Update hormone config

Dependencies:   mbed Servo PM mbed-rtos hormone calculator

Committer:
worasuchad
Date:
Sun Nov 10 02:45:05 2019 +0000
Revision:
14:d084ea982238
Parent:
6:8ae55e1f7e76
add config;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Khanchana 0:43d21d5145d3 1 #ifndef MPU9250_H
Khanchana 0:43d21d5145d3 2 #define MPU9250_H
Khanchana 0:43d21d5145d3 3
Khanchana 0:43d21d5145d3 4 #include "mbed.h"
Khanchana 0:43d21d5145d3 5 #include "math.h"
Khanchana 0:43d21d5145d3 6
Khanchana 0:43d21d5145d3 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
Khanchana 0:43d21d5145d3 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
Khanchana 0:43d21d5145d3 9 //
Khanchana 0:43d21d5145d3 10 //Magnetometer Registers
Khanchana 0:43d21d5145d3 11 #define AK8963_ADDRESS 0x0C<<1
Khanchana 0:43d21d5145d3 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
Khanchana 0:43d21d5145d3 13 #define INFO 0x01
Khanchana 0:43d21d5145d3 14 #define AK8963_ST1 0x02 // data ready status bit 0
Khanchana 0:43d21d5145d3 15 #define AK8963_XOUT_L 0x03 // data
Khanchana 0:43d21d5145d3 16 #define AK8963_XOUT_H 0x04
Khanchana 0:43d21d5145d3 17 #define AK8963_YOUT_L 0x05
Khanchana 0:43d21d5145d3 18 #define AK8963_YOUT_H 0x06
Khanchana 0:43d21d5145d3 19 #define AK8963_ZOUT_L 0x07
Khanchana 0:43d21d5145d3 20 #define AK8963_ZOUT_H 0x08
Khanchana 0:43d21d5145d3 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
Khanchana 0:43d21d5145d3 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
Khanchana 0:43d21d5145d3 23 #define AK8963_ASTC 0x0C // Self test control
Khanchana 0:43d21d5145d3 24 #define AK8963_I2CDIS 0x0F // I2C disable
Khanchana 0:43d21d5145d3 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
Khanchana 0:43d21d5145d3 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
Khanchana 0:43d21d5145d3 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
Khanchana 0:43d21d5145d3 28
Khanchana 0:43d21d5145d3 29 #define SELF_TEST_X_GYRO 0x00
Khanchana 0:43d21d5145d3 30 #define SELF_TEST_Y_GYRO 0x01
Khanchana 0:43d21d5145d3 31 #define SELF_TEST_Z_GYRO 0x02
Khanchana 0:43d21d5145d3 32
Khanchana 0:43d21d5145d3 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
Khanchana 0:43d21d5145d3 34 #define Y_FINE_GAIN 0x04
Khanchana 0:43d21d5145d3 35 #define Z_FINE_GAIN 0x05
Khanchana 0:43d21d5145d3 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
Khanchana 0:43d21d5145d3 37 #define XA_OFFSET_L_TC 0x07
Khanchana 0:43d21d5145d3 38 #define YA_OFFSET_H 0x08
Khanchana 0:43d21d5145d3 39 #define YA_OFFSET_L_TC 0x09
Khanchana 0:43d21d5145d3 40 #define ZA_OFFSET_H 0x0A
Khanchana 0:43d21d5145d3 41 #define ZA_OFFSET_L_TC 0x0B */
Khanchana 0:43d21d5145d3 42
Khanchana 0:43d21d5145d3 43 #define SELF_TEST_X_ACCEL 0x0D
Khanchana 0:43d21d5145d3 44 #define SELF_TEST_Y_ACCEL 0x0E
Khanchana 0:43d21d5145d3 45 #define SELF_TEST_Z_ACCEL 0x0F
Khanchana 0:43d21d5145d3 46
Khanchana 0:43d21d5145d3 47 #define SELF_TEST_A 0x10
Khanchana 0:43d21d5145d3 48
Khanchana 0:43d21d5145d3 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
Khanchana 0:43d21d5145d3 50 #define XG_OFFSET_L 0x14
Khanchana 0:43d21d5145d3 51 #define YG_OFFSET_H 0x15
Khanchana 0:43d21d5145d3 52 #define YG_OFFSET_L 0x16
Khanchana 0:43d21d5145d3 53 #define ZG_OFFSET_H 0x17
Khanchana 0:43d21d5145d3 54 #define ZG_OFFSET_L 0x18
Khanchana 0:43d21d5145d3 55 #define SMPLRT_DIV 0x19
Khanchana 0:43d21d5145d3 56 #define CONFIG 0x1A
Khanchana 0:43d21d5145d3 57 #define GYRO_CONFIG 0x1B
Khanchana 0:43d21d5145d3 58 #define ACCEL_CONFIG 0x1C
Khanchana 0:43d21d5145d3 59 #define ACCEL_CONFIG2 0x1D
Khanchana 0:43d21d5145d3 60 #define LP_ACCEL_ODR 0x1E
Khanchana 0:43d21d5145d3 61 #define WOM_THR 0x1F
Khanchana 0:43d21d5145d3 62
Khanchana 0:43d21d5145d3 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
Khanchana 0:43d21d5145d3 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
Khanchana 0:43d21d5145d3 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
Khanchana 0:43d21d5145d3 66
Khanchana 0:43d21d5145d3 67 #define FIFO_EN 0x23
Khanchana 0:43d21d5145d3 68 #define I2C_MST_CTRL 0x24
Khanchana 0:43d21d5145d3 69 #define I2C_SLV0_ADDR 0x25
Khanchana 0:43d21d5145d3 70 #define I2C_SLV0_REG 0x26
Khanchana 0:43d21d5145d3 71 #define I2C_SLV0_CTRL 0x27
Khanchana 0:43d21d5145d3 72 #define I2C_SLV1_ADDR 0x28
Khanchana 0:43d21d5145d3 73 #define I2C_SLV1_REG 0x29
Khanchana 0:43d21d5145d3 74 #define I2C_SLV1_CTRL 0x2A
Khanchana 0:43d21d5145d3 75 #define I2C_SLV2_ADDR 0x2B
Khanchana 0:43d21d5145d3 76 #define I2C_SLV2_REG 0x2C
Khanchana 0:43d21d5145d3 77 #define I2C_SLV2_CTRL 0x2D
Khanchana 0:43d21d5145d3 78 #define I2C_SLV3_ADDR 0x2E
Khanchana 0:43d21d5145d3 79 #define I2C_SLV3_REG 0x2F
Khanchana 0:43d21d5145d3 80 #define I2C_SLV3_CTRL 0x30
Khanchana 0:43d21d5145d3 81 #define I2C_SLV4_ADDR 0x31
Khanchana 0:43d21d5145d3 82 #define I2C_SLV4_REG 0x32
Khanchana 0:43d21d5145d3 83 #define I2C_SLV4_DO 0x33
Khanchana 0:43d21d5145d3 84 #define I2C_SLV4_CTRL 0x34
Khanchana 0:43d21d5145d3 85 #define I2C_SLV4_DI 0x35
Khanchana 0:43d21d5145d3 86 #define I2C_MST_STATUS 0x36
Khanchana 0:43d21d5145d3 87 #define INT_PIN_CFG 0x37
Khanchana 0:43d21d5145d3 88 #define INT_ENABLE 0x38
Khanchana 0:43d21d5145d3 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
Khanchana 0:43d21d5145d3 90 #define INT_STATUS 0x3A
Khanchana 0:43d21d5145d3 91 #define ACCEL_XOUT_H 0x3B
Khanchana 0:43d21d5145d3 92 #define ACCEL_XOUT_L 0x3C
Khanchana 0:43d21d5145d3 93 #define ACCEL_YOUT_H 0x3D
Khanchana 0:43d21d5145d3 94 #define ACCEL_YOUT_L 0x3E
Khanchana 0:43d21d5145d3 95 #define ACCEL_ZOUT_H 0x3F
Khanchana 0:43d21d5145d3 96 #define ACCEL_ZOUT_L 0x40
Khanchana 0:43d21d5145d3 97 #define TEMP_OUT_H 0x41
Khanchana 0:43d21d5145d3 98 #define TEMP_OUT_L 0x42
Khanchana 0:43d21d5145d3 99 #define GYRO_XOUT_H 0x43
Khanchana 0:43d21d5145d3 100 #define GYRO_XOUT_L 0x44
Khanchana 0:43d21d5145d3 101 #define GYRO_YOUT_H 0x45
Khanchana 0:43d21d5145d3 102 #define GYRO_YOUT_L 0x46
Khanchana 0:43d21d5145d3 103 #define GYRO_ZOUT_H 0x47
Khanchana 0:43d21d5145d3 104 #define GYRO_ZOUT_L 0x48
Khanchana 0:43d21d5145d3 105 #define EXT_SENS_DATA_00 0x49
Khanchana 0:43d21d5145d3 106 #define EXT_SENS_DATA_01 0x4A
Khanchana 0:43d21d5145d3 107 #define EXT_SENS_DATA_02 0x4B
Khanchana 0:43d21d5145d3 108 #define EXT_SENS_DATA_03 0x4C
Khanchana 0:43d21d5145d3 109 #define EXT_SENS_DATA_04 0x4D
Khanchana 0:43d21d5145d3 110 #define EXT_SENS_DATA_05 0x4E
Khanchana 0:43d21d5145d3 111 #define EXT_SENS_DATA_06 0x4F
Khanchana 0:43d21d5145d3 112 #define EXT_SENS_DATA_07 0x50
Khanchana 0:43d21d5145d3 113 #define EXT_SENS_DATA_08 0x51
