wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
wolfcrypt/src/aes.c
- Committer:
- wolfSSL
- Date:
- 2017-05-02
- Revision:
- 7:481bce714567
File content as of revision 7:481bce714567:
/* aes.c * * Copyright (C) 2006-2016 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfssl/wolfcrypt/settings.h> #ifndef NO_AES #include <wolfssl/wolfcrypt/aes.h> #ifdef HAVE_FIPS int wc_AesSetKey(Aes* aes, const byte* key, word32 len, const byte* iv, int dir) { return AesSetKey_fips(aes, key, len, iv, dir); } int wc_AesSetIV(Aes* aes, const byte* iv) { return AesSetIV_fips(aes, iv); } #ifdef HAVE_AES_CBC int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { return AesCbcEncrypt_fips(aes, out, in, sz); } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { return AesCbcDecrypt_fips(aes, out, in, sz); } #endif /* HAVE_AES_DECRYPT */ #endif /* HAVE_AES_CBC */ /* AES-CTR */ #ifdef WOLFSSL_AES_COUNTER void wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { AesCtrEncrypt(aes, out, in, sz); } #endif /* AES-DIRECT */ #if defined(WOLFSSL_AES_DIRECT) void wc_AesEncryptDirect(Aes* aes, byte* out, const byte* in) { AesEncryptDirect(aes, out, in); } #ifdef HAVE_AES_DECRYPT void wc_AesDecryptDirect(Aes* aes, byte* out, const byte* in) { AesDecryptDirect(aes, out, in); } #endif /* HAVE_AES_DECRYPT */ int wc_AesSetKeyDirect(Aes* aes, const byte* key, word32 len, const byte* iv, int dir) { return AesSetKeyDirect(aes, key, len, iv, dir); } #endif #ifdef HAVE_AESGCM int wc_AesGcmSetKey(Aes* aes, const byte* key, word32 len) { return AesGcmSetKey_fips(aes, key, len); } int wc_AesGcmEncrypt(Aes* aes, byte* out, const byte* in, word32 sz, const byte* iv, word32 ivSz, byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { return AesGcmEncrypt_fips(aes, out, in, sz, iv, ivSz, authTag, authTagSz, authIn, authInSz); } #ifdef HAVE_AES_DECRYPT int wc_AesGcmDecrypt(Aes* aes, byte* out, const byte* in, word32 sz, const byte* iv, word32 ivSz, const byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { return AesGcmDecrypt_fips(aes, out, in, sz, iv, ivSz, authTag, authTagSz, authIn, authInSz); } #endif /* HAVE_AES_DECRYPT */ int wc_GmacSetKey(Gmac* gmac, const byte* key, word32 len) { return GmacSetKey(gmac, key, len); } int wc_GmacUpdate(Gmac* gmac, const byte* iv, word32 ivSz, const byte* authIn, word32 authInSz, byte* authTag, word32 authTagSz) { return GmacUpdate(gmac, iv, ivSz, authIn, authInSz, authTag, authTagSz); } #endif /* HAVE_AESGCM */ #ifdef HAVE_AESCCM int wc_AesCcmSetKey(Aes* aes, const byte* key, word32 keySz) { AesCcmSetKey(aes, key, keySz); return 0; } int wc_AesCcmEncrypt(Aes* aes, byte* out, const byte* in, word32 inSz, const byte* nonce, word32 nonceSz, byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { /* sanity check on arguments */ if (aes == NULL || out == NULL || in == NULL || nonce == NULL || authTag == NULL || nonceSz < 7 || nonceSz > 13) return BAD_FUNC_ARG; AesCcmEncrypt(aes, out, in, inSz, nonce, nonceSz, authTag, authTagSz, authIn, authInSz); return 0; } #ifdef HAVE_AES_DECRYPT int wc_AesCcmDecrypt(Aes* aes, byte* out, const byte* in, word32 inSz, const byte* nonce, word32 nonceSz, const byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { return AesCcmDecrypt(aes, out, in, inSz, nonce, nonceSz, authTag, authTagSz, authIn, authInSz); } #endif /* HAVE_AES_DECRYPT */ #endif /* HAVE_AESCCM */ #ifdef WOLFSSL_ASYNC_CRYPT int wc_AesAsyncInit(Aes* aes, int i) { return AesAsyncInit(aes, i); } void wc_AesAsyncFree(Aes* aes) { AesAsyncFree(aes); } #endif #else /* HAVE_FIPS */ #ifdef WOLFSSL_TI_CRYPT #include <wolfcrypt/src/port/ti/ti-aes.c> #else #include <wolfssl/wolfcrypt/error-crypt.h> #include <wolfssl/wolfcrypt/logging.h> #ifdef NO_INLINE #include <wolfssl/wolfcrypt/misc.h> #else #define WOLFSSL_MISC_INCLUDED #include <wolfcrypt/src/misc.c> #endif #ifdef DEBUG_AESNI #include <stdio.h> #endif #ifdef _MSC_VER /* 4127 warning constant while(1) */ #pragma warning(disable: 4127) #endif /* Define AES implementation includes and functions */ #if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO) /* STM32F2/F4 hardware AES support for CBC, CTR modes */ #if defined(WOLFSSL_AES_DIRECT) || defined(HAVE_AESGCM) || defined(HAVE_AESCCM) static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock) { int ret = 0; #ifdef WOLFSSL_STM32_CUBEMX CRYP_HandleTypeDef hcryp; XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef)); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_128B; break; case 12: /* 192-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_192B; break; case 14: /* 256-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_256B; break; default: break; } hcryp.Instance = CRYP; hcryp.Init.DataType = CRYP_DATATYPE_8B; hcryp.Init.pKey = (uint8_t*)aes->key; HAL_CRYP_Init(&hcryp); if (HAL_CRYP_AESECB_Encrypt(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE, outBlock, STM32_HAL_TIMEOUT) != HAL_OK) { ret = WC_TIMEOUT_E; } HAL_CRYP_DeInit(&hcryp); #else word32 *enc_key; CRYP_InitTypeDef AES_CRYP_InitStructure; CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; enc_key = aes->key; /* crypto structure initialization */ CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); CRYP_StructInit(&AES_CRYP_InitStructure); /* reset registers to their default values */ CRYP_DeInit(); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[3]; break; case 12: /* 192-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[5]; break; case 14: /* 256-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; AES_CRYP_KeyInitStructure.CRYP_Key0Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key0Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[5]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[6]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[7]; break; default: break; } CRYP_KeyInit(&AES_CRYP_KeyInitStructure); /* set direction, mode, and datatype */ AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB; AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; CRYP_Init(&AES_CRYP_InitStructure); /* enable crypto processor */ CRYP_Cmd(ENABLE); /* flush IN/OUT FIFOs */ CRYP_FIFOFlush(); CRYP_DataIn(*(uint32_t*)&inBlock[0]); CRYP_DataIn(*(uint32_t*)&inBlock[4]); CRYP_DataIn(*(uint32_t*)&inBlock[8]); CRYP_DataIn(*(uint32_t*)&inBlock[12]); /* wait until the complete message has been processed */ while(CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {} *(uint32_t*)&outBlock[0] = CRYP_DataOut(); *(uint32_t*)&outBlock[4] = CRYP_DataOut(); *(uint32_t*)&outBlock[8] = CRYP_DataOut(); *(uint32_t*)&outBlock[12] = CRYP_DataOut(); /* disable crypto processor */ CRYP_Cmd(DISABLE); #endif /* WOLFSSL_STM32_CUBEMX */ return ret; } #endif /* WOLFSSL_AES_DIRECT || HAVE_AESGCM || HAVE_AESCCM */ #ifdef HAVE_AES_DECRYPT #if defined(WOLFSSL_AES_DIRECT) || defined(HAVE_AESCCM) static int wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock) { int ret = 