assignment_2_herpe
Dependencies: mbed WattBob_TextLCD MCP23017
Revision 0:aaddc17011a9, committed 2012-03-08
- Comitter:
- xherpe
- Date:
- Thu Mar 08 16:32:35 2012 +0000
- Commit message:
Changed in this revision
diff -r 000000000000 -r aaddc17011a9 FATFileSystem.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/FATFileSystem.lib Thu Mar 08 16:32:35 2012 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_unsupported/code/fatfilesystem/ \ No newline at end of file
diff -r 000000000000 -r aaddc17011a9 MCP23017.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MCP23017.lib Thu Mar 08 16:32:35 2012 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/jimherd/code/MCP23017/#d57de266cf19
diff -r 000000000000 -r aaddc17011a9 SDFileSystem.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SDFileSystem.cpp Thu Mar 08 16:32:35 2012 +0000 @@ -0,0 +1,457 @@ +/* mbed SDFileSystem Library, for providing file access to SD cards + * Copyright (c) 2008-2010, sford + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +/* Introduction + * ------------ + * SD and MMC cards support a number of interfaces, but common to them all + * is one based on SPI. This is the one I'm implmenting because it means + * it is much more portable even though not so performant, and we already + * have the mbed SPI Interface! + * + * The main reference I'm using is Chapter 7, "SPI Mode" of: + * http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf + * + * SPI Startup + * ----------- + * The SD card powers up in SD mode. The SPI interface mode is selected by + * asserting CS low and sending the reset command (CMD0). The card will + * respond with a (R1) response. + * + * CMD8 is optionally sent to determine the voltage range supported, and + * indirectly determine whether it is a version 1.x SD/non-SD card or + * version 2.x. I'll just ignore this for now. + * + * ACMD41 is repeatedly issued to initialise the card, until "in idle" + * (bit 0) of the R1 response goes to '0', indicating it is initialised. + * + * You should also indicate whether the host supports High Capicity cards, + * and check whether the card is high capacity - i'll also ignore this + * + * SPI Protocol + * ------------ + * The SD SPI protocol is based on transactions made up of 8-bit words, with + * the host starting every bus transaction by asserting the CS signal low. The + * card always responds to commands, data blocks and errors. + * + * The protocol supports a CRC, but by default it is off (except for the + * first reset CMD0, where the CRC can just be pre-calculated, and CMD8) + * I'll leave the CRC off I think! + * + * Standard capacity cards have variable data block sizes, whereas High + * Capacity cards fix the size of data block to 512 bytes. I'll therefore + * just always use the Standard Capacity cards with a block size of 512 bytes. + * This is set with CMD16. + * + * You can read and write single blocks (CMD17, CMD25) or multiple blocks + * (CMD18, CMD25). For simplicity, I'll just use single block accesses. When + * the card gets a read command, it responds with a response token, and then + * a data token or an error. + * + * SPI Command Format + * ------------------ + * Commands are 6-bytes long, containing the command, 32-bit argument, and CRC. + * + * +---------------+------------+------------+-----------+----------+--------------+ + * | 01 | cmd[5:0] | arg[31:24] | arg[23:16] | arg[15:8] | arg[7:0] | crc[6:0] | 1 | + * +---------------+------------+------------+-----------+----------+--------------+ + * + * As I'm not using CRC, I can fix that byte to what is needed for CMD0 (0x95) + * + * All Application Specific commands shall be preceded with APP_CMD (CMD55). + * + * SPI Response Format + * ------------------- + * The main response format (R1) is a status byte (normally zero). Key flags: + * idle - 1 if the card is in an idle state/initialising + * cmd - 1 if an illegal command code was detected + * + * +-------------------------------------------------+ + * R1 | 0 | arg | addr | seq | crc | cmd | erase | idle | + * +-------------------------------------------------+ + * + * R1b is the same, except it is followed by a busy signal (zeros) until + * the first non-zero byte when it is ready again. + * + * Data Response Token + * ------------------- + * Every data block written to the card is acknowledged by a byte + * response token + * + * +----------------------+ + * | xxx | 0 | status | 1 | + * +----------------------+ + * 010 - OK! + * 101 - CRC Error + * 110 - Write Error + * + * Single Block Read and Write + * --------------------------- + * + * Block transfers have a byte header, followed by the data, followed + * by a 16-bit CRC. In our case, the data will always be 512 bytes. + * + * +------+---------+---------+- - - -+---------+-----------+----------+ + * | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] | + * +------+---------+---------+- - - -+---------+-----------+----------+ + */ + +#include "SDFileSystem.h" + +#define SD_COMMAND_TIMEOUT 5000 + +SDFileSystem::SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name) : + FATFileSystem(name), _spi(mosi, miso, sclk), _cs(cs) { + _cs = 1; +} + +#define R1_IDLE_STATE (1 << 0) +#define R1_ERASE_RESET (1 << 1) +#define R1_ILLEGAL_COMMAND (1 << 2) +#define R1_COM_CRC_ERROR (1 << 3) +#define R1_ERASE_SEQUENCE_ERROR (1 << 4) +#define R1_ADDRESS_ERROR (1 << 5) +#define R1_PARAMETER_ERROR (1 << 6) + +// Types +// - v1.x Standard Capacity +// - v2.x Standard Capacity +// - v2.x High Capacity +// - Not recognised as an SD Card + +#define SDCARD_FAIL 0 +#define SDCARD_V1 1 +#define SDCARD_V2 2 +#define SDCARD_V2HC 3 + +int SDFileSystem::initialise_card() { + // Set to 100kHz for initialisation, and clock card with cs = 1 + _spi.frequency(100000); + _cs = 1; + for(int i=0; i<16; i++) { + _spi.write(0xFF); + } + + // send CMD0, should return with all zeros except IDLE STATE set (bit 0) + if(_cmd(0, 0) != R1_IDLE_STATE) { + fprintf(stderr, "No disk, or could not put SD card in to SPI idle state\n"); + return SDCARD_FAIL; + } + + // send CMD8 to determine whther it is ver 2.x + int r = _cmd8(); + if(r == R1_IDLE_STATE) { + return initialise_card_v2(); + } else if(r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { + return initialise_card_v1(); + } else { + fprintf(stderr, "Not in idle state after sending CMD8 (not an SD card?)\n"); + return SDCARD_FAIL; + } +} + +int SDFileSystem::initialise_card_v1() { + for(int i=0; i<SD_COMMAND_TIMEOUT; i++) { + _cmd(55, 0); + if(_cmd(41, 0) == 0) { + return SDCARD_V1; + } + } + + fprintf(stderr, "Timeout waiting for v1.x card\n"); + return SDCARD_FAIL; +} + +int SDFileSystem::initialise_card_v2() { + + for(int i=0; i<SD_COMMAND_TIMEOUT; i++) { + _cmd(55, 0); + if(_cmd(41, 0) == 0) { + _cmd58(); + return SDCARD_V2; + } + } + + fprintf(stderr, "Timeout waiting for v2.x card\n"); + return SDCARD_FAIL; +} + +int SDFileSystem::disk_initialize() { + + int i = initialise_card(); +// printf("init card = %d\n", i); +// printf("OK\n"); + + _sectors = _sd_sectors(); + + // Set block length to 512 (CMD16) + if(_cmd(16, 512) != 0) { + fprintf(stderr, "Set 512-byte block timed out\n"); + return 1; + } + + _spi.frequency(1000000); // Set to 1MHz for data transfer + return 0; +} + +int SDFileSystem::disk_write(const char *buffer, int block_number) { + // set write address for single block (CMD24) + if(_cmd(24, block_number * 512) != 0) { + return 1; + } + + // send the data block + _write(buffer, 512); + return 0; +} + +int SDFileSystem::disk_read(char *buffer, int block_number) { + // set read address for single block (CMD17) + if(_cmd(17, block_number * 512) != 0) { + return 1; + } + + // receive the data + _read(buffer, 512); + return 0; +} + +int SDFileSystem::disk_status() { return 0; } +int SDFileSystem::disk_sync() { return 0; } +int SDFileSystem::disk_sectors() { return _sectors; } + +// PRIVATE FUNCTIONS + +int SDFileSystem::_cmd(int cmd, int arg) { + _cs = 0; + + // send a command + _spi.write(0x40 | cmd); + _spi.write(arg >> 24); + _spi.write(arg >> 16); + _spi.write(arg >> 8); + _spi.write(arg >> 0); + _spi.write(0x95); + + // wait for the repsonse (response[7] == 0) + for(int i=0; i<SD_COMMAND_TIMEOUT; i++) { + int response = _spi.write(0xFF); + if(!