Colour sensors calibrated
Dependencies: mbed-rtos mbed Servo QEI
Fork of ICRSEurobot13 by
tvmet/Matrix.h
- Committer:
- xiaxia686
- Date:
- 2013-04-12
- Revision:
- 46:adcd57a5e402
- Parent:
- 15:9c5aaeda36dc
File content as of revision 46:adcd57a5e402:
/* * Tiny Vector Matrix Library * Dense Vector Matrix Libary of Tiny size using Expression Templates * * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * lesser General Public License for more details. * * You should have received a copy of the GNU lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: Matrix.h,v 1.58 2007-06-23 15:58:58 opetzold Exp $ */ #ifndef TVMET_MATRIX_H #define TVMET_MATRIX_H #include <iterator> // reverse_iterator #include <tvmet/tvmet.h> #include <tvmet/TypePromotion.h> #include <tvmet/CommaInitializer.h> #include <tvmet/RunTimeError.h> #include <tvmet/xpr/Matrix.h> #include <tvmet/xpr/MatrixRow.h> #include <tvmet/xpr/MatrixCol.h> #include <tvmet/xpr/MatrixDiag.h> namespace tvmet { /* forwards */ template<class T, std::size_t Rows, std::size_t Cols> class Matrix; template<class T, std::size_t RowsBgn, std::size_t RowsEnd, std::size_t ColsBgn, std::size_t ColsEnd, std::size_t RowStride, std::size_t ColStride /*=1*/> class MatrixSliceConstReference; // unused here; for me only /** * \class MatrixConstReference Matrix.h "tvmet/Matrix.h" * \brief value iterator for ET */ template<class T, std::size_t NRows, std::size_t NCols> class MatrixConstReference : public TvmetBase < MatrixConstReference<T, NRows, NCols> > { public: typedef T value_type; typedef T* pointer; typedef const T* const_pointer; /** Dimensions. */ enum { Rows = NRows, /**< Number of rows. */ Cols = NCols, /**< Number of cols. */ Size = Rows * Cols /**< Complete Size of Matrix. */ }; public: /** Complexity counter. */ enum { ops = Rows * Cols }; private: MatrixConstReference(); MatrixConstReference& operator=(const MatrixConstReference&); public: /** Constructor. */ explicit MatrixConstReference(const Matrix<T, Rows, Cols>& rhs) : m_data(rhs.data()) { } /** Constructor by a given memory pointer. */ explicit MatrixConstReference(const_pointer data) : m_data(data) { } public: // access operators /** access by index. */ value_type operator()(std::size_t i, std::size_t j) const { TVMET_RT_CONDITION((i < Rows) && (j < Cols), "MatrixConstReference Bounce Violation") return m_data[i * Cols + j]; } public: // debugging Xpr parse tree void print_xpr(std::ostream& os, std::size_t l=0) const { os << IndentLevel(l) << "MatrixConstReference[O=" << ops << "]<" << "T=" << typeid(value_type).name() << ">," << std::endl; } private: const_pointer _tvmet_restrict m_data; }; /** * \class Matrix Matrix.h "tvmet/Matrix.h" * \brief A tiny matrix class. * * The array syntax A[j][j] isn't supported here. The reason is that * operator[] always takes exactly one parameter, but operator() can * take any number of parameters (in the case of a rectangular matrix, * two paramters are needed). Therefore the cleanest way to do it is * with operator() rather than with operator[]. \see C++ FAQ Lite 13.8 */ template<class T, std::size_t NRows, std::size_t NCols> class Matrix { public: /** Data type of the tvmet::Matrix. */ typedef T value_type; /** Reference type of the tvmet::Matrix data elements. */ typedef T& reference; /** const reference type of the tvmet::Matrix data elements. */ typedef const T& const_reference; /** STL iterator interface. */ typedef T* iterator; /** STL const_iterator interface. */ typedef const T* const_iterator; /** STL reverse iterator interface. */ typedef std::reverse_iterator<iterator> reverse_iterator; /** STL const reverse iterator interface. */ typedef std::reverse_iterator<const_iterator> const_reverse_iterator; public: /** Dimensions. */ enum { Rows = NRows, /**< Number of rows. */ Cols = NCols, /**< Number of cols. */ Size = Rows * Cols /**< Complete Size of Matrix. */ }; public: /** Complexity counter. */ enum { ops_assign = Rows * Cols, ops = ops_assign, use_meta = ops < TVMET_COMPLEXITY_M_ASSIGN_TRIGGER ? true : false }; public: // STL interface /** STL iterator interface. */ iterator begin() { return m_data; } /** STL iterator interface. */ iterator end() { return m_data + Size; } /** STL const_iterator interface. */ const_iterator begin() const { return m_data; } /** STL const_iterator interface. */ const_iterator end() const { return m_data + Size; } /** STL reverse iterator interface reverse begin. */ reverse_iterator rbegin() { return reverse_iterator( end() ); } /** STL const reverse iterator interface reverse begin. */ const_reverse_iterator rbegin() const { return const_reverse_iterator( end() ); } /** STL reverse iterator interface reverse end. */ reverse_iterator rend() { return reverse_iterator( begin() ); } /** STL const reverse iterator interface reverse