0; #ifdef WOLFSSL_STM32_CUBEMX CRYP_HandleTypeDef hcryp; XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef)); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_128B; break; case 12: /* 192-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_192B; break; case 14: /* 256-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_256B; break; default: break; } hcryp.Instance = CRYP; hcryp.Init.DataType = CRYP_DATATYPE_8B; hcryp.Init.pKey = (uint8_t*)aes->key; HAL_CRYP_Init(&hcryp); if (HAL_CRYP_AESECB_Decrypt(&hcryp, (uint8_t*)inBlock, AES_BLOCK_SIZE, outBlock, STM32_HAL_TIMEOUT) != HAL_OK) { ret = WC_TIMEOUT_E; } HAL_CRYP_DeInit(&hcryp); #else #warning AES Decrypt not implemented for STM32 StdPeri lib #endif /* WOLFSSL_STM32_CUBEMX */ return ret; } #endif /* WOLFSSL_AES_DIRECT || HAVE_AESCCM */ #endif /* HAVE_AES_DECRYPT */ #elif defined(HAVE_COLDFIRE_SEC) /* Freescale Coldfire SEC support for CBC mode. * NOTE: no support for AES-CTR/GCM/CCM/Direct */ #include <wolfssl/wolfcrypt/types.h> #include "sec.h" #include "mcf5475_sec.h" #include "mcf5475_siu.h" #elif defined(FREESCALE_LTC) #include "fsl_ltc.h" #if defined(FREESCALE_LTC_AES_GCM) #undef NEED_AES_TABLES #undef GCM_TABLE #else /* if LTC doesn't have GCM, use software with LTC AES ECB mode */ static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock) { wc_AesEncryptDirect(aes, outBlock, inBlock); return 0; } static int wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock) { wc_AesDecryptDirect(aes, outBlock, inBlock); return 0; } #endif #elif defined(FREESCALE_MMCAU) /* Freescale mmCAU hardware AES support for Direct, CBC, CCM, GCM modes * through the CAU/mmCAU library. Documentation located in * ColdFire/ColdFire+ CAU and Kinetis mmCAU Software Library User * Guide (See note in README). */ #include "fsl_mmcau.h" static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock) { int ret = wolfSSL_CryptHwMutexLock(); if(ret == 0) { MMCAU_AES_EncryptEcb(inBlock, (byte*)aes->key, aes->rounds, outBlock); wolfSSL_CryptHwMutexUnLock(); } return ret; } #ifdef HAVE_AES_DECRYPT static int wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock) { int ret = wolfSSL_CryptHwMutexLock(); if(ret == 0) { MMCAU_AES_DecryptEcb(inBlock, (byte*)aes->key, aes->rounds, outBlock); wolfSSL_CryptHwMutexUnLock(); } return ret; } #endif /* HAVE_AES_DECRYPT */ #elif defined(WOLFSSL_PIC32MZ_CRYPT) /* NOTE: no support for AES-CCM/Direct */ #define DEBUG_WOLFSSL #include "wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h" #elif defined(HAVE_CAVIUM) /* still leave SW crypto available */ #define NEED_AES_TABLES #elif defined(WOLFSSL_NRF51_AES) /* Use built-in AES hardware - AES 128 ECB Encrypt Only */ #include "wolfssl/wolfcrypt/port/nrf51.h" static int wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock) { return nrf51_aes_encrypt(inBlock, (byte*)aes->key, aes->rounds, outBlock); } #ifdef HAVE_AES_DECRYPT #error nRF51 AES Hardware does not support decrypt #endif /* HAVE_AES_DECRYPT */ #else /* using wolfCrypt software AES implementation */ #define NEED_AES_TABLES #endif #ifdef NEED_AES_TABLES static const word32 rcon[] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; static const word32 Te[4][256] = { { 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU, 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U, 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU, 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU, 0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U, 0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU, 0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU, 0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU, 0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU, 0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU, 0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U, 0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU, 0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU, 0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U, 0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU, 0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU, 0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU, 0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU, 0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU, 0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U, 0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU, 0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU, 0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU, 0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU, 0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U, 0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U, 0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U, 0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U, 0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU, 0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U, 0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U, 0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU, 0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU, 0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U, 0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U, 0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U, 0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU, 0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U, 0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU, 0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U, 0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU, 0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U, 0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U, 0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU, 0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U, 0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U, 0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U, 0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U, 0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U, 0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U, 0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U, 0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U, 0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU, 0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U, 0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U, 0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U, 0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U, 0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U, 0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U, 0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU, 0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U, 0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U, 0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U, 0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU, }, { 0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU, 