(response & 0x80)) { + _cs = 1; + _spi.write(0xFF); + return response; + } + } + _cs = 1; + _spi.write(0xFF); + return -1; // timeout +} +int SDFileSystem::_cmdx(int cmd, int arg) { + _cs = 0; + + // send a command + _spi.write(0x40 | cmd); + _spi.write(arg >> 24); + _spi.write(arg >> 16); + _spi.write(arg >> 8); + _spi.write(arg >> 0); + _spi.write(0x95); + + // wait for the repsonse (response[7] == 0) + for(int i=0; i<SD_COMMAND_TIMEOUT; i++) { + int response = _spi.write(0xFF); + if(!(response & 0x80)) { + return response; + } + } + _cs = 1; + _spi.write(0xFF); + return -1; // timeout +} + + +int SDFileSystem::_cmd58() { + _cs = 0; + int arg = 0; + + // send a command + _spi.write(0x40 | 58); + _spi.write(arg >> 24); + _spi.write(arg >> 16); + _spi.write(arg >> 8); + _spi.write(arg >> 0); + _spi.write(0x95); + + // wait for the repsonse (response[7] == 0) + for(int i=0; i<SD_COMMAND_TIMEOUT; i++) { + int response = _spi.write(0xFF); + if(!(response & 0x80)) { + int ocr = _spi.write(0xFF) << 24; + ocr |= _spi.write(0xFF) << 16; + ocr |= _spi.write(0xFF) << 8; + ocr |= _spi.write(0xFF) << 0; +// printf("OCR = 0x%08X\n", ocr); + _cs = 1; + _spi.write(0xFF); + return response; + } + } + _cs = 1; + _spi.write(0xFF); + return -1; // timeout +} + +int SDFileSystem::_cmd8() { + _cs = 0; + + // send a command + _spi.write(0x40 | 8); // CMD8 + _spi.write(0x00); // reserved + _spi.write(0x00); // reserved + _spi.write(0x01); // 3.3v + _spi.write(0xAA); // check pattern + _spi.write(0x87); // crc + + // wait for the repsonse (response[7] == 0) + for(int i=0; i<SD_COMMAND_TIMEOUT * 1000; i++) { + char response[5]; + response[0] = _spi.write(0xFF); + if(!(response[0] & 0x80)) { + for(int j=1; j<5; j++) { + response[i] = _spi.write(0xFF); + } + _cs = 1; + _spi.write(0xFF); + return response[0]; + } + } + _cs = 1; + _spi.write(0xFF); + return -1; // timeout +} + +int SDFileSystem::_read(char *buffer, int length) { + _cs = 0; + + // read until start byte (0xFF) + while(_spi.write(0xFF) != 0xFE); + + // read data + for(int i=0; i<length; i++) { + buffer[i] = _spi.write(0xFF); + } + _spi.write(0xFF); // checksum + _spi.write(0xFF); + + _cs = 1; + _spi.write(0xFF); + return 0; +} + +int SDFileSystem::_write(const char *buffer, int length) { + _cs = 0; + + // indicate start of block + _spi.write(0xFE); + + // write the data + for(int i=0; i<length; i++) { + _spi.write(buffer[i]); + } + + // write the checksum + _spi.write(0xFF); + _spi.write(0xFF); + + // check the repsonse token + if((_spi.write(0xFF) & 0x1F) != 0x05) { + _cs = 1; + _spi.write(0xFF); + return 1; + } + + // wait for write to finish + while(_spi.write(0xFF) == 0); + + _cs = 1; + _spi.write(0xFF); + return 0; +} + +static int ext_bits(char *data, int msb, int lsb) { + int bits = 0; + int size = 1 + msb - lsb; + for(int i=0; i<size; i++) { + int position = lsb + i; + int byte = 15 - (position >> 3); + int bit = position & 0x7; + int value = (data[byte] >> bit) & 1; + bits |= value << i; + } + return bits; +} + +int SDFileSystem::_sd_sectors() { + + // CMD9, Response R2 (R1 byte + 16-byte block read) + if(_cmdx(9, 0) != 0) { + fprintf(stderr, "Didn't get a response from the disk\n"); + return 0; + } + + char csd[16]; + if(_read(csd, 16) != 0) { + fprintf(stderr, "Couldn't read csd response from disk\n"); + return 0; + } + + // csd_structure : csd[127:126] + // c_size : csd[73:62] + // c_size_mult : csd[49:47] + // read_bl_len : csd[83:80] - the *maximum* read block length + + int csd_structure = ext_bits(csd, 127, 126); + int c_size = ext_bits(csd, 73, 62); + int c_size_mult = ext_bits(csd, 49, 47); + int read_bl_len = ext_bits(csd, 83, 80); + +// printf("CSD_STRUCT = %d\n", csd_structure); + + if(csd_structure != 0) { + fprintf(stderr, "This disk tastes funny! I only know about type 0 CSD structures\n"); + return 0; + } + + // memory capacity = BLOCKNR * BLOCK_LEN + // where + // BLOCKNR = (C_SIZE+1) * MULT + // MULT = 2^(C_SIZE_MULT+2) (C_SIZE_MULT < 8) + // BLOCK_LEN = 2^READ_BL_LEN, (READ_BL_LEN < 12) + + int block_len = 1 << read_bl_len; + int mult = 1 << (c_size_mult + 2); + int blocknr = (c_size + 1) * mult; + int capacity = blocknr * block_len; + + int blocks = capacity / 512; + + return blocks; +}
