Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: frdmk22f-usbhid-4axis
targets/TARGET_Silicon_Labs/USBHAL_EFM32.cpp
- Committer:
- wue
- Date:
- 2020-03-05
- Revision:
- 72:092f8c67730c
- Parent:
- 71:53949e6131f6
File content as of revision 72:092f8c67730c:
/* Copyright 2015 Silicon Labs, http://www.silabs.com
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined TARGET_EFM32GG_STK3700 || \
defined TARGET_EFM32LG_STK3600 || \
defined TARGET_EFM32WG_STK3800 || \
defined TARGET_EFM32HG_STK3400
#include "USBHAL.h"
#include "em_usb.h"
#include "em_usbtypes.h"
#include "em_usbhal.h"
#include "em_usbd.h"
#include "sleepmodes.h"
enum USBISRCommand {
CMD_HANDLED = 0,
CMD_EP0SETUP,
CMD_EP0IN,
CMD_EP0OUT,
CMD_EP_XFER_COMPLETED,
CMD_SOF,
CMD_BUSRESET,
CMD_SUSPEND_STATE_CHANGED,
CMD_ENUM_END_MARKER
};
enum IEPStatus {
NOT_CONFIGURED = 0,
IDLE = 1,
READ_PENDING = 2,
WRITE_PENDING = 3,
READ_COMPLETE = 4,
WRITE_COMPLETE = 5,
FAILED_INVALID = 6,
FAILED_STALLED = 7
};
typedef struct {
IEPStatus status;
uint32_t byte_count;
uint32_t max_packet;
USB_XferCompleteCb_TypeDef intern_cb;
uint8_t *data_buf;
} ep_state_t;
USBHAL * USBHAL::instance;
static uint8_t ep0setupdata[8];
static ep_state_t ep_state[NUMBER_OF_ENDPOINTS];
#ifdef USB_USE_DYNAMIC_MEMORY
static uint8_t ep0in_data_buf[MAX_PACKET_SIZE_EP0] __attribute__ ((aligned (4)));
static uint8_t ep0out_data_buf[MAX_PACKET_SIZE_EP0]; // FIXME: does this need to be this big?
#else
static uint8_t ep_data_buf[NUMBER_OF_ENDPOINTS][64] __attribute__ ((aligned (4)));
#endif
static void run_cmd(USBISRCommand cmd, uint32_t param);
static void (*isrptr)() = NULL;
static USBISRCommand usb_isrcmd = CMD_HANDLED;
static uint32_t usb_isrcmd_param = 0;
extern "C" void usbhal_allow_em2(bool allow_em2);
#ifdef DEBUG_USB_API
#define TRACE(fmt,...) printf("USB: %s: " fmt "\n", __func__, __VA_ARGS__);
#define TRACE_FUNC_IN printf("USB: > %s\n",__func__);
#define TRACE_FUNC_IN_P(fmt, ...) printf("USB: > %s: " fmt "\n", __func__, __VA_ARGS__);
#else
#define TRACE(fmt,...)
#define TRACE_FUNC_IN
#define TRACE_FUNC_IN_P(fmt, ...)
#endif
static EP_STATUS internEndpointRead(uint8_t ep, uint32_t maxSize);
static int usbhal_xfer_complete_cb(uint8_t epaddr, USB_Status_TypeDef status,
uint32_t xferred, uint32_t remaining);
static void usbhal_free_buffers(void);
/* Internal EP transfer complete callbacks */
#define EPCB(n) static int usbhal_xfer_complete_cb_##n(USB_Status_TypeDef status, \
uint32_t xferred, uint32_t remaining) { \
return usbhal_xfer_complete_cb(n, status, xferred, remaining); \
}
/* ------^ */
EPCB(EP0OUT)
EPCB(EP0IN)
EPCB(EP1OUT)
EPCB(EP1IN)
EPCB(EP2OUT)
EPCB(EP2IN)
EPCB(EP3OUT)
EPCB(EP3IN)
#ifndef TARGET_EFM32HG_STK3400
EPCB(EP4OUT)
EPCB(EP4IN)
EPCB(EP5OUT)
EPCB(EP5IN)
EPCB(EP6OUT)
EPCB(EP6IN)
#endif
static inline bool is_aligned(const void *pointer, size_t byte_count)
{
return ((uintptr_t)pointer % byte_count == 0);
}
USBHAL::USBHAL(void)
{
TRACE_FUNC_IN;
isrptr = &USBHAL::_usbisr;
if (instance) {
TRACE("Assert self failed! instance=%p", instance);
abort();
}
instance = this;
// When USB is active, we can't go below EM1. This block may
// be dynamically removed/reinstated to allow deeper sleep.