0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U, 0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU, 0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U, 0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU, 0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U, 0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU, 0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U, 0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U, 0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU, 0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U, 0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U, 0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U, 0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU, 0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U, 0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U, 0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU, 0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U, 0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U, 0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U, 0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU, 0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU, 0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U, 0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU, 0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU, 0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U, 0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU, 0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U, 0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU, 0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U, 0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U, 0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U, 0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU, 0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U, 0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU, 0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U, 0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU, 0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U, 0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U, 0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU, 0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU, 0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU, 0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U, 0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U, 0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU, 0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U, 0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU, 0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U, 0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU, 0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U, 0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU, 0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU, 0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U, 0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU, 0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U, 0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU, 0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U, 0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U, 0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U, 0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU, 0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU, 0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U, 0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU, 0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U, }, { 0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU, 0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U, 0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU, 0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U, 0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU, 0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U, 0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU, 0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U, 0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U, 0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU, 0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U, 0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U, 0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U, 0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU, 0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U, 0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U, 0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU, 0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U, 0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U, 0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U, 0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU, 0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU, 0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U, 0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU, 0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU, 0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U, 0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU, 0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U, 0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU, 0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U, 0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U, 0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U, 0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU, 0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U, 0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU, 0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U, 0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU, 0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U, 0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U, 0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU, 0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU, 0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU, 0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U, 0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U, 0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU, 0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U, 0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU, 0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U, 0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU, 0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U, 0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU, 0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU, 0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U, 0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU, 0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U, 0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU, 0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U, 