Khanchana 0:43d21d5145d3 114 #define EXT_SENS_DATA_09 0x52
Khanchana 0:43d21d5145d3 115 #define EXT_SENS_DATA_10 0x53
Khanchana 0:43d21d5145d3 116 #define EXT_SENS_DATA_11 0x54
Khanchana 0:43d21d5145d3 117 #define EXT_SENS_DATA_12 0x55
Khanchana 0:43d21d5145d3 118 #define EXT_SENS_DATA_13 0x56
Khanchana 0:43d21d5145d3 119 #define EXT_SENS_DATA_14 0x57
Khanchana 0:43d21d5145d3 120 #define EXT_SENS_DATA_15 0x58
Khanchana 0:43d21d5145d3 121 #define EXT_SENS_DATA_16 0x59
Khanchana 0:43d21d5145d3 122 #define EXT_SENS_DATA_17 0x5A
Khanchana 0:43d21d5145d3 123 #define EXT_SENS_DATA_18 0x5B
Khanchana 0:43d21d5145d3 124 #define EXT_SENS_DATA_19 0x5C
Khanchana 0:43d21d5145d3 125 #define EXT_SENS_DATA_20 0x5D
Khanchana 0:43d21d5145d3 126 #define EXT_SENS_DATA_21 0x5E
Khanchana 0:43d21d5145d3 127 #define EXT_SENS_DATA_22 0x5F
Khanchana 0:43d21d5145d3 128 #define EXT_SENS_DATA_23 0x60
Khanchana 0:43d21d5145d3 129 #define MOT_DETECT_STATUS 0x61
Khanchana 0:43d21d5145d3 130 #define I2C_SLV0_DO 0x63
Khanchana 0:43d21d5145d3 131 #define I2C_SLV1_DO 0x64
Khanchana 0:43d21d5145d3 132 #define I2C_SLV2_DO 0x65
Khanchana 0:43d21d5145d3 133 #define I2C_SLV3_DO 0x66
Khanchana 0:43d21d5145d3 134 #define I2C_MST_DELAY_CTRL 0x67
Khanchana 0:43d21d5145d3 135 #define SIGNAL_PATH_RESET 0x68
Khanchana 0:43d21d5145d3 136 #define MOT_DETECT_CTRL 0x69
Khanchana 0:43d21d5145d3 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
Khanchana 0:43d21d5145d3 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
Khanchana 0:43d21d5145d3 139 #define PWR_MGMT_2 0x6C
Khanchana 0:43d21d5145d3 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
Khanchana 0:43d21d5145d3 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
Khanchana 0:43d21d5145d3 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
Khanchana 0:43d21d5145d3 143 #define DMP_REG_1 0x70
Khanchana 0:43d21d5145d3 144 #define DMP_REG_2 0x71
Khanchana 0:43d21d5145d3 145 #define FIFO_COUNTH 0x72
Khanchana 0:43d21d5145d3 146 #define FIFO_COUNTL 0x73
Khanchana 0:43d21d5145d3 147 #define FIFO_R_W 0x74
Khanchana 0:43d21d5145d3 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
Khanchana 0:43d21d5145d3 149 #define XA_OFFSET_H 0x77
Khanchana 0:43d21d5145d3 150 #define XA_OFFSET_L 0x78
Khanchana 0:43d21d5145d3 151 #define YA_OFFSET_H 0x7A
Khanchana 0:43d21d5145d3 152 #define YA_OFFSET_L 0x7B
Khanchana 0:43d21d5145d3 153 #define ZA_OFFSET_H 0x7D
Khanchana 0:43d21d5145d3 154 #define ZA_OFFSET_L 0x7E
Khanchana 0:43d21d5145d3 155
Khanchana 0:43d21d5145d3 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
Khanchana 0:43d21d5145d3 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
Khanchana 0:43d21d5145d3 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
Khanchana 0:43d21d5145d3 159 #define ADO 0
Khanchana 0:43d21d5145d3 160 #if ADO
Khanchana 0:43d21d5145d3 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
Khanchana 0:43d21d5145d3 162 #else
Khanchana 0:43d21d5145d3 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
Khanchana 0:43d21d5145d3 164 #endif
Khanchana 0:43d21d5145d3 165
worasuchad 6:8ae55e1f7e76 166
Khanchana 0:43d21d5145d3 167 // Set initial input parameters
Khanchana 0:43d21d5145d3 168 enum Ascale {
Khanchana 0:43d21d5145d3 169 AFS_2G = 0,
Khanchana 0:43d21d5145d3 170 AFS_4G,
Khanchana 0:43d21d5145d3 171 AFS_8G,
Khanchana 0:43d21d5145d3 172 AFS_16G
Khanchana 0:43d21d5145d3 173 };
Khanchana 0:43d21d5145d3 174
Khanchana 0:43d21d5145d3 175 enum Gscale {
Khanchana 0:43d21d5145d3 176 GFS_250DPS = 0,
Khanchana 0:43d21d5145d3 177 GFS_500DPS,
Khanchana 0:43d21d5145d3 178 GFS_1000DPS,
Khanchana 0:43d21d5145d3 179 GFS_2000DPS
Khanchana 0:43d21d5145d3 180 };
Khanchana 0:43d21d5145d3 181
Khanchana 0:43d21d5145d3 182 enum Mscale {
Khanchana 0:43d21d5145d3 183 MFS_14BITS = 0, // 0.6 mG per LSB
Khanchana 0:43d21d5145d3 184 MFS_16BITS // 0.15 mG per LSB
Khanchana 0:43d21d5145d3 185 };
Khanchana 0:43d21d5145d3 186
Khanchana 0:43d21d5145d3 187 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
Khanchana 0:43d21d5145d3 188 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
Khanchana 0:43d21d5145d3 189 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
Khanchana 0:43d21d5145d3 190 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
Khanchana 0:43d21d5145d3 191 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
Khanchana 0:43d21d5145d3 192
Khanchana 0:43d21d5145d3 193 //Set up I2C, (SDA,SCL)
Khanchana 0:43d21d5145d3 194 I2C i2c(I2C_SDA, I2C_SCL);
Khanchana 0:43d21d5145d3 195
Khanchana 0:43d21d5145d3 196 DigitalOut myled(LED1);
Khanchana 0:43d21d5145d3 197
Khanchana 0:43d21d5145d3 198 // Pin definitions
Khanchana 0:43d21d5145d3 199 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
Khanchana 0:43d21d5145d3 200
Khanchana 0:43d21d5145d3 201 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
Khanchana 0:43d21d5145d3 202 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
Khanchana 0:43d21d5145d3 203 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
Khanchana 0:43d21d5145d3 204 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
Khanchana 0:43d21d5145d3 205 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
Khanchana 0:43d21d5145d3 206 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
Khanchana 0:43d21d5145d3 207 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
Khanchana 0:43d21d5145d3 208 float temperature;
Khanchana 0:43d21d5145d3 209 float SelfTest[6];
Khanchana 0:43d21d5145d3 210
Khanchana 0:43d21d5145d3 211 int delt_t = 0; // used to control display output rate
Khanchana 0:43d21d5145d3 212 int count = 0; // used to control display output rate
Khanchana 0:43d21d5145d3 213
Khanchana 0:43d21d5145d3 214 // parameters for 6 DoF sensor fusion calculations
Khanchana 0:43d21d5145d3 215 float PI = 3.14159265358979323846f;
Khanchana 0:43d21d5145d3 216 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
Khanchana 0:43d21d5145d3 217 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
Khanchana 0:43d21d5145d3 218 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
Khanchana 0:43d21d5145d3 219 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
Khanchana 0:43d21d5145d3 220 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
Khanchana 0:43d21d5145d3 221 #define Ki 0.0f
Khanchana 0:43d21d5145d3 222
Khanchana 0:43d21d5145d3 223 float pitch, yaw, roll;
Khanchana 0:43d21d5145d3 224 float deltat = 0.0f; // integration interval for both filter schemes
Khanchana 0:43d21d5145d3 225 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
Khanchana 0:43d21d5145d3 226 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