usbhal_allow_em2(false);
// When in suspend / Vbus off we can go to EM2, but never below
// that as long as USB is being used. Despite the name the call here
// blocks entering modes _below_ EM2, but allows EM2.
blockSleepMode(EM2);
epCallback[EP0OUT] = NULL;
epCallback[EP0IN ] = NULL;
epCallback[EP1OUT] = &USBHAL::EP1_OUT_callback;
epCallback[EP1IN ] = &USBHAL::EP1_IN_callback;
epCallback[EP2OUT] = &USBHAL::EP2_OUT_callback;
epCallback[EP2IN ] = &USBHAL::EP2_IN_callback;
epCallback[EP3OUT] = &USBHAL::EP3_OUT_callback;
epCallback[EP3IN ] = &USBHAL::EP3_IN_callback;
#ifndef TARGET_EFM32HG_STK3400
epCallback[EP4OUT] = &USBHAL::EP4_OUT_callback;
epCallback[EP4IN ] = &USBHAL::EP4_IN_callback;
epCallback[EP5OUT] = &USBHAL::EP5_OUT_callback;
epCallback[EP5IN ] = &USBHAL::EP5_IN_callback;
epCallback[EP6OUT] = &USBHAL::EP6_OUT_callback;
epCallback[EP6IN ] = &USBHAL::EP6_IN_callback;
#endif
memset(ep_state, 0, sizeof(ep_state));
ep_state[EP0OUT].intern_cb = usbhal_xfer_complete_cb_EP0OUT;
ep_state[EP0IN ].intern_cb = usbhal_xfer_complete_cb_EP0IN;
ep_state[EP1OUT].intern_cb = usbhal_xfer_complete_cb_EP1OUT;
ep_state[EP1IN ].intern_cb = usbhal_xfer_complete_cb_EP1IN;
ep_state[EP2OUT].intern_cb = usbhal_xfer_complete_cb_EP2OUT;
ep_state[EP2IN ].intern_cb = usbhal_xfer_complete_cb_EP2IN;
ep_state[EP3OUT].intern_cb = usbhal_xfer_complete_cb_EP3OUT;
ep_state[EP3IN ].intern_cb = usbhal_xfer_complete_cb_EP3IN;
#ifndef TARGET_EFM32HG_STK3400
ep_state[EP4OUT].intern_cb = usbhal_xfer_complete_cb_EP4OUT;
ep_state[EP4IN ].intern_cb = usbhal_xfer_complete_cb_EP4IN;
ep_state[EP5OUT].intern_cb = usbhal_xfer_complete_cb_EP5OUT;
ep_state[EP5IN ].intern_cb = usbhal_xfer_complete_cb_EP5IN;
ep_state[EP6OUT].intern_cb = usbhal_xfer_complete_cb_EP6OUT;
ep_state[EP6IN ].intern_cb = usbhal_xfer_complete_cb_EP6IN;
#endif
#ifdef USB_USE_DYNAMIC_MEMORY
ep_state[EP0OUT].data_buf = ep0out_data_buf;
ep_state[EP0IN].data_buf = ep0in_data_buf;
#else
for (int i=0 ; i<NUMBER_OF_ENDPOINTS ; i++) {
ep_state[i].data_buf = ep_data_buf[i];
}
#endif
}
USBHAL::~USBHAL(void)
{
TRACE_FUNC_IN;
USBD_AbortAllTransfers();
USBD_Disconnect();
usbhal_free_buffers();
usbhal_allow_em2(true);
unblockSleepMode(EM2);
}
extern "C" void usbhal_allow_em2(bool allow_em2)
{
if (allow_em2) {
// unblockSleepMode is safe to call even if we would unblock
// an already unblocked mode, so no checks here.
