Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Inverter/Inverter.cpp
- Committer:
- benkatz
- Date:
- 2016-02-05
- Revision:
- 0:4e1c4df6aabd
- Child:
- 1:b8bceb4daed5
File content as of revision 0:4e1c4df6aabd:
#include "mbed.h"
#include "FastPWM.h"
#include "Inverter.h"
Inverter::Inverter(PinName PinA, PinName PinB, PinName PinC, PinName PinEnable, float I_Scale, float Period){
_I_Scale = I_Scale;
Enable = new DigitalOut(PinEnable);
//Current_B = new AnalogIn(BSense);
//Current_C = new AnalogIn(CSense);
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; // enable the clock to GPIOA
RCC->APB1ENR |= 0x00000001; // enable TIM2 clock
GPIOC->MODER = (1 << 8); // set pin 4 to be general purpose output
PWM_A = new FastPWM(PinA);
PWM_B = new FastPWM(PinB);
PWM_C = new FastPWM(PinC);
TIM2->CR1 &= ~(TIM_CR1_CEN);
TIM2->CR1 |= TIM_CR1_CMS;
TIM2->CR1 |= TIM_CR1_CEN;
//PWM_A->period(Period);
//PWM Setup
TIM2->PSC = 0x0; // no prescaler, timer counts up in sync with the peripheral clock
TIM2->ARR = 0x8CA; //
TIM2->CCER |= TIM_CCER_CC1NP;
//ISR Setup
NVIC->ISER[0] |= 1<< (TIM2_IRQn); // enable the TIM2 IRQ
TIM2->DIER |= TIM_DIER_UIE; // enable update interrupt
TIM2->CR1 |= TIM_CR1_ARPE; // autoreload on,
TIM2->EGR |= TIM_EGR_UG;
// ADC Setup
RCC->APB2ENR |= RCC_APB2ENR_ADC2EN; // clock for ADC2
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // clock for ADC1
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN;//0x0000002; // Enable clock for GPIOC
ADC->CCR = 0x00000006; // Regular simultaneous mode only
ADC1->CR2 |= ADC_CR2_ADON;//0x00000001; // ADC1 ON
ADC1->SQR3 = 0x000000A; // use PC_0 as input
ADC2->CR2 |= ADC_CR2_ADON;//0x00000001; // ADC1 ON
ADC2->SQR3 = 0x0000000B; // use PC_1 as input
GPIOC->MODER |= 0x0000000f; // PC_0, PC_1 are analog inputs
// DAC set-up
RCC->APB1ENR |= 0x20000000; // Enable clock for DAC
DAC->CR |= 0x00000001; // DAC control reg, both channels ON
GPIOA->MODER |= 0x00000300; // PA04 as analog outputs
EnableInverter();
SetDTC(0.0f, 0.0f, 0.0f);
wait(.2);
ZeroCurrent();
}
void Inverter::SetDTC(float DTC_A, float DTC_B, float DTC_C){
PWM_A->write(DTC_A);
PWM_B->write(DTC_B);
PWM_C->write(DTC_C);
}
void Inverter::EnableInverter(){
Enable->write(1);
}
void Inverter::DisableInverter(){
Enable->write(0);
}
void Inverter::ZeroCurrent(){
I_B_Offset = 0;
I_C_Offset = 0;
for (int i=0; i < 1000; i++){
I_B_Offset += ADC1->DR;
I_C_Offset += ADC2->DR;
ADC1->CR2 |= 0x40000000;
}
I_B_Offset = I_B_Offset/1000.0f;
I_C_Offset = I_C_Offset/1000.0f;
printf("B_Offset: %f C_Offset: %f\n\r", I_B_Offset, I_C_Offset);
}
void Inverter::GetCurrent(float *A, float *B, float *C){
*A = I_A;
*B = I_B;
*C = I_C;
}
void Inverter::SampleCurrent(void){
// Dbg->write(1);
GPIOC->ODR ^= (1 << 4);
I_B = _I_Scale*((float) (ADC1->DR) - I_B_Offset);
I_C = _I_Scale*((float) (ADC2->DR)- I_C_Offset);
I_A = -I_B - I_C;
//DAC->DHR12R1 = ADC2->DR;
//DAC->DHR12R1 = TIM3->CNT>>2;//ADC2->DR; // pass ADC -> DAC, also clears EOC flag
ADC1->CR2 |= 0x40000000;
//I_B = Current_B->read()*_I_Scale;
//I_C = Current_C->read()*_I_Scale;
GPIOC->ODR ^= (1 << 4);
// Dbg->write(0);
}