Khanchana 0:43d21d5145d3 227 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
Khanchana 0:43d21d5145d3 228
Khanchana 0:43d21d5145d3 229 class MPU9250 {
Khanchana 0:43d21d5145d3 230
Khanchana 0:43d21d5145d3 231 protected:
Khanchana 0:43d21d5145d3 232
Khanchana 0:43d21d5145d3 233 public:
Khanchana 0:43d21d5145d3 234 //===================================================================================================================
Khanchana 0:43d21d5145d3 235 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
Khanchana 0:43d21d5145d3 236 //===================================================================================================================
Khanchana 0:43d21d5145d3 237
Khanchana 0:43d21d5145d3 238 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
Khanchana 0:43d21d5145d3 239 {
Khanchana 0:43d21d5145d3 240 char data_write[2];
Khanchana 0:43d21d5145d3 241 data_write[0] = subAddress;
Khanchana 0:43d21d5145d3 242 data_write[1] = data;
Khanchana 0:43d21d5145d3 243 i2c.write(address, data_write, 2, 0);
Khanchana 0:43d21d5145d3 244 }
Khanchana 0:43d21d5145d3 245
Khanchana 0:43d21d5145d3 246 char readByte(uint8_t address, uint8_t subAddress)
Khanchana 0:43d21d5145d3 247 {
Khanchana 0:43d21d5145d3 248 char data[1]; // `data` will store the register data
Khanchana 0:43d21d5145d3 249 char data_write[1];
Khanchana 0:43d21d5145d3 250 data_write[0] = subAddress;
Khanchana 0:43d21d5145d3 251 i2c.write(address, data_write, 1, 1); // no stop
Khanchana 0:43d21d5145d3 252 i2c.read(address, data, 1, 0);
Khanchana 0:43d21d5145d3 253 return data[0];
Khanchana 0:43d21d5145d3 254 }
Khanchana 0:43d21d5145d3 255
Khanchana 0:43d21d5145d3 256 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
Khanchana 0:43d21d5145d3 257 {
Khanchana 0:43d21d5145d3 258 char data[14];
Khanchana 0:43d21d5145d3 259 char data_write[1];
Khanchana 0:43d21d5145d3 260 data_write[0] = subAddress;
Khanchana 0:43d21d5145d3 261 i2c.write(address, data_write, 1, 1); // no stop
Khanchana 0:43d21d5145d3 262 i2c.read(address, data, count, 0);
Khanchana 0:43d21d5145d3 263 for(int ii = 0; ii < count; ii++) {
Khanchana 0:43d21d5145d3 264 dest[ii] = data[ii];
Khanchana 0:43d21d5145d3 265 }
Khanchana 0:43d21d5145d3 266 }
Khanchana 0:43d21d5145d3 267
Khanchana 0:43d21d5145d3 268
Khanchana 0:43d21d5145d3 269 void getMres() {
Khanchana 0:43d21d5145d3 270 switch (Mscale)
Khanchana 0:43d21d5145d3 271 {
Khanchana 0:43d21d5145d3 272 // Possible magnetometer scales (and their register bit settings) are:
Khanchana 0:43d21d5145d3 273 // 14 bit resolution (0) and 16 bit resolution (1)
Khanchana 0:43d21d5145d3 274 case MFS_14BITS:
Khanchana 0:43d21d5145d3 275 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
Khanchana 0:43d21d5145d3 276 break;
Khanchana 0:43d21d5145d3 277 case MFS_16BITS:
Khanchana 0:43d21d5145d3 278 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
Khanchana 0:43d21d5145d3 279 break;
Khanchana 0:43d21d5145d3 280 }
Khanchana 0:43d21d5145d3 281 }
Khanchana 0:43d21d5145d3 282
Khanchana 0:43d21d5145d3 283
Khanchana 0:43d21d5145d3 284 void getGres() {
Khanchana 0:43d21d5145d3 285 switch (Gscale)
Khanchana 0:43d21d5145d3 286 {
Khanchana 0:43d21d5145d3 287 // Possible gyro scales (and their register bit settings) are:
Khanchana 0:43d21d5145d3 288 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
Khanchana 0:43d21d5145d3 289 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
Khanchana 0:43d21d5145d3 290 case GFS_250DPS:
Khanchana 0:43d21d5145d3 291 gRes = 250.0/32768.0;
Khanchana 0:43d21d5145d3 292 break;
Khanchana 0:43d21d5145d3 293 case GFS_500DPS:
Khanchana 0:43d21d5145d3 294 gRes = 500.0/32768.0;
Khanchana 0:43d21d5145d3 295 break;
Khanchana 0:43d21d5145d3 296 case GFS_1000DPS:
Khanchana 0:43d21d5145d3 297 gRes = 1000.0/32768.0;
Khanchana 0:43d21d5145d3 298 break;
Khanchana 0:43d21d5145d3 299 case GFS_2000DPS:
Khanchana 0:43d21d5145d3 300 gRes = 2000.0/32768.0;
Khanchana 0:43d21d5145d3 301 break;
Khanchana 0:43d21d5145d3 302 }
Khanchana 0:43d21d5145d3 303 }
Khanchana 0:43d21d5145d3 304
Khanchana 0:43d21d5145d3 305
Khanchana 0:43d21d5145d3 306 void getAres() {
Khanchana 0:43d21d5145d3 307 switch (Ascale)
Khanchana 0:43d21d5145d3 308 {
Khanchana 0:43d21d5145d3 309 // Possible accelerometer scales (and their register bit settings) are:
Khanchana 0:43d21d5145d3 310 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
Khanchana 0:43d21d5145d3 311 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
Khanchana 0:43d21d5145d3 312 case AFS_2G:
Khanchana 0:43d21d5145d3 313 aRes = 2.0/32768.0;
Khanchana 0:43d21d5145d3 314 break;
Khanchana 0:43d21d5145d3 315 case AFS_4G:
Khanchana 0:43d21d5145d3 316 aRes = 4.0/32768.0;
Khanchana 0:43d21d5145d3 317 break;
Khanchana 0:43d21d5145d3 318 case AFS_8G:
Khanchana 0:43d21d5145d3 319 aRes = 8.0/32768.0;
Khanchana 0:43d21d5145d3 320 break;
Khanchana 0:43d21d5145d3 321 case AFS_16G:
Khanchana 0:43d21d5145d3 322 aRes = 16.0/32768.0;
Khanchana 0:43d21d5145d3 323 break;
Khanchana 0:43d21d5145d3 324 }
Khanchana 0:43d21d5145d3 325 }
Khanchana 0:43d21d5145d3 326
Khanchana 0:43d21d5145d3 327
Khanchana 0:43d21d5145d3 328 void readAccelData(int16_t * destination)
Khanchana 0:43d21d5145d3 329 {
Khanchana 0:43d21d5145d3 330 uint8_t rawData[6]; // x/y/z accel register data stored here
Khanchana 0:43d21d5145d3 331 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
Khanchana 0:43d21d5145d3 332 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
Khanchana 0:43d21d5145d3 333 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
Khanchana 0:43d21d5145d3 334 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
Khanchana 0:43d21d5145d3 335 }
Khanchana 0:43d21d5145d3 336
Khanchana 0:43d21d5145d3 337 void readGyroData(int16_t * destination)
Khanchana 0:43d21d5145d3 338 {
Khanchana 0:43d21d5145d3 339 uint8_t rawData[6]; // x/y/z gyro register data stored here
Khanchana 0:43d21d5145d3 340 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
Khanchana 0:43d21d5145d3 341 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
Khanchana 0:43d21d5145d3 342 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
Khanchana 0:43d21d5145d3 343 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
Khanchana 0:43d21d5145d3 344 }
Khanchana 0:43d21d5145d3 345
Khanchana 0:43d21d5145d3 346 void readMagData(int16_t * destination)
Khanchana 0:43d21d5145d3 347 {
Khanchana 0:43d21d5145d3 348 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
Khanchana 0:43d21d5145d3 349 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
Khanchana 0:43d21d5145d3 350 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