0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U, 0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U, 0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU, 0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU, 0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U, 0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU, 0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U, }, { 0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U, 0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U, 0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U, 0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU, 0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU, 0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU, 0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U, 0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU, 0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU, 0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U, 0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U, 0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU, 0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU, 0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU, 0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU, 0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU, 0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U, 0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU, 0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU, 0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U, 0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U, 0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U, 0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U, 0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U, 0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU, 0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U, 0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU, 0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU, 0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U, 0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U, 0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U, 0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU, 0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U, 0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU, 0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU, 0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U, 0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U, 0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU, 0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U, 0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU, 0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U, 0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U, 0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U, 0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U, 0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU, 0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U, 0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU, 0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U, 0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU, 0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U, 0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU, 0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU, 0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU, 0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU, 0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U, 0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U, 0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U, 0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U, 0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U, 0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U, 0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU, 0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U, 0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU, 0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU, } }; #ifdef HAVE_AES_DECRYPT static const word32 Td[4][256] = { { 0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U, 0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U, 0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U, 0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU, 0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U, 0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U, 0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU, 0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U, 0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU, 0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U, 0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U, 0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U, 0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U, 0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU, 0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U, 0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU, 0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U, 0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU, 0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U, 0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U, 0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U, 0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU, 0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U, 0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU, 0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U, 0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU, 0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U, 0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU, 0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU, 0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U, 0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU, 0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U, 0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU, 0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U, 0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U, 0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U, 0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU, 0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U, 0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U, 0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU, 0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U, 0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U, 0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U, 0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U, 0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U, 0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU, 0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U, 0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U, 0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U, 