unblockSleepMode(EM1);
} else {
blockSleepMode(EM1);
}
}
static void usbhal_reset_cb(void)
{
TRACE_FUNC_IN;
run_cmd(CMD_BUSRESET, 0);
}
#ifdef DEBUG_USB_API
static const char *usbstate[] = { "NONE", "ATTACHED", "POWERED", "DEFAULT",
"ADDRESSED", "CONFIGURED", "SUSPENDED", "???" };
#endif
static void usbhal_state_change_cb(USBD_State_TypeDef oldState,
USBD_State_TypeDef newState)
{
TRACE("state changed %s -> %s", usbstate[oldState], usbstate[newState]);
if (oldState == USBD_STATE_SUSPENDED) {
run_cmd(CMD_SUSPEND_STATE_CHANGED, 0);
}
if (newState == USBD_STATE_SUSPENDED) {
run_cmd(CMD_SUSPEND_STATE_CHANGED, 1);
}
// Should call connectStateChanged from here as well but there is
// no documentation on when to actually do so. (And the implementation
// in USBDevice.cpp is a stub)
// HACK! Since connectStateChanged is not used, indicate the loss
// off connection by reporting a bus reset. This causes USBDevice
// to realise that at least it's not in CONFIGURED anymore, and
// stop trying to read/write in a busyloop.
if (newState == USBD_STATE_NONE) {
run_cmd(CMD_BUSRESET, 0);
}
}
static int usbhal_setupcmd_cb(const USB_Setup_TypeDef *setup)
{
TRACE_FUNC_IN;
if (!setup) {
EFM_ASSERT(false);
return USB_STATUS_REQ_ERR;
}
memcpy(ep0setupdata, setup, 8);
run_cmd(CMD_EP0SETUP, 0);
return USB_STATUS_OK;
}
static void usbhal_sof_cb(uint16_t frameNum)
{
run_cmd(CMD_SOF, frameNum);
}
static void usbhal_free_buffers(void)
{
#ifdef USB_USE_DYNAMIC_MEMORY
TRACE_FUNC_IN;
for (int i=EP1OUT ; i<NUMBER_OF_ENDPOINTS ; i++ ) {
if (ep_state[i].data_buf) {
free(ep_state[i].data_buf);
ep_state[i].data_buf = NULL;
}
}
#endif
}
void USBHAL::connect(void)
{
TRACE_FUNC_IN;
// Init datastructures must be static - driver will use these even after the init function exits!
static const uint8_t buffer_multiplier[] = { 1 }; // Mult 1 for control EP
static const USBD_Callbacks_TypeDef usbd_callbacks = {
.usbReset = usbhal_reset_cb,
.usbStateChange = usbhal_state_change_cb,
.setupCmd = usbhal_setupcmd_cb,
.isSelfPowered = NULL,
.sofInt = usbhal_sof_cb
};
USBD_Init_TypeDef initdata = {
.deviceDescriptor = NULL,
.configDescriptor = NULL,
.stringDescriptors = NULL,
.numberOfStrings = 0,
.bufferingMultiplier = buffer_multiplier,
.callbacks = &usbd_callbacks,
.reserved = 0
};
int ret = USBD_Init(&initdata);
TRACE("init = %d, devicedesc = %lx, configdesc = %lx", ret,
(uint32_t) initdata.deviceDescriptor,
(uint32_t) initdata.configDescriptor);
EFM_ASSERT(ret == USB_STATUS_OK);
}
void USBHAL::disconnect(void)
{
TRACE_FUNC_IN;
USBD_Disconnect();
}
void USBHAL::configureDevice(void)
{
TRACE_FUNC_IN;
USBD_SetUsbState(USBD_STATE_CONFIGURED);
}
void USBHAL::unconfigureDevice(void)
{
TRACE_FUNC_IN;
USBD_SetUsbState(USBD_STATE_DEFAULT);
usbhal_free_buffers();
}
void USBHAL::setAddress(uint8_t address)
{
TRACE_FUNC_IN_P("addr 0x%x", (unsigned)address);
USBD_SetAddress(address);
}
void USBHAL::remoteWakeup(void)
{
TRACE_FUNC_IN;
USBD_RemoteWakeup();
}
void USBHAL::EP0setup(uint8_t *buffer)
{
TRACE_FUNC_IN;
EFM_ASSERT(buffer);
if (buffer) {