diff -r 000000000000 -r aaddc17011a9 SDFileSystem.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SDFileSystem.h Thu Mar 08 16:32:35 2012 +0000 @@ -0,0 +1,81 @@ +/* mbed SDFileSystem Library, for providing file access to SD cards + * Copyright (c) 2008-2010, sford + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#ifndef MBED_SDFILESYSTEM_H +#define MBED_SDFILESYSTEM_H + +#include "mbed.h" +#include "FATFileSystem.h" + +/** Access the filesystem on an SD Card using SPI + * + * @code + * #include "mbed.h" + * #include "SDFileSystem.h" + * + * SDFileSystem sd(p5, p6, p7, p12, "sd"); // mosi, miso, sclk, cs + * + * int main() { + * FILE *fp = fopen("/sd/myfile.txt", "w"); + * fprintf(fp, "Hello World!\n"); + * fclose(fp); + * } + */ +class SDFileSystem : public FATFileSystem { +public: + + /** Create the File System for accessing an SD Card using SPI + * + * @param mosi SPI mosi pin connected to SD Card + * @param miso SPI miso pin conencted to SD Card + * @param sclk SPI sclk pin connected to SD Card + * @param cs DigitalOut pin used as SD Card chip select + * @param name The name used to access the virtual filesystem + */ + SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name); + virtual int disk_initialize(); + virtual int disk_write(const char *buffer, int block_number); + virtual int disk_read(char *buffer, int block_number); + virtual int disk_status(); + virtual int disk_sync(); + virtual int disk_sectors(); + +protected: + + int _cmd(int cmd, int arg); + int _cmdx(int cmd, int arg); + int _cmd8(); + int _cmd58(); + int initialise_card(); + int initialise_card_v1(); + int initialise_card_v2(); + + int _read(char *buffer, int length); + int _write(const char *buffer, int length); + int _sd_sectors(); + int _sectors; + + SPI _spi; + DigitalOut _cs; +}; + +#endif
diff -r 000000000000 -r aaddc17011a9 WattBob_TextLCD.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/WattBob_TextLCD.lib Thu Mar 08 16:32:35 2012 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/jimherd/code/WattBob_TextLCD/#020722c18a8b
diff -r 000000000000 -r aaddc17011a9 main.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Thu Mar 08 16:32:35 2012 +0000 @@ -0,0 +1,429 @@ +// XAVIER HERPE Assignment 2 +// 5th year Robotics & Cybertronics +// Heriot-Watt University + +#include "mbed.h" +#include "MCP23017.h" +#include "WattBob_TextLCD.h" +#include "SDFileSystem.h" +#include "FATFileSystem.h" + +#define BACK_LIGHT_ON(INTERFACE) INTERFACE->write_bit(1,BL_BIT) +#define BACK_LIGHT_OFF(INTERFACE) INTERFACE->write_bit(0,BL_BIT) + +// Pointers to LCD screen and SD card +MCP23017 *par_port; // pointer to 16-bit parallel I/O chip +WattBob_TextLCD *lcd; // pointer to 2*16 character LCD object +FILE *fp; // Pointer to SD card object + + +//===================================================================================== +// I/O ports allocation +//===================================================================================== +DigitalIn TTL(p17); // TTL input for frequency measurement +DigitalIn switch_1(p18); // Switch 1 input +DigitalIn switch_2(p19); // Switch 2 input +DigitalIn switch_off(p11); // Switch used to close SD file and stop cyclic executive +AnalogIn analogue_in_1(p15); // POT value +AnalogIn analogue_in_2(p16); // LDR value +PwmOut servo(p21); // Servo output +DigitalOut TestPin(p20); // Pin only used to test program and measure time +SDFileSystem sd(p5, p6, p7, p8, "sd"); // The pinout on the mbed Cool Components workshop board + + +//===================================================================================== +// Internal objects declaration +// ==================================================================================== +BusOut LEDs(LED4, LED3, LED2, LED1); // Address the four LEDs to a single bus +Timer timer; // Timer used to measure frequency in task 1 +Timer DoNothing; // Timer used to measure how long the program does nothing +Ticker ticker; // Ticker used as clock for cyclic executive program + + +//===================================================================================== +// Constants declaration +//===================================================================================== +const int SampFreq = 100; // Sampling frequency is 10kHz (100us) + + +//===================================================================================== +// Variables declaration +//===================================================================================== + +// Variables for cyclic executive program +long int ticks = 0; // Used to define what task to call in the cyclic executive program +int NoTask = 0; // Used to return how long the program does nothing in ms +int NoTaskCount = 0; // Variable incremented until one total cycle of 10 seconds is reached + +// Variables for tasks 1 and 2 +int period = 0; // Returned period of the TTL input signal +int frequency = 0; // Returned frequency of the TTL signal + +// Varibles for task 4 +int switch_1_val = 0; // Used to return how many times the switch is high +int switch_2_val = 0; +bool switch_1_state = 0; // Used to define whether the debounced switch is ON or OFF +bool switch_2_state = 0; + +// Variables for task 5 +float analogue_1_val = 0; // Used to return the filtered analogue input +float analogue_2_val = 0; + +int analogue_1_int = 0; // Used to convert float to int (results in quicker display on LCD in task 6) +int analogue_2_int = 0; + +// Variable for task 7 +int LogCount = 0; // Used to define logging number + +// Variable used for task 8 +int BinCount = 0; // Used to increment a binary display on LEDs. Goes from 0 to 15 and then is reset +bool BinEnable = 0; // Used to tell task 5 to display binary pattern on LEDs every 1.5s +int IncCheck = 0; // Check increment to see if 6 cycles have elapsed to light LEDs ( 6 * 250us = 1.5s) + + +//===================================================================================== +// Task declaration +//===================================================================================== + +void CyclEx(); + +void Task1(); // Measure TTL input frequency +void Task2(); // Show frequency on LCD screen +void Task3(); // Show speed on servo dial +void Task4(); // Read and debounce two digital inputs +void Task5(); // Read and filter two analogue inputs +void Task6(); // Display digital and analogue inputs on LCD screen +void Task7(); // Log speed, analogue and digital inputs on SD card +void Task8(); // Display error message on LCD screen and display binary pattern on LEDs + +void WaitRisEdge(); // Subroutine to detect rising edge +void WaitFalEdge(); // Subroutine to detect falling edge + +void Stop(); // Close log file and stop cyclic executive + + +//===================================================================================== +// Main program +//===================================================================================== + +int main() +{ + + // LCD Screen Initialisation + par_port = new MCP23017(p9, p10, 0x40); // initialise 16-bit I/O chip + lcd = new WattBob_TextLCD(par_port); // initialise 2*26 char display + par_port->write_bit(1,BL_BIT); // turn LCD backlight ON + lcd->cls(); // clear display + + // EXEL log file initialisation + fp = fopen("/sd/log.xls", "w"); // pointer to log in text file called "log". (Use "a" to not delete file) + fprintf(fp, "This file is the property of Xavier Herpe, the French\n\n"); + + // DoNothing timer reset + DoNothing.reset(); + + // Internal ticker set to 25ms. Every 25ms, the scheduler is called and