0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U, 0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U, 0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU, 0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU, 0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU, 0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU, 0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U, 0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U, 0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU, 0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU, 0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U, 0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU, 0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U, 0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U, 0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U, }, { 0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU, 0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U, 0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU, 0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U, 0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U, 0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U, 0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U, 0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U, 0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U, 0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU, 0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU, 0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU, 0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U, 0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU, 0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U, 0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U, 0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U, 0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU, 0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU, 0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U, 0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU, 0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U, 0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU, 0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU, 0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U, 0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U, 0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U, 0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU, 0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U, 0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU, 0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U, 0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U, 0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U, 0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU, 0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U, 0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U, 0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U, 0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U, 0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U, 0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U, 0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU, 0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU, 0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U, 0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU, 0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U, 0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU, 0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU, 0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U, 0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU, 0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U, 0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U, 0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U, 0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U, 0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U, 0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U, 0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U, 0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU, 0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U, 0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U, 0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU, 0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U, 0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U, 0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U, 0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U, }, { 0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U, 0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U, 0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U, 0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U, 0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU, 0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U, 0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U, 0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U, 0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U, 0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU, 0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U, 0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U, 0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU, 0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U, 0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U, 0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U, 0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U, 0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U, 0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U, 0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU, 0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U, 0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U, 0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U, 0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U, 0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U, 0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU, 0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU, 0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U, 0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU, 0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U, 0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU, 0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU, 0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU, 0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU, 0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U, 0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U, 0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U, 0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U, 0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U, 0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U, 0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U, 0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU, 