wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
wolfcrypt/src/rabbit.c
- Committer:
- wolfSSL
- Date:
- 2017-05-02
- Revision:
- 7:481bce714567
File content as of revision 7:481bce714567:
/* rabbit.c * * Copyright (C) 2006-2016 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfssl/wolfcrypt/settings.h> #ifndef NO_RABBIT #include <wolfssl/wolfcrypt/rabbit.h> #include <wolfssl/wolfcrypt/error-crypt.h> #include <wolfssl/wolfcrypt/logging.h> #ifdef NO_INLINE #include <wolfssl/wolfcrypt/misc.h> #else #define WOLFSSL_MISC_INCLUDED #include <wolfcrypt/src/misc.c> #endif #ifdef BIG_ENDIAN_ORDER #define LITTLE32(x) ByteReverseWord32(x) #else #define LITTLE32(x) (x) #endif #define U32V(x) ((word32)(x) & 0xFFFFFFFFU) /* Square a 32-bit unsigned integer to obtain the 64-bit result and return */ /* the upper 32 bits XOR the lower 32 bits */ static word32 RABBIT_g_func(word32 x) { /* Temporary variables */ word32 a, b, h, l; /* Construct high and low argument for squaring */ a = x&0xFFFF; b = x>>16; /* Calculate high and low result of squaring */ h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b; l = x*x; /* Return high XOR low */ return U32V(h^l); } /* Calculate the next internal state */ static void RABBIT_next_state(RabbitCtx* ctx) { /* Temporary variables */ word32 g[8], c_old[8], i; /* Save old counter values */ for (i=0; i<8; i++) c_old[i] = ctx->c[i]; /* Calculate new counter values */ ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry); ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0])); ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1])); ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2])); ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3])); ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4])); ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5])); ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6])); ctx->carry = (ctx->c[7] < c_old[7]); /* Calculate the g-values */ for (i=0;i<8;i++) g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i])); /* Calculate new state values */ ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16)); ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]); ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16)); ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]); ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16)); ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]); ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16)); ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]); } /* IV setup */ static void wc_RabbitSetIV(Rabbit* ctx, const byte* inIv) { /* Temporary variables */ word32 i0, i1, i2, i3, i; word32 iv[2]; if (inIv) XMEMCPY(iv, inIv, sizeof(iv)); else XMEMSET(iv, 0, sizeof(iv)); /* Generate four subvectors */ i0 = LITTLE32(iv[0]); i2 = LITTLE32(iv[1]); i1 = (i0>>16) | (i2&0xFFFF0000); i3 = (i2<<16) | (i0&0x0000FFFF); /* Modify counter values */ ctx->workCtx.c[0] = ctx->masterCtx.c[0] ^ i0; ctx->workCtx.c[1] = ctx->masterCtx.c[1] ^ i1; ctx->workCtx.c[2] = ctx->masterCtx.c[2] ^ i2; ctx->workCtx.c[3] = ctx->masterCtx.c[3] ^ i3; ctx->workCtx.c[4] = ctx->masterCtx.c[4] ^ i0; ctx->workCtx.c[5] = ctx->masterCtx.c[5] ^ i1; ctx->workCtx.c[6] = ctx->masterCtx.c[6] ^ i2; ctx->workCtx.c[7] = ctx->masterCtx.c[7] ^ i3; /* Copy state variables */ for (i=0; i<8; i++) ctx->workCtx.x[i] = ctx->masterCtx.x[i]; ctx->workCtx.carry = ctx->masterCtx.carry; /* Iterate the system four times */ for (i=0; i<4; i++) RABBIT_next_state(&(ctx->workCtx)); } /* Key setup */ static INLINE int DoKey(Rabbit* ctx, const byte* key, const byte* iv) { /* Temporary variables */ word32 k0, k1, k2, k3, i; /* Generate four subkeys */ k0 = LITTLE32(*(word32*)(key+ 0)); k1 = LITTLE32(*(word32*)(key+ 4)); k2 = LITTLE32(*(word32*)(key+ 8)); k3 = LITTLE32(*(word32*)(key+12)); /* Generate initial state variables */ ctx->masterCtx.x[0] = k0; ctx->masterCtx.x[2] = k1; ctx->masterCtx.x[4] = k2; ctx->masterCtx.x[6] = k3; ctx->masterCtx.x[1] = U32V(k3<<16) | (k2>>16); ctx->masterCtx.x[3] = U32V(k0<<16) | (k3>>16); ctx->masterCtx.x[5] = U32V(k1<<16) | (k0>>16); ctx->masterCtx.x[7] = U32V(k2<<16) | (k1>>16); /* Generate initial counter values */ ctx->masterCtx.c[0] = rotlFixed(k2, 16); ctx->masterCtx.c[2] = rotlFixed(k3, 16); ctx->masterCtx.c[4] = rotlFixed(k0, 16); ctx->masterCtx.c[6] = rotlFixed(k1, 16); ctx->masterCtx.