wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
wolfcrypt/src/sha.c
- Committer:
- wolfSSL
- Date:
- 2017-05-30
- Revision:
- 13:80fb167dafdf
- Parent:
- 11:cee25a834751
File content as of revision 13:80fb167dafdf:
/* sha.c * * Copyright (C) 2006-2016 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfssl/wolfcrypt/settings.h> #if !defined(NO_SHA) #include <wolfssl/wolfcrypt/sha.h> #include <wolfssl/wolfcrypt/error-crypt.h> /* fips wrapper calls, user can call direct */ #ifdef HAVE_FIPS int wc_InitSha(Sha* sha) { return InitSha_fips(sha); } int wc_InitSha_ex(Sha* sha, void* heap, int devId) { (void)heap; (void)devId; return InitSha_fips(sha); } int wc_ShaUpdate(Sha* sha, const byte* data, word32 len) { return ShaUpdate_fips(sha, data, len); } int wc_ShaFinal(Sha* sha, byte* out) { return ShaFinal_fips(sha,out); } void wc_ShaFree(Sha* sha) { (void)sha; /* Not supported in FIPS */ } #else /* else build without fips */ #if defined(WOLFSSL_TI_HASH) /* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */ #else #include <wolfssl/wolfcrypt/logging.h> #ifdef NO_INLINE #include <wolfssl/wolfcrypt/misc.h> #else #define WOLFSSL_MISC_INCLUDED #include <wolfcrypt/src/misc.c> #endif /* Hardware Acceleration */ #if defined(WOLFSSL_PIC32MZ_HASH) #define USE_SHA_SOFTWARE_IMPL #define wc_InitSha wc_InitSha_sw #define wc_ShaUpdate wc_ShaUpdate_sw #define wc_ShaFinal wc_ShaFinal_sw #elif defined(STM32F2_HASH) || defined(STM32F4_HASH) /* * STM32F2/F4 hardware SHA1 support through the standard peripheral * library. (See note in README). */ static int InitSha(Sha* sha) { /* STM32 struct notes: * sha->buffer = first 4 bytes used to hold partial block if needed * sha->buffLen = num bytes currently stored in sha->buffer * sha->loLen = num bytes that have been written to STM32 FIFO */ XMEMSET(sha->buffer, 0, SHA_REG_SIZE); sha->buffLen = 0; sha->loLen = 0; /* initialize HASH peripheral */ HASH_DeInit(); /* configure algo used, algo mode, datatype */ HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE); HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH | HASH_DataType_8b); /* reset HASH processor */ HASH->CR |= HASH_CR_INIT; return 0; } int wc_ShaUpdate(Sha* sha, const byte* data, word32 len) { word32 i = 0; word32 fill = 0; word32 diff = 0; /* if saved partial block is available */ if (sha->buffLen) { fill = 4 - sha->buffLen; /* if enough data to fill, fill and push to FIFO */ if (fill <= len) { XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill); HASH_DataIn(*(uint32_t*)sha->buffer); data += fill; len -= fill; sha->loLen += 4; sha->buffLen = 0; } else { /* append partial to existing stored block */ XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len); sha->buffLen += len; return 0; } } /* write input block in the IN FIFO */ for(i = 0; i < len; i += 4) { diff = len - i; if ( diff < 4) { /* store incomplete last block, not yet in FIFO */ XMEMSET(sha->buffer, 0, SHA_REG_SIZE); XMEMCPY((byte*)sha->buffer, data, diff); sha->buffLen = diff; } else { HASH_DataIn(*(uint32_t*)data); data+=4; } } /* keep track of total data length thus far */ sha->loLen += (len - sha->buffLen); return 0; } int wc_ShaFinal(Sha* sha, byte* hash) { __IO uint16_t nbvalidbitsdata = 0; /* finish reading any trailing bytes into FIFO */ if (sha->buffLen) { HASH_DataIn(*(uint32_t*)sha->buffer); sha->loLen += sha->buffLen; } /* calculate number of valid bits in last word of input data */ nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE); /* configure number of valid bits in last word of the data */ HASH_SetLastWordValidBitsNbr(nbvalidbitsdata); /* start HASH processor */ HASH_StartDigest(); /* wait until Busy flag == RESET */ while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {} /* read message digest */ sha->digest[0] = HASH->HR[0]; sha->digest[1] = HASH->HR[1]; sha->digest[2] = HASH->HR[2]; sha->digest[3] = HASH->HR[3]; sha->digest[4] = HASH->HR[4]; ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); return wc_InitSha(sha); /* reset state */ } #elif defined(FREESCALE_LTC_SHA) #include "fsl_ltc.h" static int InitSha(Sha* sha) { LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0); return 0; } int wc_ShaUpdate(Sha* sha, const byte* data, word32 len) { LTC_HASH_Update(&sha->ctx, data, len); return 0; } int wc_ShaFinal(Sha* sha, byte* hash) { uint32_t hashlen = SHA_DIGEST_SIZE; LTC_HASH_Finish(&sha->ctx, hash, &hashlen); return wc_InitSha(sha); /* reset state */ } #elif defined(FREESCALE_MMCAU_SHA) #include "fsl_mmcau.h" #define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */ #define XSHATRANSFORM ShaTransform static int InitSha(Sha* sha) { int ret = 0; ret = wolfSSL_CryptHwMutexLock(); if(ret != 0) { return ret; } MMCAU_SHA1_InitializeOutput((uint32_t*)sha->digest); wolfSSL_CryptHwMutexUnLock(); sha->buffLen = 0; sha->loLen = 0; sha->hiLen = 0; return ret; } static int ShaTransform(Sha* sha, byte* data) { int ret = wolfSSL_CryptHwMutexLock(); if(ret == 0) { MMCAU_SHA1_HashN(data, 1, (uint32_t*)sha->digest); wolfSSL_CryptHwMutexUnLock(); } return ret; } #else /* Software implementation */ #define USE_SHA_SOFTWARE_IMPL static int InitSha(Sha* sha) { int ret = 0; sha->digest[0] = 0x67452301L; sha->digest[1] = 0xEFCDAB89L; sha->digest[2] = 0x98BADCFEL; sha->digest[3] = 0x10325476L; sha->digest[4] = 0xC3D2E1F0L; sha->buffLen = 0; sha->loLen = 0; sha->hiLen = 0; return ret; } #endif /* End Hardware Acceleration */ /* Software implementation */ #ifdef USE_SHA_SOFTWARE_IMPL /* Check if custom Sha transform is used */ #ifndef XSHATRANSFORM #define XSHATRANSFORM ShaTransform #define blk0(i) (W[i] = sha->buffer[i]) #define blk1(i) (W[(i)&15] = \ rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1)) #define f1(x,y,z) ((z)^((x) &((y)^(z)))) #define f2(x,y,z) ((x)^(y)^(z)) #define f3(x,y,z) (((x)&(y))|((z)&((x)|(y)))) #define f4(x,y,z) ((x)^(y)^(z)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \ rotlFixed((v),5); (w) = rotlFixed((w),30); #define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \ rotlFixed((v),5); (w) = rotlFixed((w),30); #define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \ rotlFixed((v),5); (w) = rotlFixed((w),30); #define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \ rotlFixed((v),5); (w) = rotlFixed((w),30); #define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \ rotlFixed((v),5); (w) = rotlFixed((w),30); static void ShaTransform(Sha* sha, byte* data) { word32 W[SHA_BLOCK_SIZE / sizeof(word32)]; /* Copy context->state[] to working vars */ word32 a = sha->digest[0]; word32 b = sha->digest[1]; word32 c = sha->digest[2]; word32 d = sha->digest[3]; word32 e = sha->digest[4]; #ifdef USE_SLOW_SHA word32 t, i; for (i = 0; i < 16; i++) { R0(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 20; i++) { R1(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 40; i++) { R2(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 60; i++) { R3(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 80; i++) { R4(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } #else /* nearly 1 K bigger in code size but 25% faster */ /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); #endif /* Add the working vars back into digest state[] */ sha->digest[0] += a; sha->digest[1] += b; sha->digest[2] += c; sha->digest[3] += d; sha->digest[4] += e; (void)data; /* Not used */ } #endif /* !USE_CUSTOM_SHA_TRANSFORM */ static INLINE void AddLength(Sha* sha, word32 len) { word32 tmp = sha->loLen; if ( (sha->loLen += len) < tmp) sha->hiLen++; /* carry low to high */ } int