B;
int PresentRt;
//************ロタコン*******************
#pragma endregion USER-DEFINED_VARIABLES_AND_PROTOTYPE
#ifdef USE_SUBPROCESS
#if USE_PROCESS_NUM>0
static void Process0(void);
#endif
#if USE_PROCESS_NUM>1
static void Process1(void);
#endif
#if USE_PROCESS_NUM>2
static void Process2(void);
#endif
#if USE_PROCESS_NUM>3
static void Process3(void);
#endif
#if USE_PROCESS_NUM>4
static void Process4(void);
#endif
#if USE_PROCESS_NUM>5
static void Process5(void);
#endif
#if USE_PROCESS_NUM>6
static void Process6(void);
#endif
#if USE_PROCESS_NUM>7
static void Process7(void);
#endif
#if USE_PROCESS_NUM>8
static void Process8(void);
#endif
#if USE_PROCESS_NUM>9
static void Process9(void);
#endif
#endif
void SystemProcessInitialize()
{
#pragma region USER-DEFINED_VARIABLE_INIT
/*Replace here with the initialization code of your variables.*/
#pragma endregion USER-DEFINED_VARIABLE_INIT
lock = true;
processChangeComp = true;
current = DEFAULT_PROCESS;
#ifdef USE_SUBPROCESS
#if USE_PROCESS_NUM>0
Process[0] = Process0;
#endif
#if USE_PROCESS_NUM>1
Process[1] = Process1;
#endif
#if USE_PROCESS_NUM>2
Process[2] = Process2;
#endif
#if USE_PROCESS_NUM>3
Process[3] = Process3;
#endif
#if USE_PROCESS_NUM>4
Process[4] = Process4;
#endif
#if USE_PROCESS_NUM>5
Process[5] = Process5;
#endif
#if USE_PROCESS_NUM>6
Process[6] = Process6;
#endif
#if USE_PROCESS_NUM>7
Process[7] = Process7;
#endif
#if USE_PROCESS_NUM>8
Process[8] = Process8;
#endif
#if USE_PROCESS_NUM>9
Process[9] = Process9;
#endif
#endif
}
static void SystemProcessUpdate()
{
#ifdef USE_SUBPROCESS
if(controller->Button.HOME) lock = false;
if(controller->Button.START && processChangeComp)
{
current++;
if (USE_PROCESS_NUM < current) current = USE_PROCESS_NUM;
processChangeComp = false;
}
else if(controller->Button.SELECT && processChangeComp)
{
current--;
if (current < 0) current = 0;
processChangeComp = false;
}
else if(!controller->Button.SELECT && !controller->Button.START) processChangeComp = true;
#endif
#ifdef USE_MOTOR
ACTUATORHUB::MOTOR::Motor::Update(motor);
#endif
#ifdef USE_SOLENOID
ACTUATORHUB::SOLENOID::Solenoid::Update(solenoid);
#endif
#ifdef USE_RS485
ACTUATORHUB::ActuatorHub::Update();
#endif
}
void SystemProcess()
{
SystemProcessInitialize();
while(1)
{
#ifdef USE_MU
controller = CONTROLLER::Controller::GetData();
#endif
#ifdef USE_ERRORCHECK
if(SAFTY::ErrorCheck::Check() & SAFTY::Error::ControllerLost)
{
CONTROLLER::Controller::DataReset();
AllActuatorReset();
lock = true;
}
else
#endif
{
#ifdef USE_SUBPROCESS
if(!lock)
{
Process[current]();
}
else
#endif
{
//ロック時の処理
}
}
SystemProcessUpdate();
}
}
#pragma region PROCESS
#ifdef USE_SUBPROCESS
#if USE_PROCESS_NUM>0
static void Process0()
{
if(LimitSw::IsPressed(Lim_AR) && motor[4].dir == FOR && motor[5].dir == BACK){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
motor[Angle_R].pwm = 255;
motor[Angle_L].pwm = 255;
}else if(LimitSw::IsPressed(Lim_AL) && motor[4].dir == BACK && motor[5].dir == FOR){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
motor[Angle_R].pwm = 255;
motor[Angle_L].pwm = 255;