0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU, 0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U, 0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U, 0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU, 0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU, 0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U, 0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U, 0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U, 0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U, 0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U, 0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U, 0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U, 0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU, 0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U, 0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U, 0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U, 0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U, 0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U, 0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U, 0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU, 0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U, 0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U, }, { 0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU, 0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU, 0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U, 0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U, 0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU, 0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU, 0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U, 0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU, 0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U, 0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU, 0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U, 0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U, 0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U, 0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U, 0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U, 0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU, 0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU, 0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U, 0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U, 0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU, 0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU, 0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U, 0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U, 0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U, 0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U, 0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU, 0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U, 0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U, 0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU, 0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU, 0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U, 0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U, 0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U, 0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU, 0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U, 0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U, 0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U, 0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U, 0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U, 0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U, 0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U, 0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU, 0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U, 0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U, 0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU, 0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU, 0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U, 0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU, 0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U, 0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U, 0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U, 0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U, 0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U, 0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U, 0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU, 0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU, 0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU, 0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU, 0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U, 0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U, 0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U, 0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU, 0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U, 0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U, } }; static const byte Td4[256] = { 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U, 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU, 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U, 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU, 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU, 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU, 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U, 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U, 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U, 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U, 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU, 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U, 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU, 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U, 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U, 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU, 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU, 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U, 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U, 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU, 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U, 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU, 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U, 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U, 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U, 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU, 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU, 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU, 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U, 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U, 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U, 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU, }; #endif /* HAVE_AES_DECRYPT */ #define GETBYTE(x, y) (word32)((byte)((x) >> (8 * (y)))) #ifdef WOLFSSL_AESNI /* Each platform needs to query info