memcpy(buffer, ep0setupdata, 8);
}
}
void USBHAL::EP0read(void)
{
TRACE_FUNC_IN;
(void)internEndpointRead(0, MAX_PACKET_SIZE_EP0);
}
void USBHAL::EP0readStage(void)
{
TRACE_FUNC_IN;
// Not needed
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer)
{
TRACE_FUNC_IN;
EFM_ASSERT(buffer);
uint32_t read = 0;
endpointReadResult(0, buffer, &read);
return read;
}
static int usbhal_xfer_complete_cb(uint8_t ep, USB_Status_TypeDef status,
uint32_t xferred, uint32_t remaining)
{
TRACE_FUNC_IN_P("ep 0x%x, status %u, xferred %lu, rem %lu",
ep, status, xferred, remaining);
if (ep >= NUMBER_OF_ENDPOINTS) {
EFM_ASSERT(false);
return USB_STATUS_REQ_ERR;
}
switch (ep) {
case EP0OUT:
if (ep_state[EP0OUT].status == READ_PENDING) {
ep_state[EP0OUT].status = READ_COMPLETE;
ep_state[EP0OUT].byte_count = xferred;
// drop zlp
if (xferred == 0) {
break;
}
}
run_cmd(CMD_EP0OUT, 0);
break;
case EP0IN:
run_cmd(CMD_EP0IN, 0);
break;
default:
bool write = ep & 1;
if (status == USB_STATUS_OK) {
if (!write && ep_state[ep].status == READ_PENDING) {
ep_state[ep].status = READ_COMPLETE;
ep_state[ep].byte_count = xferred;
} else if (write && ep_state[ep].status == WRITE_PENDING) {
ep_state[ep].status = WRITE_COMPLETE;
} else {
ep_state[ep].status = FAILED_INVALID;
}
} else {
ep_state[ep].status = FAILED_INVALID;
}
if (ep_state[ep].status != FAILED_INVALID) {
run_cmd(CMD_EP_XFER_COMPLETED, ep);
}
break;
}
return USB_STATUS_OK;
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size)
{
//TRACE_FUNC_IN_P("buffer %lx, size %lu", (uint32_t) buffer, size);
int ret;
USB_XferCompleteCb_TypeDef cb = ep_state[EP0IN].intern_cb;
EFM_ASSERT((buffer != NULL) || (size == 0));
EFM_ASSERT(size <= MAX_PACKET_SIZE_EP0);
if (!buffer || size == 0) {
// No callback after writing EP0 ZLP
cb = NULL;
}
if (buffer && !is_aligned(buffer,4)) {
// Copy unaligned data to write-buffer before USBD_Write
memcpy(ep_state[EP0IN].data_buf, buffer, size);
ret = USBD_Write(0, ep_state[EP0IN].data_buf, size, cb);
} else {
ret = USBD_Write(0, buffer, size, cb);
}
if (ret != USB_STATUS_OK) {
TRACE("FAILED - ret %d", ret);
}
}
void USBHAL::EP0stall(void)
{
TRACE_FUNC_IN;
USBD_StallEp0();
}
static EP_STATUS internEndpointRead(uint8_t ep, uint32_t maxSize)
{
//TRACE_FUNC_IN_P("endpoint 0x%x, size %ld, cb %d", (unsigned)ep, maxSize, useCallback);
if (ep >= NUMBER_OF_ENDPOINTS) {
EFM_ASSERT(false);
return EP_INVALID;
}
ep_state[ep].status = READ_PENDING;
int ret = USBD_Read(USB_EP_TO_ADDR(ep), ep_state[ep].data_buf, maxSize,
ep_state[ep].intern_cb);
if (ret == USB_STATUS_OK) {
return EP_PENDING;
} else {
TRACE("FAILED - ret %d", ret);
if (ret == USB_STATUS_EP_STALLED) {
return EP_STALLED;
} else {
return EP_INVALID;
}
}
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize)
{
return internEndpointRead(endpoint, maximumSize);
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead)
{
TRACE_FUNC_IN;
if (endpoint >= NUMBER_OF_ENDPOINTS) {
EFM_ASSERT(false);
return EP_INVALID;
}
EFM_ASSERT(data);
EFM_ASSERT(bytesRead);
if (!data || !bytesRead) {