selects the task to run + ticker.attach(&CyclEx, 0.025); // Period set to 25ms + while(1)// Run until system shuts down + { + + } +} + +// Where tasks are scheduled based on an EXEL sheet +void CyclEx() +{ + // Stop timer when a new task starts + DoNothing.stop(); + + if(ticks % 80 == 4) // Occures every 80 clock cycles (2 seconds). Starts with an offset of 4 clock cycles + { + Task1(); + } + + else if(ticks % 200 == 8) // Occures every 200 clock cycles (5 seconds). Starts with an offset of 8 clock cycles + { + Task2(); + } + else if(ticks % 240 == 7) // Occures every 240 clock cycles (6 seconds). Starts with an offset of 7 clock cycles + { + Task3(); + } + else if(ticks % 4 == 0) // Occures every 4 clock cycles (0.1 seconds). Starts with an offset of 0 clock cycles + { + Task4(); + } + else if(ticks % 10 == 1) // Occures every 10 clock cycles (0.25 seconds). Starts with an offset of 1 clock cycles + { + Task5(); + } + else if(ticks % 40 == 3) // Occures every 40 clock cycles (1 seconds). Starts with an offset of 3 clock cycles + { + Task6(); + } + else if(ticks % 400 == 10) // Occures every 400 clock cycles (10 seconds). Starts with an offset of 10 clock cycles + { + Task7(); + } + else if(ticks % 160 == 6) // Occures every 160 clock cycles (4 seconds). Starts with an offset of 6 clock cycles + { + Task8(); + } + + if (switch_off == 1) // Pin used to log data on SD card and stop Cyclic executive program + { + Stop(); + } + ticks++; + + // Start timer when one task is ended + DoNothing.start(); + NoTaskCount++; + + // When one full cycle of 10 seconds is finished, return how long the program was doing nothing (lazy program) + if (NoTaskCount == 400) + { + NoTask = DoNothing.read_ms(); + NoTaskCount = 0; + DoNothing.reset(); + } +} + + +//===================================================================================== +// Tasks +//===================================================================================== + +// Task 1: Measure TTL input frequency +void Task1() +{ + timer.reset(); + + // If the input signal is low, wait for a rising edge to start counting + if (TTL == 0) + { + WaitRisEdge(); // Call subroutine to wait for rising edge + timer.start(); // Start timer + while(TTL == 1) // Keep counting as long as signal is high + { + wait_us(SampFreq); + } + } + + // If the input signal is high, wait for a falling edge to start counting + else if (TTL == 1) + { + WaitFalEdge(); // Call subroutine to wait for falling edge + timer.start(); // Start timer + while(TTL == 0) // Keep counting as long as signal is high + { + wait_us(SampFreq); + } + } + + timer.stop(); // Stop counting when signal changes + period = timer.read_us()*2; // Convert the time into a period + frequency = 1000000/period; // Convert the period into a frequency +} + + + +// Task 2: display the measured frequency on LCD screen +void Task2() +{ + lcd->cls(); // clear display + lcd->locate(0,0); // set cursor to location (0,0) - top left corner + lcd->printf("%d Hz",frequency); // print the frequency calculated in task 1 +} + + + +// Task 3: show speed on servo output dial +void Task3() +{ + servo.period(0.02); // servo requires a 20ms period + // To rotate the servo from -90 to +90 degrees, the pulse width must varies between 600us to 2300us + // The pulse width is calculated from the speed measured in task one + // 50Hz is equivalent to -90 degrees and 100Hz is equivalent to 90 degrees + // 1Hz change is equal to 34us pulse width change, so pulse width = ((frequency - 50)*34) + 600 + servo.pulsewidth_us(2300-((frequency - 50)*34)); + wait_ms(1); // Leave the servo some time to reach its position +} + + + +// Task 4: Read two digital inputs (debounced) +void Task4() +{ + switch_1_val = 0; + switch_2_val = 0; + + // Read each switch three consecutive times with 100us between readings + for(int i=0; i<3; i++) + { + if (switch_1 == 1) // Increment variable if switch 1 is pressed + { + switch_1_val++; + } + + if (switch_2 == 1) // Increment variable if switch 2 is