wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
wolfcrypt/src/ge_low_mem.c
- Committer:
- wolfSSL
- Date:
- 2017-05-30
- Revision:
- 13:80fb167dafdf
- Parent:
- 11:cee25a834751
File content as of revision 13:80fb167dafdf:
/* ge_low_mem.c * * Copyright (C) 2006-2016 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /* Based from Daniel Beer's public domain work. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfssl/wolfcrypt/settings.h> #if defined(CURVED25519_SMALL) /* use slower code that takes less memory */ #if defined(HAVE_ED25519) #include <wolfssl/wolfcrypt/ge_operations.h> #include <wolfssl/wolfcrypt/error-crypt.h> #ifdef NO_INLINE #include <wolfssl/wolfcrypt/misc.h> #else #define WOLFSSL_MISC_INCLUDED #include <wolfcrypt/src/misc.c> #endif void ed25519_smult(ge_p3 *r, const ge_p3 *a, const byte *e); void ed25519_add(ge_p3 *r, const ge_p3 *a, const ge_p3 *b); void ed25519_double(ge_p3 *r, const ge_p3 *a); static const byte ed25519_order[F25519_SIZE] = { 0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 }; /*Arithmetic modulo the group order m = 2^252 + 27742317777372353535851937790883648493 = 7237005577332262213973186563042994240857116359379907606001950938285454250989 */ static const word32 m[32] = { 0xED,0xD3,0xF5,0x5C,0x1A,0x63,0x12,0x58,0xD6,0x9C,0xF7,0xA2,0xDE,0xF9, 0xDE,0x14,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x10 }; static const word32 mu[33] = { 0x1B,0x13,0x2C,0x0A,0xA3,0xE5,0x9C,0xED,0xA7,0x29,0x63,0x08,0x5D,0x21, 0x06,0x21,0xEB,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0x0F }; int ge_compress_key(byte* out, const byte* xIn, const byte* yIn, word32 keySz) { byte tmp[F25519_SIZE]; byte parity; byte pt[32]; int i; fe_copy(tmp, xIn); parity = (tmp[0] & 1) << 7; fe_copy(pt, yIn); pt[31] |= parity; for(i = 0; i < 32; i++) { out[32-i-1] = pt[i]; } (void)keySz; return 0; } static word32 lt(word32 a,word32 b) /* 16-bit inputs */ { unsigned int x = a; x -= (unsigned int) b; /* 0..65535: no; 4294901761..4294967295: yes */ x >>= 31; /* 0: no; 1: yes */ return x; } /* Reduce coefficients of r before calling reduce_add_sub */ static void reduce_add_sub(word32 *r) { word32 pb = 0; word32 b; word32 mask; int i; unsigned char t[32]; for(i=0;i<32;i++) { pb += m[i]; b = lt(r[i],pb); t[i] = r[i]-pb+(b<<8); pb = b; } mask = b - 1; for(i=0;i<32;i++) r[i] ^= mask & (r[i] ^ t[i]); } /* Reduce coefficients of x before calling barrett_reduce */ static void barrett_reduce(word32* r, word32 x[64]) { /* See HAC, Alg. 14.42 */ int i,j; word32 q2[66]; word32 *q3 = q2 + 33; word32 r1[33]; word32 r2[33]; word32 carry; word32 pb = 0; word32 b; for (i = 0;i < 66;++i) q2[i] = 0; for (i = 0;i < 33;++i) r2[i] = 0; for(i=0;i<33;i++) for(j=0;j<33;j++) if(i+j >= 31) q2[i+j] += mu[i]*x[j+31]; carry = q2[31] >> 8; q2[32] += carry; carry = q2[32] >> 8; q2[33] += carry; for(i=0;i<33;i++)r1[i] = x[i]; for(i=0;i<32;i++) for(j=0;j<33;j++) if(i+j < 33) r2[i+j] += m[i]*q3[j]; for(i=0;i<32;i++) { carry = r2[i] >> 8; r2[i+1] += carry; r2[i] &= 0xff; } for(i=0;i<32;i++) { pb += r2[i]; b = lt(r1[i],pb); r[i] = r1[i]-pb+(b<<8); pb = b; } /* XXX: Can it really happen that r<0?, See HAC, Alg 14.42, Step 3 * r is an unsigned type. * If so: Handle it here! */ reduce_add_sub(r); reduce_add_sub(r); } void sc_reduce(unsigned char x[64]) { int i; word32 t[64]; word32 r[32]; for(i=0;i<64;i++) t[i] = x[i]; barrett_reduce(r, t); for(i=0;i<32;i++) x[i] = (r[i] & 0xFF); } void sc_muladd(byte* out, const byte* a, const byte* b, const