return EP_INVALID;
}
switch (ep_state[endpoint].status) {
case READ_PENDING:
return EP_PENDING;
case READ_COMPLETE:
memcpy(data, ep_state[endpoint].data_buf, ep_state[endpoint].byte_count);
*bytesRead = ep_state[endpoint].byte_count;
ep_state[endpoint].status = IDLE;
return EP_COMPLETED;
case FAILED_STALLED:
ep_state[endpoint].status = IDLE;
return EP_STALLED;
default:
ep_state[endpoint].status = IDLE;
return EP_INVALID;
}
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size)
{
TRACE_FUNC_IN_P("endpoint 0x%x, data 0x%lx, size %lu", (unsigned )endpoint, (uint32_t)data, size);
EFM_ASSERT(endpoint < NUMBER_OF_ENDPOINTS);
EFM_ASSERT(endpoint > EP0IN);
EFM_ASSERT(size <= ep_state[endpoint].max_packet);
EFM_ASSERT(data);
uint8_t ep = USB_EP_TO_INDEX(endpoint);
if (endpoint >= NUMBER_OF_ENDPOINTS || endpoint <= EP0IN) {
return EP_INVALID;
}
if (size > ep_state[endpoint].max_packet) {
return EP_INVALID;
}
if (!data) {
return EP_INVALID;
}
memcpy(ep_state[ep].data_buf, data, size);
ep_state[ep].status = WRITE_PENDING;
int ret = USBD_Write(USB_EP_TO_ADDR(endpoint), ep_state[ep].data_buf, size, ep_state[ep].intern_cb);
if (ret == USB_STATUS_EP_STALLED) {
ep_state[ep].status = IDLE;
return EP_STALLED;
} else if (ret != USB_STATUS_OK) {
ep_state[ep].status = IDLE;
return EP_INVALID;
}
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint)
{
if (endpoint >= NUMBER_OF_ENDPOINTS) {
EFM_ASSERT(false);
return EP_INVALID;
}
switch (ep_state[endpoint].status) {
case WRITE_PENDING:
return EP_PENDING;
case WRITE_COMPLETE:
ep_state[endpoint].status = IDLE;
return EP_COMPLETED;
case FAILED_STALLED:
ep_state[endpoint].status = IDLE;
return EP_STALLED;
default:
ep_state[endpoint].status = IDLE;
return EP_INVALID;
}
}
void USBHAL::stallEndpoint(uint8_t endpoint)
{
TRACE_FUNC_IN;
EFM_ASSERT(endpoint < NUMBER_OF_ENDPOINTS);
EFM_ASSERT((endpoint != EP0OUT) && (endpoint != EP0IN));
USBD_StallEp(USB_EP_TO_ADDR(endpoint));
}
void USBHAL::unstallEndpoint(uint8_t endpoint)
{
TRACE_FUNC_IN;
EFM_ASSERT(endpoint < NUMBER_OF_ENDPOINTS);
EFM_ASSERT((endpoint != EP0OUT) && (endpoint != EP0IN));
USBD_UnStallEp(USB_EP_TO_ADDR(endpoint));
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options)
{
TRACE_FUNC_IN_P("endpoint %d, packetsize %ld, options 0x%lx", endpoint,
maxPacket, options);
int mult = 1; // RX/TX buffer size multiplier
int type = USB_EPTYPE_INTR;
if (endpoint >= NUMBER_OF_ENDPOINTS) {
EFM_ASSERT(false);
return false;
}
if (endpoint == EP0IN || endpoint == EP0OUT) {
EFM_ASSERT(false);
return false;
}
ep_state[endpoint].max_packet = 0;
if (endpoint == EPISO_OUT || endpoint == EPISO_IN) {
if (maxPacket > MAX_PACKET_SIZE_EPISO) {
EFM_ASSERT(false);
return false;
}
} else if ((maxPacket > MAX_PACKET_SIZE_EPBULK) || (maxPacket > MAX_PACKET_SIZE_EPINT)) {
EFM_ASSERT(false);
return false;
}
// USBDevice performs a read right after creating the endpoints,
// before calling configureDevice. The read will fail since
// at that point the device state is still ADDRESSED. Workaround
// is to force configured state here.