}
for(int i = 0;i<20;i++){
float y = 0;
y = acc[1]*1000;
float rotateY = (y - 305)/2.21 - 90;
AngleY += rotateY;
}
AngleY = AngleY /20;
int gyropwm = gyro.SetPV(AngleY,Angle_I);
if(controller->Button.A){
Angle_flag = true;
}/*
if(controller->Button.Y){
Angle_flag = true;
}*/
if (Angle_flag){
motor[Angle_R].dir = SetStatus(gyropwm);
motor[Angle_L].dir = SetStatus(-gyropwm);
motor[Angle_R].pwm = SetPWM(gyropwm);
motor[Angle_L].pwm = SetPWM(gyropwm);
if(Angle_I - 2 < AngleY && AngleY < Angle_I + 2){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
Angle_flag = false;
}
}
}
#endif
#if USE_PROCESS_NUM>1
static void Process1()
{
motor[TIRE_FR].dir = SetStatus(-mecanum[controller->AnalogL.Y][14-controller->AnalogL.X] + curve[controller->AnalogR.X]);
motor[TIRE_FL].dir = SetStatus(mecanum[controller->AnalogL.Y][controller->AnalogL.X] + curve[controller->AnalogR.X]);
motor[TIRE_BR].dir = SetStatus(-mecanum[14-controller->AnalogL.X][14-controller->AnalogL.Y] + curve[controller->AnalogR.X]);
motor[TIRE_BL].dir = SetStatus(mecanum[controller->AnalogL.X][14-controller->AnalogL.Y] + curve[controller->AnalogR.X]);
motor[TIRE_FR].pwm = SetPWM(mecanum[controller->AnalogL.Y][14-controller->AnalogL.X]);
motor[TIRE_FL].pwm = SetPWM(mecanum[controller->AnalogL.Y][controller->AnalogL.X]);
motor[TIRE_BR].pwm = SetPWM(mecanum[14-controller->AnalogL.X][14-controller->AnalogL.Y]);
motor[TIRE_BL].pwm = SetPWM(mecanum[controller->AnalogL.X][14-controller->AnalogL.Y]);
if (abs(controller->AnalogL.X-7) <= 4 && controller->AnalogL.X!=7 && controller->AnalogL.Y!=7 && controller->AnalogR.X==7){
motor[TIRE_FR].pwm = motor[0].pwm * 1.3;
motor[TIRE_FL].pwm = motor[1].pwm * 1.3;
}
}
#endif
#if USE_PROCESS_NUM>2
static void Process2()
{
static bool color_flag = false;
static bool traceon = false;
static bool yokofla = false;
static bool compA = false;
static bool compB = false;
static bool compC = false;
static bool compD = false;
static bool invationA = false;
static bool invationB = false;
static bool invationC = false;
static bool invationD = false;
ColorDetection();
//
if(Color_A[0] > Point[0] && Color_A[1] > Point[1] && Color_A[2] > Point[2] && !compA)//白
{
invationA ^= 1;//start false,over true
compA = true;//on true,noon false
}
else if(!(Color_A[0] > Point[0] && Color_A[1] > Point[1] && Color_A[2] > Point[2]))compA = false;//茶
if(Color_B[0] > Point[0] && Color_B[1] > Point[1] && Color_B[2] > Point[2] && !compB)//白
{
invationB ^= 1;//start false,over true
compB = true;//on true,noon false
}
else if(!(Color_B[0] > Point[0] && Color_B[1] > Point[1] && Color_B[2] > Point[2]))compB = false;//茶
//
if(controller->Button.B && !color_flag)
{
traceon ^= 1;
color_flag = true;
}
else if(!controller->Button.B)
{
color_flag = false;
}
if(traceon)
{
if(!invationA && !compA && !invationB && !compB){
motor[TIRE_FR].dir = FOR;
motor[TIRE_FL].dir = FOR;
motor[TIRE_BR].dir = BACK;
motor[TIRE_BL].dir = BACK;
motor[TIRE_FR].pwm = startP;
motor[TIRE_FL].pwm = startP;
motor[TIRE_BR].pwm = startP;
motor[TIRE_BL].pwm = startP;
}
else if(invationA && compA && !invationB && !compB){