byte* c) { byte s[32]; byte e[64]; XMEMSET(e, 0, sizeof(e)); XMEMCPY(e, b, 32); /* Obtain e */ sc_reduce(e); /* Compute s = ze + k */ fprime_mul(s, a, e, ed25519_order); fprime_add(s, c, ed25519_order); XMEMCPY(out, s, 32); } /* Base point is (numbers wrapped): * * x = 151122213495354007725011514095885315114 * 54012693041857206046113283949847762202 * y = 463168356949264781694283940034751631413 * 07993866256225615783033603165251855960 * * y is derived by transforming the original Montgomery base (u=9). x * is the corresponding positive coordinate for the new curve equation. * t is x*y. */ const ge_p3 ed25519_base = { { 0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9, 0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69, 0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0, 0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21 }, { 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66 }, {1, 0}, { 0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d, 0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20, 0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66, 0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67 }, }; const ge_p3 ed25519_neutral = { {0}, {1, 0}, {1, 0}, {0}, }; static const byte ed25519_d[F25519_SIZE] = { 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75, 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00, 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c, 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52 }; /* k = 2d */ static const byte ed25519_k[F25519_SIZE] = { 0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb, 0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00, 0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19, 0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24 }; void ed25519_add(ge_p3 *r, const ge_p3 *p1, const ge_p3 *p2) { /* Explicit formulas database: add-2008-hwcd-3 * * source 2008 Hisil--Wong--Carter--Dawson, * http://eprint.iacr.org/2008/522, Section 3.1 * appliesto extended-1 * parameter k * assume k = 2 d * compute A = (Y1-X1)(Y2-X2) * compute B = (Y1+X1)(Y2+X2) * compute C = T1 k T2 * compute D = Z1 2 Z2 * compute E = B - A * compute F = D - C * compute G = D + C * compute H = B + A * compute X3 = E F * compute Y3 = G H * compute T3 = E H * compute Z3 = F G */ byte a[F25519_SIZE]; byte b[F25519_SIZE]; byte c[F25519_SIZE]; byte d[F25519_SIZE]; byte e[F25519_SIZE]; byte f[F25519_SIZE]; byte g[F25519_SIZE]; byte h[F25519_SIZE]; /* A = (Y1-X1)(Y2-X2) */ fe_sub(c, p1->Y, p1->X); fe_sub(d, p2->Y, p2->X); fe_mul__distinct(a, c, d); /* B = (Y1+X1)(Y2+X2) */ fe_add(c, p1->Y, p1->X); fe_add(d, p2->Y, p2->X); fe_mul__distinct(b, c, d); /* C = T1 k T2 */ fe_mul__distinct(d, p1->T, p2->T); fe_mul__distinct(c, d, ed25519_k); /* D = Z1 2 Z2 */ fe_mul__distinct(d, p1->Z, p2->Z); fe_add(d, d, d); /* E = B - A */ fe_sub(e, b, a); /* F = D - C */ fe_sub(f, d, c); /* G = D + C */ fe_add(g, d, c); /* H = B + A */ fe_add(h, b, a); /* X3 = E F */ fe_mul__distinct(r->X, e, f); /* Y3 = G H */ fe_mul__distinct(r->Y, g, h); /* T3 = E H */ fe_mul__distinct(r->T, e, h); /* Z3 = F G */ fe_mul__distinct(r->Z, f, g); } void ed25519_double(ge_p3 *r, const ge_p3 *p) { /* Explicit formulas database: dbl-2008-hwcd * * source 2008 Hisil--Wong--Carter--Dawson, * http://eprint.iacr.org/2008/522, Section 3.3 * compute A = X1^2 * compute B = Y1^2 * compute C = 2 Z1^2 * compute D = a A * compute E = (X1+Y1)^2-A-B * compute G = D + B * compute F = G - C * compute H = D - B * compute X3 = E F * compute Y3 = G H * compute T3 = E H * compute Z3 = F G */ byte a[F25519_SIZE]; byte b[F25519_SIZE]; byte c[F25519_SIZE]; byte e[F25519_SIZE]; byte f[F25519_SIZE]; byte g[F25519_SIZE]; byte h[F25519_SIZE]; /* A = X1^2 */ fe_mul__distinct(a, p->X, p->X); /* B = Y1^2 */ fe_mul__distinct(b, p->Y, p->Y); /* C = 2 Z1^2 */ fe_mul__distinct(c, p->Z, p->Z); fe_add(c, c, c); /* D = a A (alter sign) */ /* E = (X1+Y1)^2-A-B */ fe_add(f, p->X, p->Y); fe_mul__distinct(e, f, f); fe_sub(e, e, a); fe_sub(e, e, b); /* G = D + B */ fe_sub(g, b, a); /* F = G - C */ fe_sub(f, g, c); /* H = D - B */ fe_neg(h, b); fe_sub(h, h, a); /* X3 = E F */ fe_mul__distinct(r->X, e, f); /* Y3 = G H */ fe_mul__distinct(r->Y, g, h); /* T3 = E H */ fe_mul__distinct(r->T, e, h); /* Z3 = F G */ fe_mul__distinct(r->Z, f, g); } void ed25519_smult(ge_p3 *r_out, const ge_p3 *p, const byte *e) { ge_p3 r; int i; XMEMCPY(&r, &ed25519_neutral, sizeof(r)); for (i = 255; i >= 0; i--) { const byte bit = (e[i >> 3] >> (i & 7)) & 1; ge_p3 s; ed25519_double(&r, &r); ed25519_add(&s, &r, p); fe_select(r.X, r.X, s.X, bit); fe_select(r.Y, r.Y, s.Y, bit); fe_select(r.Z, r.Z, s.Z, bit); fe_select(r.T, r.T, s.T, bit); } XMEMCPY(r_out, &r, sizeof(r)); } void ge_scalarmult_base(ge_p3 *R,const unsigned char *nonce) { ed25519_smult(R, &ed25519_base, nonce); } /* pack the point h into array s */ void ge_p3_tobytes(unsigned char *s,const ge_p3 *h) { byte x[F25519_SIZE]; byte y[F25519_SIZE]; byte z1[F25519_SIZE]; byte parity; fe_inv__distinct(z1, h->Z); fe_mul__distinct(x, h->X, z1); fe_mul__distinct(y, h->Y, z1); fe_normalize(x); fe_normalize(y); parity = (x[0] & 1) << 7; fe_copy(s, y); fe_normalize(s); s[31] |= parity; } /* pack the point h into array s */ void ge_tobytes(unsigned char *s,const ge_p2 *h) { byte x[F25519_SIZE]; byte y[F25519_SIZE]; byte z1[F25519_SIZE]; byte parity; fe_inv__distinct(z1, h->Z); fe_mul__distinct(x, h->X, z1); fe_mul__distinct(y, h->Y, z1); fe_normalize(x); fe_normalize(y); parity = (x[0] & 1) << 7; fe_copy(s, y); fe_normalize(s); s[31] |= parity; } /* Test if the public key can be uncompressed and negate it (-X,Y,Z,-T) return 0 on success */ int ge_frombytes_negate_vartime(ge_p3 *p,const unsigned char *s) { byte parity; byte x[F25519_SIZE]; byte y[F25519_SIZE]; byte a[F25519_SIZE]; byte b[F25519_SIZE]; byte c[F25519_SIZE]; int ret = 0; /* unpack the key s */ parity = s[31] >> 7; fe_copy(y, s); y[31] &= 127; fe_mul__distinct(c, y, y); fe_mul__distinct(b, c, ed25519_d); fe_add(a, b, f25519_one); fe_inv__distinct(b, a); fe_sub(a, c, f25519_one); fe_mul__distinct(c, a, b); fe_sqrt(a, c); fe_neg(b, a); fe_select(x, a, b, (a[0] ^ parity) & 1); /* test that x^2 is equal to c */ fe_mul__distinct(a, x, x); fe_normalize(a); fe_normalize(c); ret |= ConstantCompare(a, c, F25519_SIZE); /* project the key s onto p */ fe_copy(p->X, x); fe_copy(p->Y, y); fe_load(p->Z, 1); fe_mul__distinct(p->T, x, y); /* negate, the point becomes (-X,Y,Z,-T) */ fe_neg(p->X,p->X); fe_neg(p->T,p->T); return ret; } int ge_double_scalarmult_vartime(ge_p2* R, const unsigned char *h, const ge_p3 *inA,const unsigned char *sig) { ge_p3 p, A; int ret = 0; XMEMCPY(&A, inA, sizeof(ge_p3)); /* find SB */ ed25519_smult(&p, &ed25519_base, sig); /* find H(R,A,M) * -A */ ed25519_smult(&A, &A, h); /* SB + -H(R,A,M)A */ ed25519_add(&A, &p, &A); fe_copy(R->X, A.X); fe_copy(R->Y, A.Y); fe_copy(R->Z, A.Z); return ret; } #endif /* HAVE_ED25519 */ #endif /* CURVED25519_SMALL */