//
// This relies on USBDevice to not call realiseEndpoint unless
// it is transitioning to the CONFIGURED state.
USBD_SetUsbState(USBD_STATE_CONFIGURED);
// Why doesn't this function have a type param? This is silly...
switch (endpoint) {
case EPBULK_OUT:
case EPBULK_IN:
type = USB_EPTYPE_BULK;
mult = 2;
break;
case EPINT_OUT:
case EPINT_IN:
type = USB_EPTYPE_INTR;
mult = 1;
break;
case EPISO_OUT:
case EPISO_IN:
type = USB_EPTYPE_ISOC;
mult = 2; // ?
break;
}
// Some options force the endpoint to a specific type
if( options & ISOCHRONOUS ) {
type = USB_EPTYPE_ISOC;
mult = 2; // ?
} else if ( options & RATE_FEEDBACK_MODE ) {
// No support for whatever rate feedback is, but for interrupt only
type = USB_EPTYPE_INTR;
mult = 1;
}
#ifdef USB_USE_DYNAMIC_MEMORY
if (ep_state[endpoint].data_buf) {
free(ep_state[endpoint].data_buf);
}
ep_state[endpoint].data_buf = (uint8_t *)malloc(maxPacket);
if (!ep_state[endpoint].data_buf) {
EFM_ASSERT(false);
return false;
}
#endif
int ret = USBD_AddEndpoint(USB_EP_TO_ADDR(endpoint), type, maxPacket, mult);
if (ret == USB_STATUS_OK) {
ep_state[endpoint].status = IDLE;
ep_state[endpoint].max_packet = maxPacket;
return true;
} else {
return false;
}
}
bool USBHAL::getEndpointStallState(unsigned char endpoint)
{
TRACE_FUNC_IN;
if (endpoint >= NUMBER_OF_ENDPOINTS) {
EFM_ASSERT(false);
return false;
}
return USBD_EpIsStalled(USB_EP_TO_ADDR(endpoint));
}
static void run_cmd(USBISRCommand cmd, uint32_t param)
{
if (usb_isrcmd != CMD_HANDLED || cmd >= CMD_ENUM_END_MARKER) {
EFM_ASSERT(false);
abort();
}
usb_isrcmd = cmd;
usb_isrcmd_param = param;
isrptr();
}
void USBHAL::_usbisr(void)
{
EFM_ASSERT(instance);
instance->usbisr();
}
void USBHAL::usbisr(void)
{
//TRACE_FUNC_IN;
// This "ISR" is used just to route callbacks from SiL USB driver
// callback context (which can not call protected/private USBHAL
// methods), to the actual USBHAL.
EFM_ASSERT(usb_isrcmd != CMD_HANDLED);
switch (usb_isrcmd) {
case CMD_EP0SETUP:
this->EP0setupCallback();
break;
case CMD_EP0IN:
this->EP0in();
break;
case CMD_EP0OUT:
this->EP0out();
break;
case CMD_BUSRESET:
this->busReset();
break;
case CMD_EP_XFER_COMPLETED:
if (epCallback[usb_isrcmd_param] && instance) {
(instance->*(epCallback[usb_isrcmd_param]))();
}
break;
case CMD_SOF:
this->SOF(usb_isrcmd_param);
break;
case CMD_SUSPEND_STATE_CHANGED:
this->suspendStateChanged(usb_isrcmd_param);
break;
default:
EFM_ASSERT(false);
break;
}
usb_isrcmd = CMD_HANDLED;
}
#endif
// End of file