Khanchana 0:43d21d5145d3 351 uint8_t c = rawData[6]; // End data read by reading ST2 register
Khanchana 0:43d21d5145d3 352 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
Khanchana 0:43d21d5145d3 353 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
Khanchana 0:43d21d5145d3 354 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
Khanchana 0:43d21d5145d3 355 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
Khanchana 0:43d21d5145d3 356 }
Khanchana 0:43d21d5145d3 357 }
Khanchana 0:43d21d5145d3 358 }
Khanchana 0:43d21d5145d3 359
Khanchana 0:43d21d5145d3 360 int16_t readTempData()
Khanchana 0:43d21d5145d3 361 {
Khanchana 0:43d21d5145d3 362 uint8_t rawData[2]; // x/y/z gyro register data stored here
Khanchana 0:43d21d5145d3 363 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
Khanchana 0:43d21d5145d3 364 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
Khanchana 0:43d21d5145d3 365 }
Khanchana 0:43d21d5145d3 366
Khanchana 0:43d21d5145d3 367
Khanchana 0:43d21d5145d3 368 void resetMPU9250() {
Khanchana 0:43d21d5145d3 369 // reset device
Khanchana 0:43d21d5145d3 370 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
Khanchana 0:43d21d5145d3 371 wait(0.1);
Khanchana 0:43d21d5145d3 372 }
Khanchana 0:43d21d5145d3 373
Khanchana 0:43d21d5145d3 374 void initAK8963(float * destination)
Khanchana 0:43d21d5145d3 375 {
Khanchana 0:43d21d5145d3 376 // First extract the factory calibration for each magnetometer axis
Khanchana 0:43d21d5145d3 377 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
Khanchana 0:43d21d5145d3 378 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
Khanchana 0:43d21d5145d3 379 wait(0.01);
Khanchana 0:43d21d5145d3 380 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
Khanchana 0:43d21d5145d3 381 wait(0.01);
Khanchana 0:43d21d5145d3 382 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
Khanchana 0:43d21d5145d3 383 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
Khanchana 0:43d21d5145d3 384 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
Khanchana 0:43d21d5145d3 385 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
Khanchana 0:43d21d5145d3 386 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
Khanchana 0:43d21d5145d3 387 wait(0.01);
Khanchana 0:43d21d5145d3 388 // Configure the magnetometer for continuous read and highest resolution
Khanchana 0:43d21d5145d3 389 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
Khanchana 0:43d21d5145d3 390 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
Khanchana 0:43d21d5145d3 391 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
Khanchana 0:43d21d5145d3 392 wait(0.01);
Khanchana 0:43d21d5145d3 393 }
Khanchana 0:43d21d5145d3 394
Khanchana 0:43d21d5145d3 395
Khanchana 0:43d21d5145d3 396 void initMPU9250()
Khanchana 0:43d21d5145d3 397 {
Khanchana 0:43d21d5145d3 398 // Initialize MPU9250 device
Khanchana 0:43d21d5145d3 399 // wake up device
Khanchana 0:43d21d5145d3 400 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
Khanchana 0:43d21d5145d3 401 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
Khanchana 0:43d21d5145d3 402
Khanchana 0:43d21d5145d3 403 // get stable time source
Khanchana 0:43d21d5145d3 404 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
Khanchana 0:43d21d5145d3 405
Khanchana 0:43d21d5145d3 406 // Configure Gyro and Accelerometer
Khanchana 0:43d21d5145d3 407 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
Khanchana 0:43d21d5145d3 408 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
Khanchana 0:43d21d5145d3 409 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
Khanchana 0:43d21d5145d3 410 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
Khanchana 0:43d21d5145d3 411
Khanchana 0:43d21d5145d3 412 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
Khanchana 0:43d21d5145d3 413 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
Khanchana 0:43d21d5145d3 414
Khanchana 0:43d21d5145d3 415 // Set gyroscope full scale range
Khanchana 0:43d21d5145d3 416 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
Khanchana 0:43d21d5145d3 417 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
Khanchana 0:43d21d5145d3 418 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
Khanchana 0:43d21d5145d3 419 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
Khanchana 0:43d21d5145d3 420 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
Khanchana 0:43d21d5145d3 421
Khanchana 0:43d21d5145d3 422 // Set accelerometer configuration
Khanchana 0:43d21d5145d3 423 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
Khanchana 0:43d21d5145d3 424 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
Khanchana 0:43d21d5145d3 425 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
Khanchana 0:43d21d5145d3 426 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
Khanchana 0:43d21d5145d3 427
Khanchana 0:43d21d5145d3 428 // Set accelerometer sample rate configuration
Khanchana 0:43d21d5145d3 429 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
Khanchana 0:43d21d5145d3 430 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
Khanchana 0:43d21d5145d3 431 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
Khanchana 0:43d21d5145d3 432 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
Khanchana 0:43d21d5145d3 433 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
Khanchana 0:43d21d5145d3 434
Khanchana 0:43d21d5145d3 435 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
Khanchana 0:43d21d5145d3 436 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
Khanchana 0:43d21d5145d3 437
Khanchana 0:43d21d5145d3 438 // Configure Interrupts and Bypass Enable
Khanchana 0:43d21d5145d3 439 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
Khanchana 0:43d21d5145d3 440 // can join the I2C bus and all can be controlled by the Arduino as master
Khanchana 0:43d21d5145d3 441 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
Khanchana 0:43d21d5145d3 442 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
Khanchana 0:43d21d5145d3 443 }
Khanchana 0:43d21d5145d3 444
Khanchana 0:43d21d5145d3 445 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
Khanchana 0:43d21d5145d3 446 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
Khanchana 0:43d21d5145d3 447 void calibrateMPU9250(float * dest1, float * dest2)
Khanchana 0:43d21d5145d3 448 {
Khanchana 0:43d21d5145d3 449 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
Khanchana 0:43d21d5145d3 450 uint16_t ii, packet_count, fifo_count;
Khanchana 0:43d21d5145d3 451 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
