Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of SPI_TFT_ILI9341 by
SPI_TFT_ILI9341_L152.cpp
- Committer:
- dreschpe
- Date:
- 2014-06-24
- Revision:
- 11:59eca2723ec5
File content as of revision 11:59eca2723ec5:
/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller
* Copyright (c) 2013, 2014 Peter Drescher - DC2PD
* Special version for STM Nucleo -L152
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// 24.06.14 initial version
// only include this file if target is L152 :
#ifdef TARGET_NUCLEO_L152RE
#include "SPI_TFT_ILI9341.h"
#include "mbed.h"
#include "stm32l1xx_dma.h"
#include "stm32l1xx_rcc.h"
#include "stm32l1xx_spi.h"
#define BPP 16 // Bits per pixel
//extern Serial pc;
//extern DigitalOut xx; // debug !!
DMA_InitTypeDef DMA_InitStructure;
SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name)
: GraphicsDisplay(name), SPI(mosi,miso,sclk,NC), _cs(cs), _reset(reset), _dc(dc)
{
format(8,3); // 8 bit spi mode 3
frequency(10000000); // 10 Mhz SPI clock : result 2 / 4 = 8
orientation = 0;
char_x = 0;
if(_spi.spi == SPI_1){ // test which SPI is in use
spi_num = 1;
}
if(_spi.spi == SPI_2){
spi_num = 2;
}
if(_spi.spi == SPI_3){
spi_num = 3;
}
tft_reset();
}
// we define a fast write to the SPI port
// we use the bit banding address to get the flag without masking
#define bit_SPI1_txe *((volatile unsigned int *)0x42260104)
#define SPI1_DR *((volatile unsigned int *)0x4001300C)
#define bit_SPI2_txe *((volatile unsigned int *)0x42070104)
#define SPI2_DR *((volatile unsigned int *)0x4000380C)
#define bit_SPI3_txe *((volatile unsigned int *)0x42078104)
#define SPI3_DR *((volatile unsigned int *)0x40003C0C)
void SPI_TFT_ILI9341::f_write(int data){
switch(spi_num){ // used SPI port
case (1):
while(bit_SPI1_txe == 0); // wait for SPI1->SR TXE flag
SPI1_DR = data;
break;
case (2):
while( bit_SPI2_txe == 0); // wait for SPI2->SR TXE flag
SPI2_DR = data;
break;
case (3):
while( bit_SPI3_txe == 0); // wait for SPI3->SR TXE flag
SPI3_DR = data;
break;
}
}
// wait for SPI not busy
// we have to wait for the last bit to switch the cs off
// we use the bit banding address to get the flag without masking
#define bit_SPI1_bsy *((volatile unsigned int *)0x4226011C)
#define bit_SPI2_bsy *((volatile unsigned int *)0x4207011C)
#define bit_SPI3_bsy *((volatile unsigned int *)0x4207811C)
void inline SPI_TFT_ILI9341::spi_bsy(void){
switch(spi_num){ // decide which SPI is to use
case (1):
while(bit_SPI1_bsy == 1); // SPI1->SR bit 7
break;
case (2):
while(bit_SPI2_bsy == 1); // SPI2->SR bit 7
break;
case (3):
while(bit_SPI3_bsy == 1); // SPI2->SR bit 7
break;
}
}
// switch fast between 8 and 16 bit mode
#define bit_SPI1_dff *((volatile unsigned int *)0x4226002C)
#define bit_SPI2_dff *((volatile unsigned int *)0x4207002C)
#define bit_SPI3_dff *((volatile unsigned int *)0x4207802C)
void SPI_TFT_ILI9341::spi_16(bool s){
switch(spi_num){ // decide which SPI is to use
case(1):
if(s) bit_SPI1_dff = 1; // switch to 16 bit Mode
else bit_SPI1_dff = 0; // switch to 8 bit Mode
break;
case(2):
if(s) bit_SPI2_dff = 1; // switch to 16 bit Mode
else bit_SPI2_dff = 0; // switch to 8 bit Mode
break;
case(3):
if(s) bit_SPI3_dff = 1; // switch to 16 bit Mode
else bit_SPI3_dff = 0; // switch to 8 bit Mode
break;
}
}
int SPI_TFT_ILI9341::width()
{
if (orientation == 0 || orientation == 2) return 240;
else return 320;
}
int SPI_TFT_ILI9341::height()
{
if (orientation == 0 || orientation == 2) return 320;
else return 240;
}
void SPI_TFT_ILI9341::set_orientation(unsigned int o)
{
orientation = o;
wr_cmd(0x36); // MEMORY_ACCESS_CONTROL