wc_InitSha_ex(Sha* sha, void* heap, int devId) { int ret = 0; if (sha == NULL) return BAD_FUNC_ARG; sha->heap = heap; ret = InitSha(sha); if (ret != 0) return ret; #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA) ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA, sha->heap, devId); #else (void)devId; #endif /* WOLFSSL_ASYNC_CRYPT */ return ret; } int wc_ShaUpdate(Sha* sha, const byte* data, word32 len) { /* do block size increments */ byte* local = (byte*)sha->buffer; #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA) if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) { #if defined(HAVE_INTEL_QA) return IntelQaSymSha(&sha->asyncDev, NULL, data, len); #endif } #endif /* WOLFSSL_ASYNC_CRYPT */ /* check that internal buffLen is valid */ if (sha->buffLen >= SHA_BLOCK_SIZE) return BUFFER_E; while (len) { word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen); XMEMCPY(&local[sha->buffLen], data, add); sha->buffLen += add; data += add; len -= add; if (sha->buffLen == SHA_BLOCK_SIZE) { #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA) ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); #endif XSHATRANSFORM(sha, local); AddLength(sha, SHA_BLOCK_SIZE); sha->buffLen = 0; } } return 0; } int wc_ShaFinal(Sha* sha, byte* hash) { byte* local = (byte*)sha->buffer; #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA) if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) { #if defined(HAVE_INTEL_QA) return IntelQaSymSha(&sha->asyncDev, hash, NULL, SHA_DIGEST_SIZE); #endif } #endif /* WOLFSSL_ASYNC_CRYPT */ AddLength(sha, sha->buffLen); /* before adding pads */ local[sha->buffLen++] = 0x80; /* add 1 */ /* pad with zeros */ if (sha->buffLen > SHA_PAD_SIZE) { XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen); sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen; #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA) ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); #endif XSHATRANSFORM(sha, local); sha->buffLen = 0; } XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen); /* put lengths in bits */ sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3); sha->loLen = sha->loLen << 3; /* store lengths */ #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA) ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); #endif /* ! length ordering dependent on digest endian type ! */ XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32)); XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32)); #ifdef FREESCALE_MMCAU_SHA /* Kinetis requires only these bytes reversed */ ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)], &sha->buffer[SHA_PAD_SIZE/sizeof(word32)], 2 * sizeof(word32)); #endif XSHATRANSFORM(sha, local); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); #endif XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); return InitSha(sha); /* reset state */ } #endif /* USE_SHA_SOFTWARE_IMPL */ int wc_InitSha(Sha* sha) { return wc_InitSha_ex(sha, NULL, INVALID_DEVID); } void wc_ShaFree(Sha* sha) { if (sha == NULL) return; #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA) wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA); #endif /* WOLFSSL_ASYNC_CRYPT */ } #endif /* !WOLFSSL_TI_HASH */ #endif /* HAVE_FIPS */ #ifndef WOLFSSL_TI_HASH int wc_ShaGetHash(Sha* sha, byte* hash) { int ret; Sha tmpSha; if (sha == NULL || hash == NULL) return BAD_FUNC_ARG; ret = wc_ShaCopy(sha, &tmpSha); if (ret == 0) { ret = wc_ShaFinal(&tmpSha, hash); } return ret; } int wc_ShaCopy(Sha* src, Sha* dst) { int ret = 0; if (src == NULL || dst == NULL) return BAD_FUNC_ARG; XMEMCPY(dst, src, sizeof(Sha)); #ifdef WOLFSSL_ASYNC_CRYPT ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev); #endif return ret; } #endif /* !WOLFSSL_TI_HASH */ #endif /* !NO_SHA */