Khanchana 0:43d21d5145d3 452
Khanchana 0:43d21d5145d3 453 // reset device, reset all registers, clear gyro and accelerometer bias registers
Khanchana 0:43d21d5145d3 454 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
Khanchana 0:43d21d5145d3 455 wait(0.1);
Khanchana 0:43d21d5145d3 456
Khanchana 0:43d21d5145d3 457 // get stable time source
Khanchana 0:43d21d5145d3 458 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
Khanchana 0:43d21d5145d3 459 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
Khanchana 0:43d21d5145d3 460 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
Khanchana 0:43d21d5145d3 461 wait(0.2);
Khanchana 0:43d21d5145d3 462
Khanchana 0:43d21d5145d3 463 // Configure device for bias calculation
Khanchana 0:43d21d5145d3 464 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
Khanchana 0:43d21d5145d3 465 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
Khanchana 0:43d21d5145d3 466 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
Khanchana 0:43d21d5145d3 467 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
Khanchana 0:43d21d5145d3 468 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
Khanchana 0:43d21d5145d3 469 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
Khanchana 0:43d21d5145d3 470 wait(0.015);
Khanchana 0:43d21d5145d3 471
Khanchana 0:43d21d5145d3 472 // Configure MPU9250 gyro and accelerometer for bias calculation
Khanchana 0:43d21d5145d3 473 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
Khanchana 0:43d21d5145d3 474 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
Khanchana 0:43d21d5145d3 475 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
Khanchana 0:43d21d5145d3 476 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
Khanchana 0:43d21d5145d3 477
Khanchana 0:43d21d5145d3 478 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
Khanchana 0:43d21d5145d3 479 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
Khanchana 0:43d21d5145d3 480
Khanchana 0:43d21d5145d3 481 // Configure FIFO to capture accelerometer and gyro data for bias calculation
Khanchana 0:43d21d5145d3 482 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
Khanchana 0:43d21d5145d3 483 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
Khanchana 0:43d21d5145d3 484 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
Khanchana 0:43d21d5145d3 485
Khanchana 0:43d21d5145d3 486 // At end of sample accumulation, turn off FIFO sensor read
Khanchana 0:43d21d5145d3 487 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
Khanchana 0:43d21d5145d3 488 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
Khanchana 0:43d21d5145d3 489 fifo_count = ((uint16_t)data[0] << 8) | data[1];
Khanchana 0:43d21d5145d3 490 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
Khanchana 0:43d21d5145d3 491
Khanchana 0:43d21d5145d3 492 for (ii = 0; ii < packet_count; ii++) {
Khanchana 0:43d21d5145d3 493 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
Khanchana 0:43d21d5145d3 494 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
Khanchana 0:43d21d5145d3 495 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
Khanchana 0:43d21d5145d3 496 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
Khanchana 0:43d21d5145d3 497 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
Khanchana 0:43d21d5145d3 498 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
Khanchana 0:43d21d5145d3 499 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
Khanchana 0:43d21d5145d3 500 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
Khanchana 0:43d21d5145d3 501
Khanchana 0:43d21d5145d3 502 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
Khanchana 0:43d21d5145d3 503 accel_bias[1] += (int32_t) accel_temp[1];
Khanchana 0:43d21d5145d3 504 accel_bias[2] += (int32_t) accel_temp[2];
Khanchana 0:43d21d5145d3 505 gyro_bias[0] += (int32_t) gyro_temp[0];
Khanchana 0:43d21d5145d3 506 gyro_bias[1] += (int32_t) gyro_temp[1];
Khanchana 0:43d21d5145d3 507 gyro_bias[2] += (int32_t) gyro_temp[2];
Khanchana 0:43d21d5145d3 508
Khanchana 0:43d21d5145d3 509 }
Khanchana 0:43d21d5145d3 510 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
Khanchana 0:43d21d5145d3 511 accel_bias[1] /= (int32_t) packet_count;
Khanchana 0:43d21d5145d3 512 accel_bias[2] /= (int32_t) packet_count;
Khanchana 0:43d21d5145d3 513 gyro_bias[0] /= (int32_t) packet_count;
Khanchana 0:43d21d5145d3 514 gyro_bias[1] /= (int32_t) packet_count;
Khanchana 0:43d21d5145d3 515 gyro_bias[2] /= (int32_t) packet_count;
Khanchana 0:43d21d5145d3 516
Khanchana 0:43d21d5145d3 517 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
Khanchana 0:43d21d5145d3 518 else {accel_bias[2] += (int32_t) accelsensitivity;}
Khanchana 0:43d21d5145d3 519
Khanchana 0:43d21d5145d3 520 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
Khanchana 0:43d21d5145d3 521 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
Khanchana 0:43d21d5145d3 522 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
Khanchana 0:43d21d5145d3 523 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
Khanchana 0:43d21d5145d3 524 data[3] = (-gyro_bias[1]/4) & 0xFF;
Khanchana 0:43d21d5145d3 525 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
Khanchana 0:43d21d5145d3 526 data[5] = (-gyro_bias[2]/4) & 0xFF;
Khanchana 0:43d21d5145d3 527
Khanchana 0:43d21d5145d3 528 /// Push gyro biases to hardware registers
Khanchana 0:43d21d5145d3 529 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
Khanchana 0:43d21d5145d3 530 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
Khanchana 0:43d21d5145d3 531 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
Khanchana 0:43d21d5145d3 532 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
Khanchana 0:43d21d5145d3 533 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
Khanchana 0:43d21d5145d3 534 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
Khanchana 0:43d21d5145d3 535 */
Khanchana 0:43d21d5145d3 536 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
Khanchana 0:43d21d5145d3 537 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
Khanchana 0:43d21d5145d3 538 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
Khanchana 0:43d21d5145d3 539
Khanchana 0:43d21d5145d3 540 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
Khanchana 0:43d21d5145d3 541 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
Khanchana 0:43d21d5145d3 542 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
Khanchana 0:43d21d5145d3 543 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
Khanchana 0:43d21d5145d3 544 // the accelerometer biases calculated above must be divided by 8.
