The CMSIS DSP 5 library

Dependents:   Nucleo-Heart-Rate ejercicioVrms2 PROYECTOFINAL ejercicioVrms ... more

Revision:
1:24714b45cd1b
diff -r d85dd7169d5b -r 24714b45cd1b functions/FilteringFunctions/arm_fir_decimate_fast_q15.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/functions/FilteringFunctions/arm_fir_decimate_fast_q15.c	Wed Jun 20 11:21:31 2018 +0000
@@ -0,0 +1,586 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_fir_decimate_fast_q15.c
+ * Description:  Fast Q15 FIR Decimator
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ *
+ * \par Restrictions
+ *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ *	In this case input, output, state buffers should be aligned by 32-bit
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around and distorts the result.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (log2 is read as log to the base 2).
+ * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_decimate_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
+ * Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_fir_decimate_init_q15()</code> to initialize the filter structure.
+ */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+void arm_fir_decimate_fast_q15(
+  const arm_fir_decimate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize)
+{
+  q15_t *pState = S->pState;                     /* State pointer */
+  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
+  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
+  q15_t *px;                                     /* Temporary pointer for state buffer */
+  q15_t *pb;                                     /* Temporary pointer coefficient buffer */
+  q31_t x0, x1, c0, c1;                          /* Temporary variables to hold state and coefficient values */
+  q31_t sum0;                                    /* Accumulators */
+  q31_t acc0, acc1;
+  q15_t *px0, *px1;
+  uint32_t blkCntN3;
+  uint32_t numTaps = S->numTaps;                 /* Number of taps */
+  uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M;  /* Loop counters */
+
+
+  /* S->pState buffer contains previous frame (numTaps - 1) samples */
+  /* pStateCurnt points to the location where the new input data should be written */
+  pStateCurnt = S->pState + (numTaps - 1U);
+
+
+  /* Total number of output samples to be computed */
+  blkCnt = outBlockSize / 2;
+  blkCntN3 = outBlockSize - (2 * blkCnt);
+
+
+  while (blkCnt > 0U)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = 2 * S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while (--i);
+
+    /* Set accumulator to zero */
+    acc0 = 0;
+    acc1 = 0;
+
+    /* Initialize state pointer */
+    px0 = pState;
+
+    px1 = pState + S->M;
+
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while (tapCnt > 0U)
+    {
+      /* Read the Read b[numTaps-1] and b[numTaps-2]  coefficients */
+      c0 = *__SIMD32(pb)++;
+
+      /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+      x0 = *__SIMD32(px0)++;
+
+      x1 = *__SIMD32(px1)++;
+
+      /* Perform the multiply-accumulate */
+      acc0 = __SMLAD(x0, c0, acc0);
+
+      acc1 = __SMLAD(x1, c0, acc1);
+
+      /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+      c0 = *__SIMD32(pb)++;
+
+      /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+      x0 = *__SIMD32(px0)++;
+
+      x1 = *__SIMD32(px1)++;
+
+      /* Perform the multiply-accumulate */
+      acc0 = __SMLAD(x0, c0, acc0);
+
+      acc1 = __SMLAD(x1, c0, acc1);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4U;
+
+    while (tapCnt > 0U)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px0++;
+
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 = __SMLAD(x0, c0, acc0);
+      acc1 = __SMLAD(x1, c0, acc1);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M * 2;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+    *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+
+
+  while (blkCntN3 > 0U)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while (--i);
+
+    /*Set sum to zero */
+    sum0 = 0;
+
+    /* Initialize state pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while (tapCnt > 0U)
+    {
+      /* Read the Read b[numTaps-1] and b[numTaps-2]  coefficients */
+      c0 = *__SIMD32(pb)++;
+
+      /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+      x0 = *__SIMD32(px)++;
+
+      /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+      c1 = *__SIMD32(pb)++;
+
+      /* Perform the multiply-accumulate */
+      sum0 = __SMLAD(x0, c0, sum0);
+
+      /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+      x0 = *__SIMD32(px)++;
+
+      /* Perform the multiply-accumulate */
+      sum0 = __SMLAD(x0, c1, sum0);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4U;
+
+    while (tapCnt > 0U)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 = __SMLAD(x0, c0, sum0);
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+    *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCntN3--;
+  }
+
+  /* Processing is complete.
