mbed-os
Fork of mbed-os by
targets/TARGET_ONSEMI/TARGET_NCS36510/rtc_map.h
- Committer:
- elessair
- Date:
- 2016-10-23
- Revision:
- 0:f269e3021894
File content as of revision 0:f269e3021894:
/** ****************************************************************************** * @file rtc_map.h * @brief Real Time Clock HW register map * @internal * @author ON Semiconductor. * $Rev: 3008 $ * $Date: 2014-10-16 18:42:48 +0530 (Thu, 16 Oct 2014) $ ****************************************************************************** * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). * All rights reserved. This software and/or documentation is licensed by ON Semiconductor * under limited terms and conditions. The terms and conditions pertaining to the software * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and * if applicable the software license agreement. Do not use this software and/or * documentation unless you have carefully read and you agree to the limited terms and * conditions. By using this software and/or documentation, you agree to the limited * terms and conditions. * * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * @endinternal * * @ingroup rtc * * @details * <p> * Teal Time Clock HW register map description * </p> * * <h1> Reference document(s) </h1> * <p> * <a HOURef="../pdf/IPC7206_RTC_APB_DS_v1P0.pdf" target="_blank"> * IPC7206 APB RTC Design Specification v1.0 </a> * </p> */ #ifndef RTC_MAP_H_ #define RTC_MAP_H_ #include "architecture.h" /** Real Time Clock Control HW Structure Overlay */ typedef struct { #ifdef REVB /*REVD REPLACE COMPLETE MAP WITH DATA FROM DIG DESIGN SPEC */ __IO uint32_t SECOND;/**<SECOND Counter */ __IO uint32_t MINUTE;/**<DAY Counter */ __IO uint32_t HOUR;/**< HOUR Counter */ __IO uint32_t DAY;/**< DAY Counter */ __IO uint32_t MONTH;/**< MONTH Counter */ __IO uint32_t YEAR;/**< YEAR Counter */ union { struct { __IO uint32_t PAD1 :1;/**<Reserved; Writes have no effect. Read as 0 */ __IO uint32_t TEST_MINUTE :1;/**<0 = normal operation , 1 = Test Mode */ __IO uint32_t TEST_HOUR :1;/**<0 = normal operation , 1 = Test Mode */ __IO uint32_t TEST_DAY :1;/**<0 = normal operation , 1 = Test Mode */ __IO uint32_t TEST_MONTH :1;/**<0 = normal operation , 1 = Test Mode */ __IO uint32_t TEST_YEAR :1;/**<0 = normal operation , 1 = Test Mode */ __IO uint32_t PAD2 :1;/**<Reserved; Writes have no effect. Read as 0 */ __IO uint32_t RESET :1;/**< 0 = counters are incrementing , 1 = counters are in reset */ } BITS; __IO uint32_t WORD; } CONTROL; __IO uint32_t DIVISOR;/**<Clock Divisor value */ __IO uint32_t ALARM_SECOND;/**<SECOND Alarm's BCD value */ __IO uint32_t ALARM_MINUTE;/**<MINUTE Alarm's BCD value */ __IO uint32_t ALARM_HOUR;/**<HOUR Alarm's BCD value*/ __IO uint32_t ALARM_DAY;/**<DAY Alarm's BCD value */ __IO uint32_t ALARM_MONTH;/**<MONTH Alarm's BCD value */ __IO uint32_t ALARM_YEAR;/**<YEAR Alarm's BCD value */ union { struct { __IO uint32_t SECOND :1;/**<SECOND Alarm interrupt : 0 = disabled, 1 = enabled */ __IO uint32_t MINUTE :1;/**<MINUTE Alarm interrupt : 0 = disabled, 1 = enabled */ __IO uint32_t HOUR :1;/**<HOUR Alarm interrupt : 0 = disabled, 1 = enabled */ __IO uint32_t DAY :1;/**<DAY Alarm interrupt : 0 = disabled, 1 = enabled */ __IO uint32_t MONTH :1;/**<MONTH Alarm interrupt : 0 = disabled, 1 = enabled */ __IO uint32_t YEAR :1;/**<YEAR Alarm interrupt : 0 = disabled, 1 = enabled */ __IO uint32_t PAD :2 ;/**<Writes have no effect; Read as 2b00 */ } BITS; __IO uint32_t WORD; } INT_EN_CONTROL; union { struct { __I uint32_t SECOND :1;/**<SECOND Alarm interrupt : 0= inactive , 1 = active */ __I uint32_t MINUTE :1;/**<MINUTE Alarm interrupt : 0= inactive , 1 = active */ __I uint32_t HOUR :1;/**<HOUR Alarm interrupt : 0= inactive , 1 = active */ __I uint32_t DAY :1;/**<DAY Alarm interrupt : 0= inactive , 1 = active */ __I uint32_t MONTH :1;/**<MONTH Alarm interrupt : 0= inactive , 1 = active */ __I uint32_t YEAR :1;/**<YEAR Alarm interrupt : 0= inactive , 1 = active */ __I uint32_t PAD :2; /**<Read as 00 */ } BITS; __I uint32_t WORD; } INT_STATUS; union { struct { __O uint32_t SECOND :1;/**<Write 1 to clear the SECOND Alarm interrupt.*/ __O uint32_t MINUTE :1;/**<Write 1 to clear the MINUTE Alarm interrupt*/ __O uint32_t HOUR :1;/**<Write 1 to clear the HOUR Alarm interrupt*/ __O uint32_t DAY :1;/**< Write 1 to clear the DAY Alarm interrupt*/ __O uint32_t MONTH :1;/**<Write 1 to clear the MONTH Alarm interrupt */ __O uint32_t YEAR :1;/**< Write 1 to clear the YEAR Alarm interrupt*/ __O uint32_t PAD :2 ;/**< Writes have no effect. */ } BITS; __O uint32_t WORD; } INT_CLEAR; #endif /* REVB */ #ifdef REVD __IO uint32_t SUB_SECOND_COUNTER; /**<SUB SECOND Counter */ /* 0x4000F000 */ __IO uint32_t SECOND_COUNTER; /**<SECOND Counter */ /* 0x4000F004 */ __IO uint32_t SUB_SECOND_ALARM; /**< SUB SECOND alarm */ /* 0x4000F008 */ __IO uint32_t SECOND_ALARM; /**< SECOND alarm */ /* 0x4000F00c */ union { struct { __IO uint32_t SUB_SEC_COUNTER_EN :1; /**<Sub-second counter enable. (1=count is enabled, 0=retain count value) */ __IO uint32_t SEC_COUNTER_EN :1; /**<Second counter enable. (1=count is enabled, 0=retain count value) */ __IO uint32_t SUB_SECOND_INT_EN :1; /**<Sub-second interrupt enable (1=interrupt enabled, 0=interrupt disabled) */ __IO uint32_t SECOND_INT_EN :1; /**<Second interrupt enable (1=interrupt enabled, 0=interrupt disabled) */ } BITS; __IO uint32_t WORD; } CONTROL; /* 0x4000F010 */ union { struct { /**<Any write to the status register will clear the error bit. */ __IO uint32_t SUB_SECOND_INT:1; /**<Sub-second interrupt status. (1=interrupt active, 0=no interrupt)*/ __IO uint32_t SECOND_INT :1; /**<Second interrupt status. (1=interrupt active, 0=no interrupt)*/ __IO uint32_t WRITE_ERROR :1; /**<Reads error bit which is set when a write occurs before a previous write to the same register has completed. */ __IO uint32_t BSY_ANY_WRT :1; /**<Busy with any write.*/ __IO uint32_t BSY_SUB_SEC_CNTR_REG_WRT :1; /**<Busy with a sub-second counter register write.*/ __IO uint32_t BSY_SEC_CNTR_REG_WRT :1; /**<Busy with a second counter register write.*/ __IO uint32_t BSY_SUB_SEC_ALRM_REG_WRT :1; /**<Busy with a sub-second alarm register write.*/ __IO uint32_t BSY_SEC_ALRM_REG_WRT:1; /**<Busy with a second alarm register write.*/ __IO uint32_t BSY_CTRL_REG_WRT :1; /**<Busy with a control register write.*/ __IO uint32_t BSY_SUB_SEC_INT_CLR_WRT :1; /**<Busy with a sub-second interrupt clear write.*/ __IO uint32_t BSY_SEC_INT_CLR_WRT :1; /**<Busy with a second interrupt clear write.*/ } BITS; __IO uint32_t WORD; } STATUS; /* 0x4000F014 */ union { struct { __O uint32_t SUB_SECOND :1; /**<Write 1 to this register to clear the sub-second interrupt.*/ __O uint32_t SECOND :1; /**<Write 1 to this register to clear the second interrupt.*/ } BITS; __O uint32_t WORD; } INT_CLEAR; /* 0x4000F018 */ #endif /* REVD */ } RtcReg_t, *RtcReg_pt; #endif /* RTC_MAP_H_ */