Khanchana 0:43d21d5145d3 545
Khanchana 0:43d21d5145d3 546 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
Khanchana 0:43d21d5145d3 547 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
Khanchana 0:43d21d5145d3 548 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
Khanchana 0:43d21d5145d3 549 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
Khanchana 0:43d21d5145d3 550 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
Khanchana 0:43d21d5145d3 551 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
Khanchana 0:43d21d5145d3 552 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
Khanchana 0:43d21d5145d3 553
Khanchana 0:43d21d5145d3 554 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
Khanchana 0:43d21d5145d3 555 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
Khanchana 0:43d21d5145d3 556
Khanchana 0:43d21d5145d3 557 for(ii = 0; ii < 3; ii++) {
Khanchana 0:43d21d5145d3 558 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
Khanchana 0:43d21d5145d3 559 }
Khanchana 0:43d21d5145d3 560
Khanchana 0:43d21d5145d3 561 // Construct total accelerometer bias, including calculated average accelerometer bias from above
Khanchana 0:43d21d5145d3 562 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
Khanchana 0:43d21d5145d3 563 accel_bias_reg[1] -= (accel_bias[1]/8);
Khanchana 0:43d21d5145d3 564 accel_bias_reg[2] -= (accel_bias[2]/8);
Khanchana 0:43d21d5145d3 565
Khanchana 0:43d21d5145d3 566 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
Khanchana 0:43d21d5145d3 567 data[1] = (accel_bias_reg[0]) & 0xFF;
Khanchana 0:43d21d5145d3 568 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
Khanchana 0:43d21d5145d3 569 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
Khanchana 0:43d21d5145d3 570 data[3] = (accel_bias_reg[1]) & 0xFF;
Khanchana 0:43d21d5145d3 571 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
Khanchana 0:43d21d5145d3 572 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
Khanchana 0:43d21d5145d3 573 data[5] = (accel_bias_reg[2]) & 0xFF;
Khanchana 0:43d21d5145d3 574 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
Khanchana 0:43d21d5145d3 575
Khanchana 0:43d21d5145d3 576 // Apparently this is not working for the acceleration biases in the MPU-9250
Khanchana 0:43d21d5145d3 577 // Are we handling the temperature correction bit properly?
Khanchana 0:43d21d5145d3 578 // Push accelerometer biases to hardware registers
Khanchana 0:43d21d5145d3 579 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
Khanchana 0:43d21d5145d3 580 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
Khanchana 0:43d21d5145d3 581 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
Khanchana 0:43d21d5145d3 582 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
Khanchana 0:43d21d5145d3 583 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
Khanchana 0:43d21d5145d3 584 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
Khanchana 0:43d21d5145d3 585 */
Khanchana 0:43d21d5145d3 586 // Output scaled accelerometer biases for manual subtraction in the main program
Khanchana 0:43d21d5145d3 587 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
Khanchana 0:43d21d5145d3 588 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
Khanchana 0:43d21d5145d3 589 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
Khanchana 0:43d21d5145d3 590 }
Khanchana 0:43d21d5145d3 591
Khanchana 0:43d21d5145d3 592
Khanchana 0:43d21d5145d3 593 // Accelerometer and gyroscope self test; check calibration wrt factory settings
Khanchana 0:43d21d5145d3 594 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
Khanchana 0:43d21d5145d3 595 {
Khanchana 0:43d21d5145d3 596 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
Khanchana 0:43d21d5145d3 597 uint8_t selfTest[6];
Khanchana 0:43d21d5145d3 598 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
Khanchana 0:43d21d5145d3 599 float factoryTrim[6];
Khanchana 0:43d21d5145d3 600 uint8_t FS = 0;
Khanchana 0:43d21d5145d3 601
Khanchana 0:43d21d5145d3 602 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
Khanchana 0:43d21d5145d3 603 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
Khanchana 0:43d21d5145d3 604 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
Khanchana 0:43d21d5145d3 605 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
Khanchana 0:43d21d5145d3 606 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
Khanchana 0:43d21d5145d3 607
Khanchana 0:43d21d5145d3 608 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
Khanchana 0:43d21d5145d3 609
Khanchana 0:43d21d5145d3 610 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
Khanchana 0:43d21d5145d3 611 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
Khanchana 0:43d21d5145d3 612 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
Khanchana 0:43d21d5145d3 613 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
Khanchana 0:43d21d5145d3 614
Khanchana 0:43d21d5145d3 615 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
Khanchana 0:43d21d5145d3 616 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
Khanchana 0:43d21d5145d3 617 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
Khanchana 0:43d21d5145d3 618 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
Khanchana 0:43d21d5145d3 619 }
Khanchana 0:43d21d5145d3 620
Khanchana 0:43d21d5145d3 621 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
Khanchana 0:43d21d5145d3 622 aAvg[ii] /= 200;
Khanchana 0:43d21d5145d3 623 gAvg[ii] /= 200;
Khanchana 0:43d21d5145d3 624 }
Khanchana 0:43d21d5145d3 625
Khanchana 0:43d21d5145d3 626 // Configure the accelerometer for self-test
Khanchana 0:43d21d5145d3 627 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
Khanchana 0:43d21d5145d3 628 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
Khanchana 0:43d21d5145d3 629 wait_ms(25); // Delay a while to let the device stabilize
Khanchana 0:43d21d5145d3 630
Khanchana 0:43d21d5145d3 631 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
Khanchana 0:43d21d5145d3 632
Khanchana 0:43d21d5145d3 633 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
Khanchana 0:43d21d5145d3 634 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
Khanchana 0:43d21d5145d3 635 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
Khanchana 0:43d21d5145d3 636 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
Khanchana 0:43d21d5145d3 637
Khanchana 0:43d21d5145d3 638 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
Khanchana 0:43d21d5145d3 639 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
Khanchana 0:43d21d5145d3 640 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
Khanchana 0:43d21d5145d3 641 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
Khanchana 0:43d21d5145d3 642 }
Khanchana 0:43d21d5145d3 643
Khanchana 0:43d21d5145d3 644 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
Khanchana 0:43d21d5145d3 645 aSTAvg[ii] /= 200;
Khanchana 0:43d21d5145d3 646 gSTAvg[ii] /= 200;
Khanchana 0:43d21d5145d3 647 }
Khanchana 0:43d21d5145d3 648
Khanchana 0:43d21d5145d3 649 // Configure the gyro and accelerometer for normal operation
Khanchana 0:43d21d5145d3 650 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
Khanchana 0:43d21d5145d3 651 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
Khanchana 0:43d21d5145d3 652 wait_ms(25); // Delay a while to let the device stabilize
Khanchana 0:43d21d5145d3 653
Khanchana 0:43d21d5145d3 654 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
Khanchana 0:43d21d5145d3 655 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
Khanchana 0:43d21d5145d3 656 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
Khanchana 0:43d21d5145d3 657 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