pressed + { + switch_2_val++; + } + + wait_us(SampFreq); + } + // Check how many times switch 1 has been high + // if it has been high more than twice, then switch 1 state = 1 + if (switch_1_val > 1) + { + switch_1_state = 1; + } + else + { + switch_1_state = 0; + } + + // Check how many times switch 1 has been high + // if it has been high more than twice, then switch 2 state = 1 + if (switch_2_val > 1) + { + switch_2_state = 1; + } + + else + { + switch_2_state = 0; + } +} + + + +// Task 5: Read two analogue inputs (filtered) +void Task5() +{ + analogue_1_val = 0; // Reset variables + analogue_2_val = 0; + + // Takes four readings of each analogue input. Readings occure every 0.1ms + // Because the analogue.read() function returns a value from 0 to 1, + // we need to multiply the readings by 3.3 to cover 0V to 3.3V + for(int i=0; i<4;i++) + { + analogue_1_val = analogue_1_val + (analogue_in_1*3.3); + analogue_2_val = analogue_2_val + (analogue_in_2*3.3); + wait_us(SampFreq); + } + + analogue_1_val = (analogue_1_val / 4); + analogue_2_val = (analogue_2_val / 4); + + analogue_1_int = analogue_1_val * 10; // Convert floating point into an integer to reduce display delay + analogue_2_int = analogue_2_val * 10; + + // This section of task 5 is used to take over part of task 8. + // Since the LEDs pattern has to be incremented every 1.5s, the pattern is + // incremented every 6 cycles, which correspond to 1.5s. + if(BinEnable == 1) + { + IncCheck++; + + if(IncCheck == 6) // Corresponds to 1.5s. Increment binary pattern + { + LEDs = BinCount; + BinCount++; + IncCheck = 0; + + if (BinCount > 15) // Used to reset variable once maximum 4-bit binary value is reached + { + BinCount = 0; + } + } + } +} + + + +// Task 6: Display analogue and digital values on LCD screen +void Task6() +{ + // lcd->cls(); // clear display (takes too long) + lcd->locate(0,0); // set cursor to location (0,0) - top left corner + lcd->printf("%d %d%d%d",analogue_1_int,analogue_2_int,switch_1_state,switch_2_state); +} + + + +// Task 7: Log values on SD card +void Task7() +{ + LogCount++; //Used to print the logging number in file. Starts from 1 + fprintf(fp, "Log: %d, Speed: %dHz, Switch_1: %d, Switch_2: %d, POT: %.2fVolts, LDR: %.2fVolts\n",LogCount,frequency,switch_1_state,switch_2_state,analogue_1_val,analogue_2_val); +} + + + +// Task 8: Show error message and light LEDs +void Task8() +{ + // If switch_1 = 1 and POT value > 3V, display error message + if(switch_1_state == 1 && analogue_1_val > 3) + { + //lcd->cls(); // clear display + lcd->locate(0,0); // set cursor to location (0,0) - top left corner + lcd->printf(".ERREUR"); + } + + // If switch 2 is high, return a command to task 5 to do the incrementing pattern every 1.5 seconds + if(switch_2_state == 1) + { + BinEnable = 1; + } + + // If switch 2 is low, stop sending a command to task 5 and light off LEDs + else + { + LEDs = 0; + BinEnable = 0; + BinCount = 0; + } +} + + + +// Stop function to stop cyclic executive and close log file +void Stop() +{ + ticker.detach(); + fprintf(fp, "\n The program did nothing for %d ms, which corresponds to %d percent of the time \n",NoTask, NoTask/100); + fprintf(fp, "\n PROGRAM STOPPED"); + fclose(fp); + +} + + + +//===================================================================================== +// Subroutines +//===================================================================================== + +// Wait for rising edge +void WaitRisEdge() +{ + // As soon as it gets high, the subroutine will end and the timer will start + while(TTL == 0) + { + wait_us(SampFreq); + } +} + + +// Wait for falling edge +void WaitFalEdge() +{ + // As soon as it gets low, the subroutine will end and the timer will start + while(TTL == 1) + { + wait_us(SampFreq); + } +} \ No newline at end of file
diff -r 000000000000 -r aaddc17011a9 mbed.bld --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Thu Mar 08 16:32:35 2012 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/4c0c40fd0593