motor[TIRE_FR].dir = FOR;
motor[TIRE_FL].dir = FOR;
motor[TIRE_BR].dir = BACK;
motor[TIRE_BL].dir = BACK;
motor[TIRE_FR].pwm = startP - downP;
motor[TIRE_FL].pwm = startP - downP;
motor[TIRE_BR].pwm = startP - downP;
motor[TIRE_BL].pwm = startP - downP;
}
else if(!invationA && !compA && !invationB && !compB){
motor[TIRE_FR].dir = BRAKE;
motor[TIRE_FL].dir = BRAKE;
motor[TIRE_BR].dir = BRAKE;
motor[TIRE_BL].dir = BRAKE;
motor[0].pwm = 255;
motor[1].pwm = 255;
motor[2].pwm = 255;
motor[3].pwm = 255;
wait(5);
yokofla = true;
}
else if(invationA && !compA && invationB && !compB && yokofla){
motor[TIRE_FR].dir = BACK;
motor[TIRE_FL].dir = BACK;
motor[TIRE_BR].dir = FOR;
motor[TIRE_BL].dir = FOR;
motor[TIRE_FR].pwm = startP - downP;
motor[TIRE_FL].pwm = startP - downP;
motor[TIRE_BR].pwm = startP - downP;
motor[TIRE_BL].pwm = startP - downP;
}
else if(invationA && !compA && !invationB && !compB && yokofla){
motor[TIRE_FR].dir = FOR;
motor[TIRE_FL].dir = BACK;
motor[TIRE_BR].dir = FOR;
motor[TIRE_BL].dir = BACK;
motor[TIRE_FR].pwm = startP;
motor[TIRE_FL].pwm = startP;
motor[TIRE_BR].pwm = startP;
motor[TIRE_BL].pwm = startP;
}
else if(LimitSw::IsPressed(3) && LimitSw::IsPressed(4) && invationA && !compA && !invationB && !compB && yokofla && traceon){
motor[TIRE_FR].dir = BRAKE;
motor[TIRE_FL].dir = BRAKE;
motor[TIRE_BR].dir = BRAKE;
motor[TIRE_BL].dir = BRAKE;
motor[TIRE_FR].pwm = 255;
motor[TIRE_FL].pwm = 255;
motor[TIRE_BR].pwm = 255;
motor[TIRE_BL].pwm = 255;
}
/*////
motor[0].dir = BACK;
motor[1].dir = BACK;
motor[2].dir = FOR;
motor[3].dir = FOR;
motor[0].pwm = startP;
motor[1].pwm = startP;
motor[2].pwm = startP;
motor[3].pwm = startP;
else if()
{
motor[0].dir = BRAKE;
motor[1].dir = BRAKE;
motor[2].dir = BRAKE;
motor[3].dir = BRAKE;
motor[0].pwm = 255;
motor[1].pwm = 255;
motor[2].pwm = 255;
motor[3].pwm = 255;
}*//////
else if(LimitSw::IsPressed(Lim_R) && LimitSw::IsPressed(Lim_L)){
motor[TIRE_FR].dir = FOR;
motor[TIRE_FL].dir = FOR;
motor[TIRE_BR].dir = BACK;
motor[TIRE_BL].dir = BACK;
motor[TIRE_FR].pwm = 100;
motor[TIRE_FL].pwm = 100;
motor[TIRE_BR].pwm = 100;
motor[TIRE_BL].pwm = 100;
}else if(!LimitSw::IsPressed(3) && LimitSw::IsPressed(4)){
motor[TIRE_FR].dir = FOR;
motor[TIRE_BR].dir = FOR;
motor[TIRE_FR].pwm = 20;
motor[TIRE_BR].pwm = 20;
}else if(LimitSw::IsPressed(3) && !LimitSw::IsPressed(4)){
motor[TIRE_FL].dir = BACK;
motor[TIRE_BL].dir = BACK;
motor[TIRE_FL].pwm = 20;
motor[TIRE_BL].pwm = 20;
}
else if(!LimitSw::IsPressed(3) && !LimitSw::IsPressed(4)){
Goal_flag = true;
GoalArrival();
}else{
motor[TIRE_FR].dir = BRAKE;
motor[TIRE_FL].dir = BRAKE;
motor[TIRE_BR].dir = BRAKE;
motor[TIRE_BL].dir = BRAKE;
}
}
}
#endif
#if USE_PROCESS_NUM>3
static void Process3()
{
if(controller->Button.R){
motor[Angle_R].dir = FOR;
motor[Angle_L].dir = BACK;
motor[Angle_R].pwm = 150;
motor[Angle_L].pwm = 150;
}else if(controller->Button.L){
motor[Angle_R].dir = BACK;
motor[Angle_L].dir = FOR;
motor[Angle_R].pwm = 150;
motor[Angle_L].pwm = 150;
}else{
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
}
if(LimitSw::IsPressed(Lim_AR) && motor[4].dir == FOR && motor[5].dir == BACK){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
motor[Angle_R].pwm = 255;
motor[Angle_L].pwm = 255;
}else if(LimitSw::IsPressed(Lim_AL) && motor[4].dir == BACK && motor[5].dir == FOR){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
motor[Angle_R].pwm = 255;
motor[Angle_L].pwm = 255;
}
}
#endif
#if USE_PROCESS_NUM>4
static void Process4()
{
/* for(int i=0;i<10;i++)
{
ColorDetection();
averageR_A += Color_A[0];
averageG_A += Color_A[1];
averageB_A += Color_A[2];
averageR_B += Color_B[0];
averageG_B += Color_B[1];
averageB_B += Color_B[2];
averageR_C += Color_C[0];
averageG_C += Color_C[1];
averageB_C += Color_C[2];
averageR_D += Color_D[0];
averageG_D += Color_D[1];
averageB_D += Color_D[2];
}
pc.printf("AR_A:%d, AG_A:%d ,AB_A:%d \r\n",averageR_A / 10 ,averageG_A / 10, averageB_A / 10);
pc.printf("AR_B:%d, AG_B:%d ,AB_B:%d \r\n",averageR_B / 10 ,averageG_B / 10, averageB_B / 10);
pc.printf("AR_C:%d, AG_C:%d ,AB_C:%d \r\n",averageR_C / 10 ,averageG_C / 10, averageB_C / 10);
pc.printf("AR_D:%d, AG_D:%d ,AB_D:%d \r\n",averageR_D / 10 ,averageG_D / 10, averageB_D / 10);
averageR_A = 0;
averageG_A = 0;
averageB_A = 0;
averageR_B = 0;
averageG_B = 0;
averageB_B = 0;
averageR_C = 0;
averageG_C = 0;
averageB_C = 0;
averageR_D = 0;
averageG_D = 0;
averageB_D = 0;*/
}
#endif
#if USE_PROCESS_NUM>5
static void Process5()
{
if(LimitSw::IsPressed(Lim_AR) && motor[4].dir == FOR && motor[5].dir == BACK){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
motor[Angle_R].pwm = 255;
motor[Angle_L].pwm = 255;
}else if(LimitSw::IsPressed(Lim_AL) && motor[4].dir == BACK && motor[5].dir == FOR){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
motor[Angle_R].pwm = 255;
motor[Angle_L].pwm = 255;
}
for(int i = 0;i<20;i++){
float y = 0;
y = acc[1]*1000;
float rotateY = (y - 305)/2.21 - 90;
AngleY += rotateY;
}
AngleY = AngleY /20;
int gyropwm = gyro.SetPV(AngleY,AngletargetY);
if(controller->Button.X){
Angle_flag = true;
}/*
if(controller->Button.Y){
Angle_flag = true;
}*/
if (Angle_flag){
motor[Angle_R].dir = SetStatus(gyropwm);
motor[Angle_L].dir = SetStatus(-gyropwm);
motor[Angle_R].pwm = SetPWM(gyropwm);
motor[Angle_L].pwm = SetPWM(gyropwm);
if(AngletargetY - 2 < AngleY && AngleY < AngletargetY + 2){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
Angle_flag = false;
}
}
/*float y = 0;
y = acc[1]*1000;
float rotateY = (y - 305)/2.21 - 90;
int gyropwm = gyro.SetPV(rotateY , Angletarget);
if(controller->Button.X){
Angle_flag = true;
}
if (Angle_flag){
motor[Angle_R].dir = SetStatus(gyropwm);
motor[Angle_L].dir = SetStatus(-gyropwm);
motor[Angle_R].pwm = SetPWM(gyropwm);
motor[Angle_L].pwm = SetPWM(gyropwm);
if(Angletarget - 2 < rotateY && rotateY < Angletarget + 2){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
Angle_flag = false;
}
}*/
else{
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
}
}
#endif
#if USE_PROCESS_NUM>6
static void Process6()
{
//void Int::Initialize(BoardRtInt[0].fall(int2));
}
#endif