end. */ const_reverse_iterator rend() const { return const_reverse_iterator( begin() ); } /** The size of the matrix. */ static std::size_t size() { return Size; } /** STL vector max_size() - returns allways rows()*cols(). */ static std::size_t max_size() { return Size; } /** STL vector empty() - returns allways false. */ static bool empty() { return false; } public: /** The number of rows of matrix. */ static std::size_t rows() { return Rows; } /** The number of columns of matrix. */ static std::size_t cols() { return Cols; } public: /** Default Destructor */ ~Matrix() { #if defined(TVMET_DYNAMIC_MEMORY) delete [] m_data; #endif } /** Default Constructor. The allocated memory region isn't cleared. If you want a clean use the constructor argument zero. */ explicit Matrix() #if defined(TVMET_DYNAMIC_MEMORY) : m_data( new value_type[Size] ) #endif { } /** Copy Constructor, not explicit! */ Matrix(const Matrix& rhs) #if defined(TVMET_DYNAMIC_MEMORY) : m_data( new value_type[Size] ) #endif { *this = XprMatrix<ConstReference, Rows, Cols>(rhs.const_ref()); } /** * Constructor with STL iterator interface. The data will be copied into the matrix * self, there isn't any stored reference to the array pointer. */ template<class InputIterator> explicit Matrix(InputIterator first, InputIterator last) #if defined(TVMET_DYNAMIC_MEMORY) : m_data( new value_type[Size] ) #endif { TVMET_RT_CONDITION(static_cast<std::size_t>(std::distance(first, last)) <= Size, "InputIterator doesn't fits in size" ) std::copy(first, last, m_data); } /** * Constructor with STL iterator interface. The data will be copied into the matrix * self, there isn't any stored reference to the array pointer. */ template<class InputIterator> explicit Matrix(InputIterator first, std::size_t sz) #if defined(TVMET_DYNAMIC_MEMORY) : m_data( new value_type[Size] ) #endif { TVMET_RT_CONDITION(sz <= Size, "InputIterator doesn't fits in size" ) std::copy(first, first + sz, m_data); } /** Construct the matrix by value. */ explicit Matrix(value_type rhs) #if defined(TVMET_DYNAMIC_MEMORY) : m_data( new value_type[Size] ) #endif { typedef XprLiteral<value_type> expr_type; *this = XprMatrix<expr_type, Rows, Cols>(expr_type(rhs)); } /** Construct a matrix by expression. */ template<class E> explicit Matrix(const XprMatrix<E, Rows, Cols>& e) #if defined(TVMET_DYNAMIC_MEMORY) : m_data( new value_type[Size] ) #endif { *this = e; } /** assign a value_type on array, this can be used for a single value or a comma separeted list of values. */ CommaInitializer<Matrix, Size> operator=(value_type rhs) { return CommaInitializer<Matrix, Size>(*this, rhs); } public: // access operators value_type* _tvmet_restrict data() { return m_data; } const value_type* _tvmet_restrict data() const { return m_data; } public: // index access operators value_type& _tvmet_restrict operator()(std::size_t i, std::size_t j) { // Note: g++-2.95.3 does have problems on typedef reference TVMET_RT_CONDITION((i < Rows) && (j < Cols), "Matrix Bounce Violation") return m_data[i * Cols + j]; } value_type operator()(std::size_t i, std::size_t j) const { TVMET_RT_CONDITION((i < Rows) && (j < Cols), "Matrix Bounce Violation") return m_data[i * Cols + j]; } public: // ET interface typedef MatrixConstReference<T, Rows, Cols> ConstReference; typedef MatrixSliceConstReference< T, 0, Rows, 0, Cols, Rows, 1 > SliceConstReference; /** Return a const Reference of the internal data */ ConstReference const_ref() const { return ConstReference(*this); } /** * Return a sliced const Reference of the internal data. * \note Doesn't work since isn't implemented, but it is in * progress. Therefore this is a placeholder. */ ConstReference const_sliceref() const { return SliceConstReference(*this); } /** Return the vector as const expression. */ XprMatrix<ConstReference, Rows, Cols> as_expr() const { return XprMatrix<ConstReference, Rows, Cols>(this->const_ref()); } private: /** Wrapper for meta assign. */ template<class Dest, class Src, class Assign> static inline void do_assign(dispatch<true>, Dest& dest, const Src& src, const Assign& assign_fn) { meta::Matrix<Rows, Cols, 0, 0>::assign(dest, src, assign_fn); } /** Wrapper for loop assign. */ template<class Dest, class Src, class Assign> static inline void do_assign(dispatch<false>, Dest& dest, const Src& src, const Assign& assign_fn) { loop::Matrix<Rows, Cols>::assign(dest, src, assign_fn); } private: /** assign this to a matrix of a different type T2 using the functional assign_fn. */ template<class T2, class Assign> void assign_to(Matrix<T2, Rows, Cols>& dest, const Assign& assign_fn) const { do_assign(dispatch<use_meta>(), dest, *this, assign_fn); } public: // assign operations /** assign a given matrix of a different type T2 element wise to this matrix. The operator=(const