Khanchana 0:43d21d5145d3 658 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
Khanchana 0:43d21d5145d3 659 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
Khanchana 0:43d21d5145d3 660 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
Khanchana 0:43d21d5145d3 661
Khanchana 0:43d21d5145d3 662 // Retrieve factory self-test value from self-test code reads
worasuchad 2:18835f8732ad 663 // Modify by Happ
worasuchad 2:18835f8732ad 664 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01f , ((float)selfTest[0] - 1.0f) )); // FT[Xa] factory trim calculation
worasuchad 2:18835f8732ad 665 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01f , ((float)selfTest[1] - 1.0f) )); // FT[Ya] factory trim calculation
worasuchad 2:18835f8732ad 666 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01f , ((float)selfTest[2] - 1.0f) )); // FT[Za] factory trim calculation
worasuchad 2:18835f8732ad 667 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01f , ((float)selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
worasuchad 2:18835f8732ad 668 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01f , ((float)selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
worasuchad 2:18835f8732ad 669 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01f , ((float)selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
Khanchana 0:43d21d5145d3 670
Khanchana 0:43d21d5145d3 671 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
Khanchana 0:43d21d5145d3 672 // To get percent, must multiply by 100
Khanchana 0:43d21d5145d3 673 for (int i = 0; i < 3; i++) {
worasuchad 2:18835f8732ad 674 destination[i] = 100.0f*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
worasuchad 2:18835f8732ad 675 destination[i+3] = 100.0f*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
Khanchana 0:43d21d5145d3 676 }
Khanchana 0:43d21d5145d3 677
Khanchana 0:43d21d5145d3 678 }
Khanchana 0:43d21d5145d3 679
Khanchana 0:43d21d5145d3 680
Khanchana 0:43d21d5145d3 681
Khanchana 0:43d21d5145d3 682 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
Khanchana 0:43d21d5145d3 683 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
Khanchana 0:43d21d5145d3 684 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
Khanchana 0:43d21d5145d3 685 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
Khanchana 0:43d21d5145d3 686 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
Khanchana 0:43d21d5145d3 687 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
Khanchana 0:43d21d5145d3 688 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
Khanchana 0:43d21d5145d3 689 {
Khanchana 0:43d21d5145d3 690 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
Khanchana 0:43d21d5145d3 691 float norm;
Khanchana 0:43d21d5145d3 692 float hx, hy, _2bx, _2bz;
Khanchana 0:43d21d5145d3 693 float s1, s2, s3, s4;
Khanchana 0:43d21d5145d3 694 float qDot1, qDot2, qDot3, qDot4;
Khanchana 0:43d21d5145d3 695
Khanchana 0:43d21d5145d3 696 // Auxiliary variables to avoid repeated arithmetic
Khanchana 0:43d21d5145d3 697 float _2q1mx;
Khanchana 0:43d21d5145d3 698 float _2q1my;
Khanchana 0:43d21d5145d3 699 float _2q1mz;
Khanchana 0:43d21d5145d3 700 float _2q2mx;
Khanchana 0:43d21d5145d3 701 float _4bx;
Khanchana 0:43d21d5145d3 702 float _4bz;
Khanchana 0:43d21d5145d3 703 float _2q1 = 2.0f * q1;
Khanchana 0:43d21d5145d3 704 float _2q2 = 2.0f * q2;
Khanchana 0:43d21d5145d3 705 float _2q3 = 2.0f * q3;
Khanchana 0:43d21d5145d3 706 float _2q4 = 2.0f * q4;
Khanchana 0:43d21d5145d3 707 float _2q1q3 = 2.0f * q1 * q3;
Khanchana 0:43d21d5145d3 708 float _2q3q4 = 2.0f * q3 * q4;
Khanchana 0:43d21d5145d3 709 float q1q1 = q1 * q1;
Khanchana 0:43d21d5145d3 710 float q1q2 = q1 * q2;
Khanchana 0:43d21d5145d3 711 float q1q3 = q1 * q3;
Khanchana 0:43d21d5145d3 712 float q1q4 = q1 * q4;
Khanchana 0:43d21d5145d3 713 float q2q2 = q2 * q2;
Khanchana 0:43d21d5145d3 714 float q2q3 = q2 * q3;
Khanchana 0:43d21d5145d3 715 float q2q4 = q2 * q4;
Khanchana 0:43d21d5145d3 716 float q3q3 = q3 * q3;
Khanchana 0:43d21d5145d3 717 float q3q4 = q3 * q4;
Khanchana 0:43d21d5145d3 718 float q4q4 = q4 * q4;
Khanchana 0:43d21d5145d3 719
Khanchana 0:43d21d5145d3 720 // Normalise accelerometer measurement
Khanchana 0:43d21d5145d3 721 norm = sqrt(ax * ax + ay * ay + az * az);
Khanchana 0:43d21d5145d3 722 if (norm == 0.0f) return; // handle NaN
Khanchana 0:43d21d5145d3 723 norm = 1.0f/norm;
Khanchana 0:43d21d5145d3 724 ax *= norm;
Khanchana 0:43d21d5145d3 725 ay *= norm;
Khanchana 0:43d21d5145d3 726 az *= norm;
Khanchana 0:43d21d5145d3 727
Khanchana 0:43d21d5145d3 728 // Normalise magnetometer measurement
Khanchana 0:43d21d5145d3 729 norm = sqrt(mx * mx + my * my + mz * mz);
Khanchana 0:43d21d5145d3 730 if (norm == 0.0f) return; // handle NaN
Khanchana 0:43d21d5145d3 731 norm = 1.0f/norm;
Khanchana 0:43d21d5145d3 732 mx *= norm;
Khanchana 0:43d21d5145d3 733 my *= norm;
Khanchana 0:43d21d5145d3 734 mz *= norm;
Khanchana 0:43d21d5145d3 735
Khanchana 0:43d21d5145d3 736 // Reference direction of Earth's magnetic field
Khanchana 0:43d21d5145d3 737 _2q1mx = 2.0f * q1 * mx;
Khanchana 0:43d21d5145d3 738 _2q1my = 2.0f * q1 * my;
Khanchana 0:43d21d5145d3 739 _2q1mz = 2.0f * q1 * mz;
Khanchana 0:43d21d5145d3 740 _2q2mx = 2.0f * q2 * mx;
Khanchana 0:43d21d5145d3 741 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
Khanchana 0:43d21d5145d3 742 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
Khanchana 0:43d21d5145d3 743 _2bx = sqrt(hx * hx + hy * hy);
Khanchana 0:43d21d5145d3 744 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
Khanchana 0:43d21d5145d3 745 _4bx = 2.0f * _2bx;
Khanchana 0:43d21d5145d3 746 _4bz = 2.0f * _2bz;
Khanchana 0:43d21d5145d3 747
Khanchana 0:43d21d5145d3 748 // Gradient decent algorithm corrective step
Khanchana 0:43d21d5145d3 749 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
Khanchana 0:43d21d5145d3 750 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
Khanchana 0:43d21d5145d3 751 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
Khanchana 0:43d21d5145d3 752 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
Khanchana 0:43d21d5145d3 753 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
Khanchana 0:43d21d5145d3 754 norm = 1.0f/norm;
Khanchana 0:43d21d5145d3 755 s1 *= norm;
Khanchana 0:43d21d5145d3 756 s2 *= norm;
Khanchana 0:43d21d5145d3 757 s3 *= norm;
Khanchana 0:43d21d5145d3 758 s4 *= norm;
Khanchana 0:43d21d5145d3 759
Khanchana 0:43d21d5145d3 760 // Compute rate of change of quaternion
Khanchana 0:43d21d5145d3 761 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
Khanchana 0:43d21d5145d3 762 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
Khanchana 0:43d21d5145d3 763 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
Khanchana 0:43d21d5145d3 764 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
Khanchana 0:43d21d5145d3 765
Khanchana 0:43d21d5145d3 766 // Integrate to yield quaternion
Khanchana 0:43d21d5145d3 767 q1 += qDot1 * deltat;
Khanchana 0:43d21d5145d3 768 q2 += qDot2 * deltat;
Khanchana 0:43d21d5145d3 769 q3 += qDot3 * deltat;
Khanchana 0:43d21d5145d3 770 q4 += qDot4 * deltat;
Khanchana 0:43d21d5145d3 771 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
Khanchana 0:43d21d5145d3 772 norm = 1.0f/norm;
Khanchana 0:43d21d5145d3 773 q[0] = q1 * norm;
Khanchana 0:43d21d5145d3 774 q[1] = q2 * norm;
Khanchana 0:43d21d5145d3 775 q[2] = q3 * norm;
Khanchana 0:43d21d5145d3 776 q[3] = q4 * norm;
Khanchana 0:43d21d5145d3 777
Khanchana 0:43d21d5145d3 778 }
Khanchana 0:43d21d5145d3 779
Khanchana 0:43d21d5145d3 780
Khanchana 0:43d21d5145d3 781
Khanchana 0:43d21d5145d3 782 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
Khanchana 0:43d21d5145d3 783 // measured ones.