#if USE_PROCESS_NUM>7
static void Process7()
{
}
#endif
#if USE_PROCESS_NUM>8
static void Process8()
{
}
#endif
#if USE_PROCESS_NUM>9
static void Process9()
{
}
#endif
#endif
#pragma endregion PROCESS
static void AllActuatorReset()
{
#ifdef USE_SOLENOID
solenoid.all = ALL_SOLENOID_OFF;
#endif
#ifdef USE_MOTOR
for (uint8_t i = 0; i < MOUNTING_MOTOR_NUM; i++)
{
motor[i].dir = FREE;
motor[i].pwm = 0;
}
#endif
}
#pragma region USER-DEFINED-FUNCTIONS
void ColorDetection(){
GATE = 0;
CK[0] = 0;
CK[1] = 0;
CK[2] = 0;
CK[3] = 0;
RANGE = 1;
GATE = 1;
wait_ms(intergration);
GATE = 0;
wait_us(4);
Color_A[0] = ColorIn(0); //赤
wait_us(3);
Color_A[1] = ColorIn(0); //青
wait_us(3);
Color_A[2] = ColorIn(0); //緑
Color_B[0] = ColorIn(1);
wait_us(3);
Color_B[1] = ColorIn(1);
wait_us(3);
Color_B[2] = ColorIn(1);
Color_C[0] = ColorIn(2);
wait_us(3);
Color_C[1] = ColorIn(2);
wait_us(3);
Color_C[2] = ColorIn(2);
Color_D[0] = ColorIn(3);
wait_us(3);
Color_D[1] = ColorIn(3);
wait_us(3);
Color_D[2] = ColorIn(3);
}
/*void AngleDetection(){
float x = 0, y= 0, z = 0;
//x = acc[0]*1000;
y = acc[1]*1000;
//z = acc[2]*1000;
//pc.printf("X:%3.1f , Y:%3.1f , Z:%3.1f \r\n",x,y,z);
//float rotateX = (x - 306)/2.22 - 90;
float rotateY = (y - 305)/2.21 - 90;
//float rotateZ = (z - 300)/1.18 - 90;
//pc.printf("X:%3.1f , Y:%3.1f , Z:%3.1f \r\n" , rotateX , rotateY , rotateZ);
}*/
/*void AngleControl(){
int Angletarget = -50;
float AnglevalueY = rotateY;
int gyropwm = gyro.SetPV(AnglevalueY , Angletarget);
if (Angle_flag){
motor[Angle_R].dir = SetStatus(gyropwm);
motor[Angle_L].dir = SetStatus(-gyropwm);
motor[Angle_R].pwm = SetPWM(gyropwm);
motor[Angle_L].pwm = SetPWM(gyropwm);
if(Angletarget - 2 < AnglevalueY && AnglevalueY < Angletarget + 2){
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
Angle_flag = false;
}
}else{
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
}
//pc.printf("PWM:%d \r\n" , gyropwm);
}*/
void GoalArrival(){
int Goaltarget = 0;
float Goalvalue = 0;
int goalpwm = goal.SetPV(Goalvalue,Goaltarget);
if (Goal_flag){
motor[TIRE_FR].dir = SetStatus(goalpwm);
motor[TIRE_FL].dir = SetStatus(-goalpwm);
motor[TIRE_BR].dir = SetStatus(goalpwm);
motor[TIRE_BL].dir = SetStatus(-goalpwm);
motor[TIRE_FR].pwm = SetPWM(goalpwm);
motor[TIRE_FL].pwm = SetPWM(goalpwm);
motor[TIRE_BR].pwm = SetPWM(goalpwm);
motor[TIRE_BL].pwm = SetPWM(goalpwm);
if(Goaltarget > Goalvalue - 10 && Goaltarget < Goalvalue+ 10){
motor[TIRE_FR].dir = BRAKE;
motor[TIRE_FL].dir = BRAKE;
motor[TIRE_BR].dir = BRAKE;
motor[TIRE_BL].dir = BRAKE;
Goal_flag = false;
}
}else{
motor[Angle_R].dir = BRAKE;
motor[Angle_L].dir = BRAKE;
}
}
/*
void RotaryD(uint8_t, uint8_t){
uint8_t D;
MemoRt = Rt1;
Rt0 = Rt0 << 1;
Rt0 = Rt0 & 3;
Rt1 = Rt1 & 3;
D = (Rt0 + Rt1) & 3;
//return (D);
}
void GetRt(){
uint8_t DJ;
double rad = 0;
PresentRt = 0x00;
if(LimitSw::IsPressed(Rt_A))
PresentRt = 0x02;
if(LimitSw::IsPressed(Rt_B))
PresentRt = 0x01;
if(MemoRt != PresentRt)
DJ = RotaryD(MemoRt,PresentRt);
if(D>=2)rad = 360.0 /50.0;
else rad = -(360.0/50.0);
Rt = Rt + rad /360.0*20;
}*/
#pragma endregion