switch (orientation) {
case 0:
f_write(0x48);
break;
case 1:
f_write(0x28);
break;
case 2:
f_write(0x88);
break;
case 3:
f_write(0xE8);
break;
}
spi_bsy(); // wait for end of transfer
_cs = 1;
WindowMax();
}
// write command to tft register
// use fast command
void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd)
{
_dc = 0;
_cs = 0;
f_write(cmd);
spi_bsy();
_dc = 1;
}
void SPI_TFT_ILI9341::wr_dat(unsigned char dat)
{
f_write(dat);
spi_bsy(); // wait for SPI send
}
// the ILI9341 can read
char SPI_TFT_ILI9341::rd_byte(unsigned char cmd)
{
char r;
_dc = 0;
_cs = 0;
SPI1->DR = cmd;
do{}while(SPI1->SR & 0x02 == 0); // wait for SPI send
SPI1->DR = 0xFF;
do{}while(SPI1->SR & 0x02 == 0); // wait for SPI send
r = SPI1->DR;
_cs = 1;
return(r);
}
// read 32 bit
int SPI_TFT_ILI9341::rd_32(unsigned char cmd)
{
int d;
char r;
_dc = 0;
_cs = 0;
d = cmd;
d = d << 1;
format(9,3); // we have to add a dummy clock cycle
f_write(d);
format(8,3);
_dc = 1;
//r = _spi.spi write(0xff);
d = r;
//r = f_write(0xff);
d = (d << 8) | r;
//r = f_write(0xff);
d = (d << 8) | r;
//r = f_write(0xff);
d = (d << 8) | r;
_cs = 1;
return(d);
}
int SPI_TFT_ILI9341::Read_ID(void){
int r;
r = rd_byte(0x0A);
r = rd_byte(0x0A);
r = rd_byte(0x0A);
r = rd_byte(0x0A);
return(r);
}
// Init code based on MI0283QT datasheet
// this code is called only at start
// no need to be optimized
void SPI_TFT_ILI9341::tft_reset()
{
_cs = 1; // cs high
_dc = 1; // dc high
_reset = 0; // display reset
wait_us(50);
_reset = 1; // end hardware reset
wait_ms(5);
wr_cmd(0x01); // SW reset
wait_ms(5);
wr_cmd(0x28); // display off
/* Start Initial Sequence ----------------------------------------------------*/
wr_cmd(0xCF);
f_write(0x00);
f_write(0x83);
f_write(0x30);
spi_bsy();
_cs = 1;
wr_cmd(0xED);
f_write(0x64);
f_write(0x03);
f_write(0x12);
f_write(0x81);
spi_bsy();
_cs = 1;
wr_cmd(0xE8);
f_write(0x85);
f_write(0x01);
f_write(0x79);
spi_bsy();
_cs = 1;
wr_cmd(0xCB);
f_write(0x39);
f_write(0x2C);
f_write(0x00);
f_write(0x34);
f_write(0x02);
spi_bsy();
_cs = 1;
wr_cmd(0xF7);
f_write(0x20);
spi_bsy();
_cs = 1;
wr_cmd(0xEA);
f_write(0x00);
f_write(0x00);
spi_bsy();
_cs = 1;
wr_cmd(0xC0); // POWER_CONTROL_1
f_write(0x26);
spi_bsy();
_cs = 1;
wr_cmd(0xC1); // POWER_CONTROL_2
f_write(0x11);
spi_bsy();
_cs = 1;
wr_cmd(0xC5); // VCOM_CONTROL_1
f_write(0x35);
f_write(0x3E);
spi_bsy();
_cs = 1;
wr_cmd(0xC7); // VCOM_CONTROL_2
f_write(0xBE);
spi_bsy();
_cs = 1;
wr_cmd(0x36); // MEMORY_ACCESS_CONTROL
f_write(0x48);
spi_bsy();
_cs = 1;
wr_cmd(0x3A); // COLMOD_PIXEL_FORMAT_SET
f_write(0x55); // 16 bit pixel
spi_bsy();
_cs = 1;
wr_cmd(0xB1); // Frame Rate
f_write(0x00);
f_write(0x1B);
spi_bsy();
_cs = 1;
wr_cmd(0xF2); // Gamma Function Disable
f_write(0x08);
spi_bsy();
_cs = 1;
wr_cmd(0x26);
f_write(0x01); // gamma set for curve 01/2/04/08
spi_bsy();
_cs = 1;
wr_cmd(0xE0); // positive gamma correction
f_write(0x1F);
f_write(0x1A);
f_write(0x18);
f_write(0x0A);
f_write(0x0F);
f_write(0x06);
f_write(0x45);
f_write(0x87);
f_write(0x32);
f_write(0x0A);
f_write(0x07);
f_write(0x02);
f_write(0x07);
f_write(0x05);
f_write(0x00);
spi_bsy();
_cs = 1;
wr_cmd(0xE1); // negativ gamma correction
f_write(0x00);
f_write(0x25);
f_write(0x27);
f_write(0x05);
f_write(0x10);
f_write(0x09);
f_write(0x3A);
f_write(0x78);
f_write(0x4D);
f_write(0x05);
f_write(0x18);
f_write(0x0D);
f_write(0x38);
f_write(0x3A);
f_write(0x1F);
spi_bsy();
_cs = 1;
WindowMax ();
//wr_cmd(0x34); // tearing effect off
//_cs = 1;
//wr_cmd(0x35); // tearing effect on
//_cs = 1;
wr_cmd(0xB7); // entry mode
f_write(0x07);
spi_bsy();
_cs = 1;
wr_cmd(0xB6); // display function control
f_write(0x0A);
f_write(0x82);
f_write(0x27);
f_write(0x00);
spi_bsy();
_cs = 1;
wr_cmd(0x11); // sleep out
spi_bsy();
_cs = 1;
wait_ms(100);
wr_cmd(0x29); // display on
spi_bsy();
_cs = 1;
wait_ms(100);
// Configure the DMA controller init-structure
DMA_StructInit(&DMA_InitStructure);
switch(spi_num){ // decide which SPI is to use
case (1):
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // SPI1 and SPI2 are using DMA 1
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI1->DR);
break;
case (2):
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // SPI1 and SPI2 are using DMA 1
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI2->DR);
break;
case (3):
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE); // SPI3 is using DMA 2
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI3->DR);
break;
}
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_BufferSize = 0;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
}
// speed optimized
// write direct to SPI1 register !
void SPI_TFT_ILI9341::pixel(int x, int y, int color)
{
wr_cmd(0x2A);
spi_16(1); // switch to 8 bit Mode
f_write(x);
spi_bsy();
_cs = 1;
spi_16(0); // switch to 8 bit Mode
wr_cmd(0x2B);
spi_16(1);
f_write(y);
spi_bsy();
_cs = 1;
spi_16(0);
wr_cmd(0x2C); // send pixel
spi_16(1);
f_write(color);
spi_bsy();
_cs = 1;
spi_16(0);
}
// optimized
// write direct to SPI1 register !
void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h)
{
wr_cmd(0x2A);
spi_16(1);
f_write(x);
f_write(x+w-1);
spi_bsy();
_cs = 1;
spi_16(0);
wr_cmd(0x2B);
spi_16(1);
f_write(y) ;
f_write(y+h-1);
spi_bsy();
_cs = 1;
spi_16(0);
}
void SPI_TFT_ILI9341::WindowMax (void)
{
window (0, 0, width(), height());
}
// optimized
// use DMA to transfer pixel data to the screen
void SPI_TFT_ILI9341::cls (void)
{
//int pixel = ( width() * height());
WindowMax();
wr_cmd(0x2C); // send pixel
spi_16(1); // switch to 16 bit Mode
// set up the DMA structure for single byte
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) &_background;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
switch(spi_num){ // decide which SPI is to use
case (1):
DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA
// we have to send 2 blocks of pixel date, because the DMA counter can only transfer 64k
DMA_SetCurrDataCounter(DMA1_Channel3, 38400); // 1.half of screen
SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA1_Channel3, ENABLE);
do{
}while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel3, DISABLE);
DMA_SetCurrDataCounter(DMA1_Channel3, 38400); // 2.half of screen
DMA_Cmd(DMA1_Channel3, ENABLE);
do{
}while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel3, DISABLE);
break;
case (2):
DMA_Init(DMA1_Channel5, &DMA_InitStructure); // init the DMA
// we have to send 2 blocks of pixel date, because the DMA counter can only transfer 64k
DMA_SetCurrDataCounter(DMA1_Channel5, 38400); // 1.half of screen
SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA1_Channel5, ENABLE);
do{
}while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel5, DISABLE);
DMA_SetCurrDataCounter(DMA1_Channel5, 38400); // 2.half of screen
DMA_Cmd(DMA1_Channel5, ENABLE);
do{
}while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel5, DISABLE);
break;
case (3):
DMA_Init(DMA2_Channel2, &DMA_InitStructure); // init the DMA
// we have to send 2 blocks of pixel date, because the DMA counter can only transfer 64k
DMA_SetCurrDataCounter(DMA2_Channel2, 38400); // 1.half of screen
SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA2_Channel2, ENABLE);
do{
}while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer
DMA_Cmd(DMA2_Channel2, DISABLE);
DMA_SetCurrDataCounter(DMA2_Channel2, 38400); // 2.half of screen
DMA_Cmd(DMA2_Channel2, ENABLE);
do{
}while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer
DMA_Cmd(DMA2_Channel2, DISABLE);
break;
}
spi_bsy();
_cs = 1;
spi_16(0);
}
void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color)
{
int x = -r, y = 0, err = 2-2*r, e2;
do {
pixel(x0-x, y0+y,color);
pixel(x0+x, y0+y,color);
pixel(x0+x, y0-y,color);
pixel(x0-x, y0-y,color);
e2 = err;
if (e2 <= y) {
err += ++y*2+1;
if (-x == y && e2 <= x) e2 = 0;
}
if (e2 > x) err += ++x*2+1;
} while (x <= 0);
}
void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color)
{
int x = -r, y = 0, err = 2-2*r, e2;
do {
vline(x0-x, y0-y, y0+y, color);
vline(x0+x, y0-y, y0+y, color);
e2 = err;
if (e2 <= y) {
err += ++y*2+1;
if (-x == y && e2 <= x) e2 = 0;
}
if (e2 > x) err += ++x*2+1;
} while (x <= 0);
}
// optimized for speed
void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color)
{
int w,j;
w = x1 - x0 + 1;
window(x0,y,w,1);
_dc = 0;
_cs = 0;
f_write(0x2C); // send pixel
spi_bsy();
_dc = 1;
spi_16(1);
for (j=0; j<w; j++) {
f_write(color);
}
spi_bsy();
spi_16(0);
_cs = 1;
WindowMax();
return;
}
// optimized for speed
void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color)
{
int h,y;
h = y1 - y0 + 1;
window(x,y0,1,h);
_dc = 0;
_cs = 0;
f_write(0x2C); // send pixel
spi_bsy();
_dc = 1;
spi_16(1);
// switch to 16 bit Mode 3
for (y=0; y<h; y++) {
f_write(color);
}
spi_bsy();
spi_16(0);
_cs = 1;
WindowMax();
return;
}
void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color)
{
//WindowMax();
int dx = 0, dy = 0;
int dx_sym = 0, dy_sym = 0;
int dx_x2 = 0, dy_x2 = 0;
int di = 0;
dx = x1-x0;
dy = y1-y0;
if (dx == 0) { /* vertical line */
if (y1 > y0) vline(x0,y0,y1,color);
else vline(x0,y1,y0,color);
return;
}
if (dx > 0) {
dx_sym = 1;
} else {
dx_sym = -1;
}
if (dy == 0) { /* horizontal line */
if (x1 > x0) hline(x0,x1,y0,color);
else hline(x1,x0,y0,color);
return;
}
if (dy > 0) {
dy_sym = 1;
} else {
dy_sym = -1;
}
dx = dx_sym*dx;
dy = dy_sym*dy;
dx_x2 = dx*2;
dy_x2 = dy*2;
if (dx >= dy) {
di = dy_x2 - dx;
while (x0 != x1) {
pixel(x0, y0, color);
x0 += dx_sym;
if (di<0) {
di += dy_x2;
} else {
di += dy_x2 - dx_x2;
y0 += dy_sym;
}
}
pixel(x0, y0, color);
} else {
di = dx_x2 - dy;
while (y0 != y1) {
pixel(x0, y0, color);
y0 += dy_sym;
if (di < 0) {
di += dx_x2;
} else {
di += dx_x2 - dy_x2;
x0 += dx_sym;
}
}
pixel(x0, y0, color);
}
return;
}
void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color)
{
if (x1 > x0) hline(x0,x1,y0,color);
else hline(x1,x0,y0,color);
if (y1 > y0) vline(x0,y0,y1,color);
else vline(x0,y1,y0,color);
if (x1 > x0) hline(x0,x1,y1,color);
else hline(x1,x0,y1,color);
if (y1 > y0) vline(x1,y0,y1,color);
else vline(x1,y1,y0,color);
return;
}
// optimized for speed
// use DMA
void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color)
{
int h = y1 - y0 + 1;
int w = x1 - x0 + 1;
int pixel = h * w;
unsigned int dma_transfer;
window(x0,y0,w,h);
wr_cmd(0x2C); // send pixel
spi_16(1);
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) &color;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
switch(spi_num){ // decide which SPI is to use
case (1):
DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA
do{
if(pixel < 0x10000) {
dma_transfer = pixel;
pixel = 0;
}
else {
dma_transfer = 0xffff;
pixel = pixel - 0xffff;
}
DMA_SetCurrDataCounter(DMA1_Channel3, dma_transfer);
SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA1_Channel3, ENABLE);
while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel3, DISABLE);
}while(pixel > 0);
break;
case (2):
DMA_Init(DMA1_Channel5, &DMA_InitStructure); // init the DMA
do{
if(pixel < 0x10000) {
dma_transfer = pixel;
pixel = 0;
}
else {
dma_transfer = 0xffff;
pixel = pixel - 0xffff;
}
DMA_SetCurrDataCounter(DMA1_Channel5, dma_transfer);
SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA1_Channel5, ENABLE);
while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel5, DISABLE);
}while(pixel > 0);
break;
case (3):
DMA_Init(DMA2_Channel2, &DMA_InitStructure); // init the DMA
do{
if(pixel < 0x10000) {
dma_transfer = pixel;
pixel = 0;
}
else {
dma_transfer = 0xffff;
pixel = pixel - 0xffff;
}
DMA_SetCurrDataCounter(DMA2_Channel2, dma_transfer);
SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA2_Channel2, ENABLE);
while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer
DMA_Cmd(DMA2_Channel2, DISABLE);
}while(pixel > 0);
break;
}
spi_bsy();
spi_16(0);
_cs = 1;
WindowMax();
return;
}
void SPI_TFT_ILI9341::locate(int x, int y)
{
char_x = x;
char_y = y;
}
int SPI_TFT_ILI9341::columns()
{
return width() / font[1];
}
int SPI_TFT_ILI9341::rows()
{
return height() / font[2];
}
int SPI_TFT_ILI9341::_putc(int value)
{
if (value == '\n') { // new line
char_x = 0;
char_y = char_y + font[2];
if (char_y >= height() - font[2]) {
char_y = 0;
}
} else {
character(char_x, char_y, value);
}
return value;
}
// speed optimized
// will use dma
void SPI_TFT_ILI9341::character(int x, int y, int c)
{
unsigned int hor,vert,offset,bpl,j,i,b;
unsigned char* zeichen;
unsigned char z,w;
unsigned int pixel;
unsigned int p;
unsigned int dma_count,dma_off;
uint16_t *buffer;
if ((c < 31) || (c > 127)) return; // test char range
// read font parameter from start of array
offset = font[0]; // bytes / char
hor = font[1]; // get hor size of font
vert = font[2]; // get vert size of font
bpl = font[3]; // bytes per line
if (char_x + hor > width()) {
char_x = 0;
char_y = char_y + vert;
if (char_y >= height() - font[2]) {
char_y = 0;
}
}
window(char_x, char_y,hor,vert); // setup char box
wr_cmd(0x2C);
pixel = hor * vert; // calculate buffer size
spi_16(1); // switch to 16 bit Mode
buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the font
if (buffer == NULL) { // there is no memory space -> use no dma
zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
w = zeichen[0]; // width of actual char
for (j=0; j<vert; j++) { // vert line
for (i=0; i<hor; i++) { // horz line
z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
b = 1 << (j & 0x07);
if (( z & b ) == 0x00) {
f_write(_background);
} else {
f_write(_foreground);
}
}
}
spi_bsy();
_cs = 1;
spi_16(0);
}
// malloc ok, we can use DMA to transfer
else{
zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
w = zeichen[0]; // width of actual char
p = 0;
// construct the font into the buffer
for (j=0; j<vert; j++) { // vert line
for (i=0; i<hor; i++) { // horz line
z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
b = 1 << (j & 0x07);
if (( z & b ) == 0x00) {
buffer[p] = _background;
} else {
buffer[p] = _foreground;
}
p++;
}
}
// copy the buffer with DMA SPI to display
dma_off = 0; // offset for DMA transfer
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) (buffer + dma_off);
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
switch(spi_num){ // decide which SPI is to use
case (1):
DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA
// start DMA
do {
if (pixel > 0X10000) { // this is a giant font !
dma_count = 0Xffff;
pixel = pixel - 0Xffff;
} else {
dma_count = pixel;
pixel = 0;
}
DMA_SetCurrDataCounter(DMA1_Channel3, dma_count);
SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA1_Channel3, ENABLE);
while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel3, DISABLE);
}while(pixel > 0);
break;
case (2):
DMA_Init(DMA1_Channel5, &DMA_InitStructure); // init the DMA
// start DMA
do {
if (pixel > 0X10000) { // this is a giant font !
dma_count = 0Xffff;
pixel = pixel - 0Xffff;
} else {
dma_count = pixel;
pixel = 0;
}
DMA_SetCurrDataCounter(DMA1_Channel5, dma_count);
SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA1_Channel5, ENABLE);
while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer
DMA_Cmd(DMA1_Channel5, DISABLE);
}while(pixel > 0);
break;
case (3):
DMA_Init(DMA2_Channel2, &DMA_InitStructure); // init the DMA
// start DMA
do {
if (pixel > 0X10000) { // this is a giant font !
dma_count = 0Xffff;
pixel = pixel - 0Xffff;
} else {
dma_count = pixel;
pixel = 0;
}
DMA_SetCurrDataCounter(DMA2_Channel2, dma_count);
SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx,ENABLE);
DMA_Cmd(DMA2_Channel2, ENABLE);
while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer
DMA_Cmd(DMA2_Channel2, DISABLE);
}while(pixel > 0);
break;
}
spi_bsy();
free ((uint16_t *) buffer);
spi_16(0);
}
_cs = 1;
WindowMax();
if ((w + 2) < hor) { // x offset to next char
char_x += w + 2;
} else char_x += hor;
}
void SPI_TFT_ILI9341::set_font(unsigned char* f)
{
font = f;
}
void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap)
{
unsigned int j;
int padd;
unsigned short *bitmap_ptr = (unsigned short *)bitmap;
unsigned int i;
// the lines are padded to multiple of 4 bytes in a bitmap
padd = -1;
do {
padd ++;
} while (2*(w + padd)%4 != 0);
window(x, y, w, h);
bitmap_ptr += ((h - 1)* (w + padd));
wr_cmd(0x2C); // send pixel
spi_16(1);
for (j = 0; j < h; j++) { //Lines
for (i = 0; i < w; i++) { // one line
f_write(*bitmap_ptr); // one line
bitmap_ptr++;
}
bitmap_ptr -= 2*w;
bitmap_ptr -= padd;
}
spi_bsy();
_cs = 1;
spi_16(0);
WindowMax();
}
// local filesystem is not implemented but you can add a SD card to a different SPI
int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP)
{
#define OffsetPixelWidth 18
#define OffsetPixelHeigh 22
#define OffsetFileSize 34
#define OffsetPixData 10
#define OffsetBPP 28
char filename[50];
unsigned char BMP_Header[54];
unsigned short BPP_t;
unsigned int PixelWidth,PixelHeigh,start_data;
unsigned int i,off;
int padd,j;
unsigned short *line;
// get the filename
i=0;
while (*Name_BMP!='\0') {
filename[i++]=*Name_BMP++;
}
filename[i] = 0;
FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file
if (!Image) {
return(0); // error file not found !
}
fread(&BMP_Header[0],1,54,Image); // get the BMP Header
if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte
fclose(Image);
return(-1); // error no BMP file
}
BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8);
if (BPP_t != 0x0010) {
fclose(Image);
return(-2); // error no 16 bit BMP
}
PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24);
PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24);
if (PixelHeigh > height() + y || PixelWidth > width() + x) {
fclose(Image);
return(-3); // to big
}
start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24);
line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line
if (line == NULL) {
return(-4); // error no memory
}
// the bmp lines are padded to multiple of 4 bytes
padd = -1;
do {
padd ++;
} while ((PixelWidth * 2 + padd)%4 != 0);
window(x, y,PixelWidth ,PixelHeigh);
wr_cmd(0x2C); // send pixel
spi_16(1);
for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up
off = j * (PixelWidth * 2 + padd) + start_data; // start of line
fseek(Image, off ,SEEK_SET);
fread(line,1,PixelWidth * 2,Image); // read a line - slow
for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT
f_write(line[i]); // one 16 bit pixel
}
}
spi_bsy();
_cs = 1;
spi_16(0);
free (line);
fclose(Image);
WindowMax();
return(1);
}
#endif