Khanchana 0:43d21d5145d3 784 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
Khanchana 0:43d21d5145d3 785 {
Khanchana 0:43d21d5145d3 786 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
Khanchana 0:43d21d5145d3 787 float norm;
Khanchana 0:43d21d5145d3 788 float hx, hy, bx, bz;
Khanchana 0:43d21d5145d3 789 float vx, vy, vz, wx, wy, wz;
Khanchana 0:43d21d5145d3 790 float ex, ey, ez;
Khanchana 0:43d21d5145d3 791 float pa, pb, pc;
Khanchana 0:43d21d5145d3 792
Khanchana 0:43d21d5145d3 793 // Auxiliary variables to avoid repeated arithmetic
Khanchana 0:43d21d5145d3 794 float q1q1 = q1 * q1;
Khanchana 0:43d21d5145d3 795 float q1q2 = q1 * q2;
Khanchana 0:43d21d5145d3 796 float q1q3 = q1 * q3;
Khanchana 0:43d21d5145d3 797 float q1q4 = q1 * q4;
Khanchana 0:43d21d5145d3 798 float q2q2 = q2 * q2;
Khanchana 0:43d21d5145d3 799 float q2q3 = q2 * q3;
Khanchana 0:43d21d5145d3 800 float q2q4 = q2 * q4;
Khanchana 0:43d21d5145d3 801 float q3q3 = q3 * q3;
Khanchana 0:43d21d5145d3 802 float q3q4 = q3 * q4;
Khanchana 0:43d21d5145d3 803 float q4q4 = q4 * q4;
Khanchana 0:43d21d5145d3 804
Khanchana 0:43d21d5145d3 805 // Normalise accelerometer measurement
Khanchana 0:43d21d5145d3 806 norm = sqrt(ax * ax + ay * ay + az * az);
Khanchana 0:43d21d5145d3 807 if (norm == 0.0f) return; // handle NaN
Khanchana 0:43d21d5145d3 808 norm = 1.0f / norm; // use reciprocal for division
Khanchana 0:43d21d5145d3 809 ax *= norm;
Khanchana 0:43d21d5145d3 810 ay *= norm;
Khanchana 0:43d21d5145d3 811 az *= norm;
Khanchana 0:43d21d5145d3 812
Khanchana 0:43d21d5145d3 813 // Normalise magnetometer measurement
Khanchana 0:43d21d5145d3 814 norm = sqrt(mx * mx + my * my + mz * mz);
Khanchana 0:43d21d5145d3 815 if (norm == 0.0f) return; // handle NaN
Khanchana 0:43d21d5145d3 816 norm = 1.0f / norm; // use reciprocal for division
Khanchana 0:43d21d5145d3 817 mx *= norm;
Khanchana 0:43d21d5145d3 818 my *= norm;
Khanchana 0:43d21d5145d3 819 mz *= norm;
Khanchana 0:43d21d5145d3 820
Khanchana 0:43d21d5145d3 821 // Reference direction of Earth's magnetic field
Khanchana 0:43d21d5145d3 822 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
Khanchana 0:43d21d5145d3 823 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
Khanchana 0:43d21d5145d3 824 bx = sqrt((hx * hx) + (hy * hy));
Khanchana 0:43d21d5145d3 825 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
Khanchana 0:43d21d5145d3 826
Khanchana 0:43d21d5145d3 827 // Estimated direction of gravity and magnetic field
Khanchana 0:43d21d5145d3 828 vx = 2.0f * (q2q4 - q1q3);
Khanchana 0:43d21d5145d3 829 vy = 2.0f * (q1q2 + q3q4);
Khanchana 0:43d21d5145d3 830 vz = q1q1 - q2q2 - q3q3 + q4q4;
Khanchana 0:43d21d5145d3 831 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
Khanchana 0:43d21d5145d3 832 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
Khanchana 0:43d21d5145d3 833 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
Khanchana 0:43d21d5145d3 834
Khanchana 0:43d21d5145d3 835 // Error is cross product between estimated direction and measured direction of gravity
Khanchana 0:43d21d5145d3 836 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
Khanchana 0:43d21d5145d3 837 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
Khanchana 0:43d21d5145d3 838 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
Khanchana 0:43d21d5145d3 839 if (Ki > 0.0f)
Khanchana 0:43d21d5145d3 840 {
Khanchana 0:43d21d5145d3 841 eInt[0] += ex; // accumulate integral error
Khanchana 0:43d21d5145d3 842 eInt[1] += ey;
Khanchana 0:43d21d5145d3 843 eInt[2] += ez;
Khanchana 0:43d21d5145d3 844 }
Khanchana 0:43d21d5145d3 845 else
Khanchana 0:43d21d5145d3 846 {
Khanchana 0:43d21d5145d3 847 eInt[0] = 0.0f; // prevent integral wind up
Khanchana 0:43d21d5145d3 848 eInt[1] = 0.0f;
Khanchana 0:43d21d5145d3 849 eInt[2] = 0.0f;
Khanchana 0:43d21d5145d3 850 }
Khanchana 0:43d21d5145d3 851
Khanchana 0:43d21d5145d3 852 // Apply feedback terms
Khanchana 0:43d21d5145d3 853 gx = gx + Kp * ex + Ki * eInt[0];
Khanchana 0:43d21d5145d3 854 gy = gy + Kp * ey + Ki * eInt[1];
Khanchana 0:43d21d5145d3 855 gz = gz + Kp * ez + Ki * eInt[2];
Khanchana 0:43d21d5145d3 856
Khanchana 0:43d21d5145d3 857 // Integrate rate of change of quaternion
Khanchana 0:43d21d5145d3 858 pa = q2;
Khanchana 0:43d21d5145d3 859 pb = q3;
Khanchana 0:43d21d5145d3 860 pc = q4;
Khanchana 0:43d21d5145d3 861 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
Khanchana 0:43d21d5145d3 862 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
Khanchana 0:43d21d5145d3 863 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
Khanchana 0:43d21d5145d3 864 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
Khanchana 0:43d21d5145d3 865
Khanchana 0:43d21d5145d3 866 // Normalise quaternion
Khanchana 0:43d21d5145d3 867 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
Khanchana 0:43d21d5145d3 868 norm = 1.0f / norm;
Khanchana 0:43d21d5145d3 869 q[0] = q1 * norm;
Khanchana 0:43d21d5145d3 870 q[1] = q2 * norm;
Khanchana 0:43d21d5145d3 871 q[2] = q3 * norm;
Khanchana 0:43d21d5145d3 872 q[3] = q4 * norm;
Khanchana 0:43d21d5145d3 873
Khanchana 0:43d21d5145d3 874 }
Khanchana 0:43d21d5145d3 875 };
Khanchana 0:43d21d5145d3 876 #endif