+   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+   ** This prepares the state buffer for the next function call. */
+
+  /* Points to the start of the state buffer */
+  pStateCurnt = S->pState;
+
+  i = (numTaps - 1U) >> 2U;
+
+  /* copy data */
+  while (i > 0U)
+  {
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+
+  i = (numTaps - 1U) % 0x04U;
+
+  /* copy data */
+  while (i > 0U)
+  {
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+}
+
+#else
+
+
+void arm_fir_decimate_fast_q15(
+  const arm_fir_decimate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize)
+{
+  q15_t *pState = S->pState;                     /* State pointer */
+  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
+  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
+  q15_t *px;                                     /* Temporary pointer for state buffer */
+  q15_t *pb;                                     /* Temporary pointer coefficient buffer */
+  q15_t x0, x1, c0;                              /* Temporary variables to hold state and coefficient values */
+  q31_t sum0;                                    /* Accumulators */
+  q31_t acc0, acc1;
+  q15_t *px0, *px1;
+  uint32_t blkCntN3;
+  uint32_t numTaps = S->numTaps;                 /* Number of taps */
+  uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M;  /* Loop counters */
+
+
+  /* S->pState buffer contains previous frame (numTaps - 1) samples */
+  /* pStateCurnt points to the location where the new input data should be written */
+  pStateCurnt = S->pState + (numTaps - 1U);
+
+
+  /* Total number of output samples to be computed */
+  blkCnt = outBlockSize / 2;
+  blkCntN3 = outBlockSize - (2 * blkCnt);
+
+  while (blkCnt > 0U)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = 2 * S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while (--i);
+
+    /* Set accumulator to zero */
+    acc0 = 0;
+    acc1 = 0;
+
+    /* Initialize state pointer */
+    px0 = pState;
+
+    px1 = pState + S->M;
+
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while (tapCnt > 0U)
+    {
+      /* Read the Read b[numTaps-1] coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-1] for sample 0 and for sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Read the b[numTaps-2] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-2] for sample 0 and sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Read the b[numTaps-3]  coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-3] for sample 0 and sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Read the b[numTaps-4] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-4] for sample 0 and sample 1 */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4U;
+
+    while (tapCnt > 0U)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px0++;
+      x1 = *px1++;
+
+      /* Perform the multiply-accumulate */
+      acc0 += x0 * c0;
+      acc1 += x1 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M * 2;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+
+    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+    *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  while (blkCntN3 > 0U)
+  {
+    /* Copy decimation factor number of new input samples into the state buffer */
+    i = S->M;
+
+    do
+    {
+      *pStateCurnt++ = *pSrc++;
+
+    } while (--i);
+
+    /*Set sum to zero */
+    sum0 = 0;
+
+    /* Initialize state pointer */
+    px = pState;
+
+    /* Initialize coeff pointer */
+    pb = pCoeffs;
+
+    /* Loop unrolling.  Process 4 taps at a time. */
+    tapCnt = numTaps >> 2;
+
+    /* Loop over the number of taps.  Unroll by a factor of 4.
+     ** Repeat until we've computed numTaps-4 coefficients. */
+    while (tapCnt > 0U)
+    {
+      /* Read the Read b[numTaps-1] coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-1] and sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Read the b[numTaps-2] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-2] and  sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Read the b[numTaps-3]  coefficients */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-3] sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Read the b[numTaps-4] coefficient */
+      c0 = *pb++;
+
+      /* Read x[n-numTaps-4] sample */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+    tapCnt = numTaps % 0x4U;
+
+    while (tapCnt > 0U)
+    {
+      /* Read coefficients */
+      c0 = *pb++;
+
+      /* Fetch 1 state variable */
+      x0 = *px++;
+
+      /* Perform the multiply-accumulate */
+      sum0 += x0 * c0;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+    }
+
+    /* Advance the state pointer by the decimation factor
+     * to process the next group of decimation factor number samples */
+    pState = pState + S->M;
+
+    /* Store filter output, smlad returns the values in 2.14 format */
+    /* so downsacle by 15 to get output in 1.15 */
+    *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+    /* Decrement the loop counter */
+    blkCntN3--;
+  }
+
+  /* Processing is complete.
+   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+   ** This prepares the state buffer for the next function call. */
+
+  /* Points to the start of the state buffer */
+  pStateCurnt = S->pState;
+
+  i = (numTaps - 1U) >> 2U;
+
+  /* copy data */
+  while (i > 0U)
+  {
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+
+  i = (numTaps - 1U) % 0x04U;
+
+  /* copy data */
+  while (i > 0U)
+  {
+    *pStateCurnt++ = *pState++;
+
+    /* Decrement the loop counter */
+    i--;
+  }
+}
+
+
+#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
+
+/**
+ * @} end of FIR_decimate group
+ */