mbed-os
Fork of mbed-os by
features/FEATURE_COMMON_PAL/mbed-client-randlib/source/randLIB.c
- Committer:
- elessair
- Date:
- 2016-10-23
- Revision:
- 0:f269e3021894
File content as of revision 0:f269e3021894:
/* * Copyright (c) 2014-2015 ARM Limited. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdint.h> #include <stdlib.h> #include <stdbool.h> #include <limits.h> #include "randLIB.h" #include "platform/arm_hal_random.h" #if ((RAND_MAX+1) & RAND_MAX) != 0 #error "RAND_MAX isn't 2^n-1 :(" #endif /** * This library is made for getting random numbers for Timing needs in protocols. * * **not safe to use for security or cryptographic operations.** * */ /** * \brief Init seed for Pseudo Random. * * \return None * */ void randLIB_seed_random(void) { uint32_t rand_seed; arm_random_module_init(); rand_seed = arm_random_seed_get(); srand(rand_seed); } /** * \brief Generate 8-bit random number. * * \param None * \return 8-bit random number * */ uint8_t randLIB_get_8bit(void) { return rand(); } /** * \brief Generate 16-bit random number. * * \param None * \return 16-bit random number * */ uint16_t randLIB_get_16bit(void) { uint16_t ret_val; ret_val = rand(); #if RAND_MAX == 0x7FFF ret_val |= (uint16_t) rand() << 15; #endif return ret_val; } /** * \brief Generate 32-bit random number. * * \param None * \return 32-bit random number * */ uint32_t randLIB_get_32bit(void) { uint32_t ret_val; ret_val = rand(); #if RAND_MAX == 0x7FFF ret_val |= (uint32_t) rand() << 15; ret_val |= (uint32_t) rand() << 30; #elif RAND_MAX == 0x3FFFFFFF /* IAR */ ret_val |= (uint32_t) rand() << 30; #elif RAND_MAX == 0x7FFFFFFF ret_val |= (uint32_t) rand() << 31; #else #error "randLIB_get_32bit - odd RAND_MAX" #endif return ret_val; } /** * \brief Generate n-bytes random numbers. * * \param data_ptr pointer where random will be stored * \param eight_bit_boundary how many bytes need random * \return 0 process valid * \return -1 Unsupported Parameters * */ int8_t randLIB_get_n_bytes_random(uint8_t *data_ptr, uint8_t eight_bit_boundary) { if ((data_ptr == 0) || (eight_bit_boundary == 0)) { return -1; } while (eight_bit_boundary) { *data_ptr++ = randLIB_get_8bit(); eight_bit_boundary--; } return 0; } /** * \brief Generate a random number within a range. * * The result is linearly distributed in the range [min..max], inclusive. * * \param min minimum value that can be generated * \param max maximum value that can be generated */ uint16_t randLIB_get_random_in_range(uint16_t min, uint16_t max) { /* This special case is potentially common, particularly in this routine's * first user (Trickle), so worth catching immediately */ if (min == max) { return min; } /* 16-bit arithmetic below fails in this extreme case; we can optimise it */ if (max - min == 0xFFFF) { return randLIB_get_16bit(); } /* We get RAND_MAX+1 values from rand() in the range [0..RAND_MAX], and * need to divvy them up into the number of values we need. And reroll any * odd values off the end as we insist every value having equal chance. * * Special handling for systems where RAND_MAX is 0x7FFF; we use our * randLIB_get_16bit() and have to be a bit more careful about * unsigned integer overflow. (On other systems rand() returns int, * so we can't overflow if we use unsigned int). * * Eg, range(1,3), RAND_MAX = 0x7FFFFFFF: * We have 3 bands of size 0x2AAAAAAA (0x80000000/3). * * We roll: 0x00000000..0x2AAAAAAA9 -> 1 * 0x2AAAAAAA..0x555555553 -> 2 * 0x55555554..0x7FFFFFFFD -> 3 * 0x7FFFFFFE..0x7FFFFFFFF -> reroll * * (Bias problem clearly pretty insignificant there, but gets worse as * range increases). */ unsigned int values_needed = max + 1 - min; #if RAND_MAX > 0xFFFF unsigned int band_size = (RAND_MAX + 1u) / values_needed; #elif UINT_MAX > 0xFFFF unsigned int band_size = 0x10000u / values_needed; #else /* Avoid the need for long division, at the expense of fractionally * increasing reroll chance. */ unsigned int band_size = 0xFFFFu / values_needed; #endif unsigned int top_of_bands = band_size * values_needed; unsigned int result; do { #if RAND_MAX > 0xFFFF result = rand(); #else result = randLIB_get_16bit(); #endif } while (result >= top_of_bands); return min + (uint16_t)(result / band_size); } /** * \brief Randomise a base 32-bit number by a jitter factor * * The result is linearly distributed in the jitter range, which is expressed * as fixed-point unsigned 1.15 values. For example, to produce a number in the * range [0.75 * base, 1.25 * base], set min_factor to 0x6000 and max_factor to * 0xA000. * * Result is clamped to 0xFFFFFFFF if it overflows. * * \param base The base 32-bit value * \param min_factor The minimum value for the random factor * \param max_factor The maximum value for the random factor */ uint32_t randLIB_randomise_base(uint32_t base, uint16_t min_factor, uint16_t max_factor) { uint16_t random_factor = randLIB_get_random_in_range(min_factor, max_factor); /* 32x16-bit long multiplication, to get 48-bit result */ uint32_t hi = (base >> 16) * random_factor; uint32_t lo = (base & 0xFFFF) * random_factor; /* Add halves, and take top 32 bits of 48-bit result */ uint32_t res = hi + (lo >> 16); /* Randomisation factor is *2^15, so need to shift up 1 more bit, avoiding overflow */ if (res & 0x80000000) { res = 0xFFFFFFFF; } else { res = (res << 1) | ((lo >> 15) & 1); } return res; }