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF); ctx->masterCtx.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF); ctx->masterCtx.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF); ctx->masterCtx.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF); /* Clear carry bit */ ctx->masterCtx.carry = 0; /* Iterate the system four times */ for (i=0; i<4; i++) RABBIT_next_state(&(ctx->masterCtx)); /* Modify the counters */ for (i=0; i<8; i++) ctx->masterCtx.c[i] ^= ctx->masterCtx.x[(i+4)&0x7]; /* Copy master instance to work instance */ for (i=0; i<8; i++) { ctx->workCtx.x[i] = ctx->masterCtx.x[i]; ctx->workCtx.c[i] = ctx->masterCtx.c[i]; } ctx->workCtx.carry = ctx->masterCtx.carry; wc_RabbitSetIV(ctx, iv); return 0; } int wc_Rabbit_SetHeap(Rabbit* ctx, void* heap) { if (ctx == NULL) { return BAD_FUNC_ARG; } #ifdef XSTREAM_ALIGN ctx->heap = heap; #endif (void)heap; return 0; } /* Key setup */ int wc_RabbitSetKey(Rabbit* ctx, const byte* key, const byte* iv) { #ifdef XSTREAM_ALIGN /* default heap to NULL or heap test value */ #ifdef WOLFSSL_HEAP_TEST ctx->heap = (void*)WOLFSSL_HEAP_TEST; #else ctx->heap = NULL; #endif /* WOLFSSL_HEAP_TEST */ if ((wolfssl_word)key % 4) { int alignKey[4]; /* iv aligned in SetIV */ WOLFSSL_MSG("wc_RabbitSetKey unaligned key"); XMEMCPY(alignKey, key, sizeof(alignKey)); return DoKey(ctx, (const byte*)alignKey, iv); } #endif /* XSTREAM_ALIGN */ return DoKey(ctx, key, iv); } /* Encrypt/decrypt a message of any size */ static INLINE int DoProcess(Rabbit* ctx, byte* output, const byte* input, word32 msglen) { /* Encrypt/decrypt all full blocks */ while (msglen >= 16) { /* Iterate the system */ RABBIT_next_state(&(ctx->workCtx)); /* Encrypt/decrypt 16 bytes of data */ *(word32*)(output+ 0) = *(word32*)(input+ 0) ^ LITTLE32(ctx->workCtx.x[0] ^ (ctx->workCtx.x[5]>>16) ^ U32V(ctx->workCtx.x[3]<<16)); *(word32*)(output+ 4) = *(word32*)(input+ 4) ^ LITTLE32(ctx->workCtx.x[2] ^ (ctx->workCtx.x[7]>>16) ^ U32V(ctx->workCtx.x[5]<<16)); *(word32*)(output+ 8) = *(word32*)(input+ 8) ^ LITTLE32(ctx->workCtx.x[4] ^ (ctx->workCtx.x[1]>>16) ^ U32V(ctx->workCtx.x[7]<<16)); *(word32*)(output+12) = *(word32*)(input+12) ^ LITTLE32(ctx->workCtx.x[6] ^ (ctx->workCtx.x[3]>>16) ^ U32V(ctx->workCtx.x[1]<<16)); /* Increment pointers and decrement length */ input += 16; output += 16; msglen -= 16; } /* Encrypt/decrypt remaining data */ if (msglen) { word32 i; word32 tmp[4]; byte* buffer = (byte*)tmp; XMEMSET(tmp, 0, sizeof(tmp)); /* help static analysis */ /* Iterate the system */ RABBIT_next_state(&(ctx->workCtx)); /* Generate 16 bytes of pseudo-random data */ tmp[0] = LITTLE32(ctx->workCtx.x[0] ^ (ctx->workCtx.x[5]>>16) ^ U32V(ctx->workCtx.x[3]<<16)); tmp[1] = LITTLE32(ctx->workCtx.x[2] ^ (ctx->workCtx.x[7]>>16) ^ U32V(ctx->workCtx.x[5]<<16)); tmp[2] = LITTLE32(ctx->workCtx.x[4] ^ (ctx->workCtx.x[1]>>16) ^ U32V(ctx->workCtx.x[7]<<16)); tmp[3] = LITTLE32(ctx->workCtx.x[6] ^ (ctx->workCtx.x[3]>>16) ^ U32V(ctx->workCtx.x[1]<<16)); /* Encrypt/decrypt the data */ for (i=0; i<msglen; i++) output[i] = input[i] ^ buffer[i]; } return 0; } /* Encrypt/decrypt a message of any size */ int wc_RabbitProcess(Rabbit* ctx, byte* output, const byte* input, word32 msglen) { #ifdef XSTREAM_ALIGN if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) { #ifndef NO_WOLFSSL_ALLOC_ALIGN byte* tmp; WOLFSSL_MSG("wc_RabbitProcess unaligned"); tmp = (byte*)XMALLOC(msglen, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) return MEMORY_E; XMEMCPY(tmp, input, msglen); DoProcess(ctx, tmp, tmp, msglen); XMEMCPY(output, tmp, msglen); XFREE(tmp, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); return 0; #else return BAD_ALIGN_E; #endif } #endif /* XSTREAM_ALIGN */ return DoProcess(ctx, output, input, msglen); } #endif /* NO_RABBIT */