Matrix&) is compiler generated. */ template<class T2> Matrix& operator=(const Matrix<T2, Rows, Cols>& rhs) { rhs.assign_to(*this, Fcnl_assign<value_type, T2>()); return *this; } /** assign a given XprMatrix element wise to this matrix. */ template <class E> Matrix& operator=(const XprMatrix<E, Rows, Cols>& rhs) { rhs.assign_to(*this, Fcnl_assign<value_type, typename E::value_type>()); return *this; } private: template<class Obj, std::size_t LEN> friend class CommaInitializer; /** This is a helper for assigning a comma separated initializer list. It's equal to Matrix& operator=(value_type) which does replace it. */ Matrix& assign_value(value_type rhs) { typedef XprLiteral<value_type> expr_type; *this = XprMatrix<expr_type, Rows, Cols>(expr_type(rhs)); return *this; } public: // math operators with scalars // NOTE: this meaning is clear - element wise ops even if not in ns element_wise Matrix& operator+=(value_type) TVMET_CXX_ALWAYS_INLINE; Matrix& operator-=(value_type) TVMET_CXX_ALWAYS_INLINE; Matrix& operator*=(value_type) TVMET_CXX_ALWAYS_INLINE; Matrix& operator/=(value_type) TVMET_CXX_ALWAYS_INLINE; Matrix& operator%=(std::size_t) TVMET_CXX_ALWAYS_INLINE; Matrix& operator^=(std::size_t) TVMET_CXX_ALWAYS_INLINE; Matrix& operator&=(std::size_t) TVMET_CXX_ALWAYS_INLINE; Matrix& operator|=(std::size_t) TVMET_CXX_ALWAYS_INLINE; Matrix& operator<<=(std::size_t) TVMET_CXX_ALWAYS_INLINE; Matrix& operator>>=(std::size_t) TVMET_CXX_ALWAYS_INLINE; public: // math operators with matrizes // NOTE: access using the operators in ns element_wise, since that's what is does template <class T2> Matrix& M_add_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_sub_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_mul_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_div_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_mod_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_xor_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_and_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_or_eq (const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_shl_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& M_shr_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; public: // math operators with expressions // NOTE: access using the operators in ns element_wise, since that's what is does template <class E> Matrix& M_add_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_sub_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_mul_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_div_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_mod_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_xor_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_and_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_or_eq (const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_shl_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& M_shr_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; public: // aliased math operators with expressions template <class T2> Matrix& alias_assign(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& alias_add_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& alias_sub_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& alias_mul_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class T2> Matrix& alias_div_eq(const Matrix<T2, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& alias_assign(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& alias_add_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& alias_sub_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& alias_mul_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; template <class E> Matrix& alias_div_eq(const XprMatrix<E, Rows, Cols>&) TVMET_CXX_ALWAYS_INLINE; public: // io /** Structure for info printing as Matrix<T, Rows, Cols>. */ struct Info : public TvmetBase<Info> { std::ostream& print_xpr(std::ostream& os) const { os << "Matrix<T=" << typeid(value_type).name() << ", R=" << Rows << ", C=" << Cols << ">"; return os; } }; /** Get an info object of this matrix. */ static Info info() { return Info(); } /** Member function for expression level printing. */ std::ostream& print_xpr(std::ostream& os, std::size_t l=0) const; /** Member function for printing internal data. */ std::ostream& print_on(std::ostream& os) const; private: /** The data of matrix self. */ #if defined(TVMET_DYNAMIC_MEMORY) value_type* m_data; #else value_type m_data[Size]; #endif }; } // namespace tvmet #include <tvmet/MatrixImpl.h> #include <tvmet/MatrixFunctions.h> #include <tvmet/MatrixBinaryFunctions.h> #include <tvmet/MatrixUnaryFunctions.h> #include <tvmet/MatrixOperators.h> #include <tvmet/MatrixEval.h> #include <tvmet/AliasProxy.h> #endif // TVMET_MATRIX_H // Local Variables: // mode:C++ // tab-width:8 // End: