wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
wolfssl/wolfcrypt/ecc.h
- Committer:
- wolfSSL
- Date:
- 2015-06-26
- Revision:
- 0:d92f9d21154c
File content as of revision 0:d92f9d21154c:
/* ecc.h * * Copyright (C) 2006-2015 wolfSSL Inc. * * This file is part of wolfSSL. (formerly known as CyaSSL) * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef WOLF_CRYPT_ECC_H #define WOLF_CRYPT_ECC_H #include <wolfssl/wolfcrypt/types.h> #ifdef HAVE_ECC #include <wolfssl/wolfcrypt/integer.h> #include <wolfssl/wolfcrypt/random.h> #ifdef __cplusplus extern "C" { #endif enum { ECC_PUBLICKEY = 1, ECC_PRIVATEKEY = 2, ECC_MAXNAME = 16, /* MAX CURVE NAME LENGTH */ SIG_HEADER_SZ = 6, /* ECC signature header size */ ECC_BUFSIZE = 256, /* for exported keys temp buffer */ ECC_MINSIZE = 20, /* MIN Private Key size */ ECC_MAXSIZE = 66 /* MAX Private Key size */ }; /* ECC set type defined a NIST GF(p) curve */ typedef struct { int size; /* The size of the curve in octets */ const char* name; /* name of this curve */ const char* prime; /* prime that defines the field, curve is in (hex) */ const char* Af; /* fields A param (hex) */ const char* Bf; /* fields B param (hex) */ const char* order; /* order of the curve (hex) */ const char* Gx; /* x coordinate of the base point on curve (hex) */ const char* Gy; /* y coordinate of the base point on curve (hex) */ } ecc_set_type; #ifdef ALT_ECC_SIZE /* Note on ALT_ECC_SIZE: * The fast math code uses an array of a fixed size to store the big integers. * By default, the array is big enough for RSA keys. There is a size, * FP_MAX_BITS which can be used to make the array smaller when one wants ECC * but not RSA. Some people want fast math sized for both RSA and ECC, where * ECC won't use as much as RSA. The flag ALT_ECC_SIZE switches in an alternate * ecc_point structure that uses an alternate fp_int that has a shorter array * of fp_digits. * * Now, without ALT_ECC_SIZE, the ecc_point has three single item arrays of * mp_ints for the components of the point. With ALT_ECC_SIZE, the components * of the point are pointers that are set to each of a three item array of * alt_fp_ints. While an mp_int will have 4096 bits of digit inside the * structure, the alt_fp_int will only have 512 bits. A size value was added * in the ALT case, as well, and is set by mp_init() and alt_fp_init(). The * functions fp_zero() and fp_copy() use the size parameter. An int needs to * be initialized before using it instead of just fp_zeroing it, the init will * call zero. FP_MAX_BITS_ECC defaults to 512, but can be set to change the * number of bits used in the alternate FP_INT. * * Do not enable ALT_ECC_SIZE and disable fast math in the configuration. */ #ifndef FP_MAX_BITS_ECC #define FP_MAX_BITS_ECC 512 #endif #define FP_MAX_SIZE_ECC (FP_MAX_BITS_ECC+(8*DIGIT_BIT)) #if FP_MAX_BITS_ECC % CHAR_BIT #error FP_MAX_BITS_ECC must be a multiple of CHAR_BIT #endif #define FP_SIZE_ECC (FP_MAX_SIZE_ECC/DIGIT_BIT) /* This needs to match the size of the fp_int struct, except the * fp_digit array will be shorter. */ typedef struct alt_fp_int { int used, sign, size; fp_digit dp[FP_SIZE_ECC]; } alt_fp_int; #endif /* A point on an ECC curve, stored in Jacbobian format such that (x,y,z) => (x/z^2, y/z^3, 1) when interpreted as affine */ typedef struct { #ifndef ALT_ECC_SIZE mp_int x[1]; /* The x coordinate */ mp_int y[1]; /* The y coordinate */ mp_int z[1]; /* The z coordinate */ #else mp_int* x; /* The x coordinate */ mp_int* y; /* The y coordinate */ mp_int* z; /* The z coordinate */ alt_fp_int xyz[3]; #endif } ecc_point; /* An ECC Key */ typedef struct { int type; /* Public or Private */ int idx; /* Index into the ecc_sets[] for the parameters of this curve if -1, this key is using user supplied curve in dp */ const ecc_set_type* dp; /* domain parameters, either points to NIST curves (idx >= 0) or user supplied */ ecc_point pubkey; /* public key */ mp_int k; /* private key */ } ecc_key; /* ECC predefined curve sets */ extern const ecc_set_type ecc_sets[]; WOLFSSL_API int wc_ecc_make_key(RNG* rng, int keysize, ecc_key* key); WOLFSSL_API int wc_ecc_check_key(ecc_key* key); WOLFSSL_API int wc_ecc_shared_secret(ecc_key* private_key, ecc_key* public_key, byte* out, word32* outlen); WOLFSSL_API int wc_ecc_sign_hash(const byte* in, word32 inlen, byte* out, word32 *outlen, RNG* rng, ecc_key* key); WOLFSSL_API int wc_ecc_verify_hash(const byte* sig, word32 siglen, const byte* hash, word32 hashlen, int* stat, ecc_key* key); WOLFSSL_API int wc_ecc_init(ecc_key* key); WOLFSSL_API void wc_ecc_free(ecc_key* key); WOLFSSL_API void wc_ecc_fp_free(void); /* ASN key helpers */ WOLFSSL_API int wc_ecc_export_x963(ecc_key*, byte* out, word32* outLen); WOLFSSL_API int wc_ecc_export_x963_ex(ecc_key*, byte* out, word32* outLen, int compressed); /* extended functionality with compressed option */ WOLFSSL_API int wc_ecc_import_x963(const byte* in, word32 inLen, ecc_key* key); WOLFSSL_API int wc_ecc_import_private_key(const byte* priv, word32 privSz, const byte* pub, word32 pubSz, ecc_key* key); WOLFSSL_API int wc_ecc_rs_to_sig(const char* r, const char* s, byte* out, word32* outlen); WOLFSSL_API int wc_ecc_import_raw(ecc_key* key, const char* qx, const char* qy, const char* d, const char* curveName); WOLFSSL_API int wc_ecc_export_private_only(ecc_key* key, byte* out, word32* outLen); /* size helper */ WOLFSSL_API int wc_ecc_size(ecc_key* key); WOLFSSL_API int wc_ecc_sig_size(ecc_key* key); #ifdef HAVE_ECC_ENCRYPT /* ecc encrypt */ enum ecEncAlgo { ecAES_128_CBC = 1, /* default */ ecAES_256_CBC = 2 }; enum ecKdfAlgo { ecHKDF_SHA256 = 1, /* default */ ecHKDF_SHA1 = 2 }; enum ecMacAlgo { ecHMAC_SHA256 = 1, /* default */ ecHMAC_SHA1 = 2 }; enum { KEY_SIZE_128 = 16, KEY_SIZE_256 = 32, IV_SIZE_64 = 8, EXCHANGE_SALT_SZ = 16, EXCHANGE_INFO_SZ = 23 }; enum ecFlags { REQ_RESP_CLIENT = 1, REQ_RESP_SERVER = 2 }; typedef struct ecEncCtx ecEncCtx; WOLFSSL_API ecEncCtx* wc_ecc_ctx_new(int flags, RNG* rng); WOLFSSL_API void wc_ecc_ctx_free(ecEncCtx*); WOLFSSL_API int wc_ecc_ctx_reset(ecEncCtx*, RNG*); /* reset for use again w/o alloc/free */ WOLFSSL_API const byte* wc_ecc_ctx_get_own_salt(ecEncCtx*); WOLFSSL_API int wc_ecc_ctx_set_peer_salt(ecEncCtx*, const byte* salt); WOLFSSL_API int wc_ecc_ctx_set_info(ecEncCtx*, const byte* info, int sz); WOLFSSL_API int wc_ecc_encrypt(ecc_key* privKey, ecc_key* pubKey, const byte* msg, word32 msgSz, byte* out, word32* outSz, ecEncCtx* ctx); WOLFSSL_API int wc_ecc_decrypt(ecc_key* privKey, ecc_key* pubKey, const byte* msg, word32 msgSz, byte* out, word32* outSz, ecEncCtx* ctx); #endif /* HAVE_ECC_ENCRYPT */ #ifdef __cplusplus } /* extern "C" */ #endif #endif /* HAVE_ECC */ #endif /* WOLF_CRYPT_ECC_H */