type 1 from cpuid to see if aesni is * supported. Also, let's setup a macro for proper linkage w/o ABI conflicts */ #ifndef _MSC_VER #define cpuid(reg, func)\ __asm__ __volatile__ ("cpuid":\ "=a" (reg[0]), "=b" (reg[1]), "=c" (reg[2]), "=d" (reg[3]) :\ "a" (func)); #define XASM_LINK(f) asm(f) #else #include <intrin.h> #define cpuid(a,b) __cpuid((int*)a,b) #define XASM_LINK(f) #endif /* _MSC_VER */ static int Check_CPU_support_AES(void) { unsigned int reg[4]; /* put a,b,c,d into 0,1,2,3 */ cpuid(reg, 1); /* query info 1 */ if (reg[2] & 0x2000000) return 1; return 0; } static int checkAESNI = 0; static int haveAESNI = 0; /* tell C compiler these are asm functions in case any mix up of ABI underscore prefix between clang/gcc/llvm etc */ #ifdef HAVE_AES_CBC void AES_CBC_encrypt(const unsigned char* in, unsigned char* out, unsigned char* ivec, unsigned long length, const unsigned char* KS, int nr) XASM_LINK("AES_CBC_encrypt"); #ifdef HAVE_AES_DECRYPT #if defined(WOLFSSL_AESNI_BY4) void AES_CBC_decrypt_by4(const unsigned char* in, unsigned char* out, unsigned char* ivec, unsigned long length, const unsigned char* KS, int nr) XASM_LINK("AES_CBC_decrypt_by4"); #elif defined(WOLFSSL_AESNI_BY6) void AES_CBC_decrypt_by6(const unsigned char* in, unsigned char* out, unsigned char* ivec, unsigned long length, const unsigned char* KS, int nr) XASM_LINK("AES_CBC_decrypt_by6"); #else /* WOLFSSL_AESNI_BYx */ void AES_CBC_decrypt_by8(const unsigned char* in, unsigned char* out, unsigned char* ivec, unsigned long length, const unsigned char* KS, int nr) XASM_LINK("AES_CBC_decrypt_by8"); #endif /* WOLFSSL_AESNI_BYx */ #endif /* HAVE_AES_DECRYPT */ #endif /* HAVE_AES_CBC */ void AES_ECB_encrypt(const unsigned char* in, unsigned char* out, unsigned long length, const unsigned char* KS, int nr) XASM_LINK("AES_ECB_encrypt"); #ifdef HAVE_AES_DECRYPT void AES_ECB_decrypt(const unsigned char* in, unsigned char* out, unsigned long length, const unsigned char* KS, int nr) XASM_LINK("AES_ECB_decrypt"); #endif void AES_128_Key_Expansion(const unsigned char* userkey, unsigned char* key_schedule) XASM_LINK("AES_128_Key_Expansion"); void AES_192_Key_Expansion(const unsigned char* userkey, unsigned char* key_schedule) XASM_LINK("AES_192_Key_Expansion"); void AES_256_Key_Expansion(const unsigned char* userkey, unsigned char* key_schedule) XASM_LINK("AES_256_Key_Expansion"); static int AES_set_encrypt_key(const unsigned char *userKey, const int bits, Aes* aes) { if (!userKey || !aes) return BAD_FUNC_ARG; if (bits == 128) { AES_128_Key_Expansion (userKey,(byte*)aes->key); aes->rounds = 10; return 0; } else if (bits == 192) { AES_192_Key_Expansion (userKey,(byte*)aes->key); aes->rounds = 12; return 0; } else if (bits == 256) { AES_256_Key_Expansion (userKey,(byte*)aes->key); aes->rounds = 14; return 0; } return BAD_FUNC_ARG; } #ifdef HAVE_AES_DECRYPT static int AES_set_decrypt_key(const unsigned char* userKey, const int bits, Aes* aes) { int nr; Aes temp_key; __m128i *Key_Schedule = (__m128i*)aes->key; __m128i *Temp_Key_Schedule = (__m128i*)temp_key.key; if (!userKey || !aes) return BAD_FUNC_ARG; if (AES_set_encrypt_key(userKey,bits,&temp_key) == BAD_FUNC_ARG) return BAD_FUNC_ARG; nr = temp_key.rounds; aes->rounds = nr; Key_Schedule[nr] = Temp_Key_Schedule[0]; Key_Schedule[nr-1] = _mm_aesimc_si128(Temp_Key_Schedule[1]); Key_Schedule[nr-2] = _mm_aesimc_si128(Temp_Key_Schedule[2]); Key_Schedule[nr-3] = _mm_aesimc_si128(Temp_Key_Schedule[3]); Key_Schedule[nr-4] = _mm_aesimc_si128(Temp_Key_Schedule[4]); Key_Schedule[nr-5] = _mm_aesimc_si128(Temp_Key_Schedule[5]); Key_Schedule[nr-6] = _mm_aesimc_si128(Temp_Key_Schedule[6]); Key_Schedule[nr-7] = _mm_aesimc_si128(Temp_Key_Schedule[7]); Key_Schedule[nr-8] = _mm_aesimc_si128(Temp_Key_Schedule[8]); Key_Schedule[nr-9] = _mm_aesimc_si128(Temp_Key_Schedule[9]); if(nr>10) { Key_Schedule[nr-10] = _mm_aesimc_si128(Temp_Key_Schedule[10]); Key_Schedule[nr-11] = _mm_aesimc_si128(Temp_Key_Schedule[11]); } if(nr>12) { Key_Schedule[nr-12] = _mm_aesimc_si128(Temp_Key_Schedule[12]); Key_Schedule[nr-13] = _mm_aesimc_si128(Temp_Key_Schedule[13]); } Key_Schedule[0] = Temp_Key_Schedule[nr]; return 0; } #endif /* HAVE_AES_DECRYPT */ #endif /* WOLFSSL_AESNI */ #if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT) ||\ defined(HAVE_AESGCM) #ifndef WC_CACHE_LINE_SZ #if defined(__x86_64__) || defined(_M_X64) || \ (defined(__ILP32__) && (__ILP32__ >= 1)) #define WC_CACHE_LINE_SZ 64 #else /* default cache line size */ #define WC_CACHE_LINE_SZ 32 #endif #endif /* load 4 Te Tables into cache by cache line stride */ static INLINE word32 PreFetchTe(void) { word32 x = 0; int i,j; for (i = 0; i < 4; i++) { /* 256 elements, each one is 4 bytes */ for (j = 0; j < 256; j += WC_CACHE_LINE_SZ/4) { x &= Te[i][j]; } } return x; } static void wc_AesEncrypt(Aes* aes, const byte* inBlock, byte* outBlock) { word32 s0, s1, s2, s3; word32 t0, t1, t2, t3; word32 r = aes->rounds >> 1; const word32* rk = aes->key; if (r > 7 || r == 0) { WOLFSSL_MSG("AesEncrypt encountered improper key, set it up"); return; /* stop instead of segfaulting, set up your keys! */ } #ifdef WOLFSSL_AESNI if (haveAESNI && aes->use_aesni) { #ifdef DEBUG_AESNI printf("about to aes encrypt\n"); printf("in = %p\n", inBlock); printf("out = %p\n", outBlock); printf("aes->key = %p\n", aes->key); printf("aes->rounds = %d\n", aes->rounds); printf("sz = %d\n", AES_BLOCK_SIZE); #endif /* check alignment, decrypt doesn't need alignment */ if ((wolfssl_word)inBlock % 16) { #ifndef NO_WOLFSSL_ALLOC_ALIGN byte* tmp = (byte*)XMALLOC(AES_BLOCK_SIZE, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) return; XMEMCPY(tmp, inBlock, AES_BLOCK_SIZE); AES_ECB_encrypt(tmp, tmp, AES_BLOCK_SIZE, (byte*)aes->key, aes->rounds); XMEMCPY(outBlock, tmp, AES_BLOCK_SIZE); XFREE(tmp, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); return; #else WOLFSSL_MSG("AES-ECB encrypt with bad alignment"); return; #endif } AES_ECB_encrypt(inBlock, outBlock, AES_BLOCK_SIZE, (byte*)aes->key, aes->rounds); return; } else { #ifdef DEBUG_AESNI printf("Skipping AES-NI\n"); #endif } #endif /* * map byte array block to cipher state * and add initial round key: */ XMEMCPY(&s0, inBlock, sizeof(s0)); XMEMCPY(&s1, inBlock + sizeof(s0), sizeof(s1)); XMEMCPY(&s2, inBlock + 2 * sizeof(s0), sizeof(s2)); XMEMCPY(&s3, inBlock + 3 * sizeof(s0), sizeof(s3)); #ifdef LITTLE_ENDIAN_ORDER s0 = ByteReverseWord32(s0); s1 = ByteReverseWord32(s1); s2 = ByteReverseWord32(s2); s3 = ByteReverseWord32(s3); #endif s0 ^= rk[0]; s1 ^= rk[1]; s2 ^= rk[2]; s3 ^= rk[3]; s0 |= PreFetchTe(); /* * Nr - 1 full rounds: */ for (;;) { t0 = Te[0][GETBYTE(s0, 3)] ^ Te[1][GETBYTE(s1, 2)] ^ Te[2][GETBYTE(s2, 1)] ^ Te[3][GETBYTE(s3, 0)] ^ rk[4]; t1 = Te[0][GETBYTE(s1, 3)] ^ Te[1][GETBYTE(s2, 2)] ^ Te[2][GETBYTE(s3, 1)] ^ Te[3][GETBYTE(s0, 0)] ^ rk[5]; t2 = Te[0][GETBYTE(s2, 3)] ^ Te[1][GETBYTE(s3, 2)] ^ Te[2][GETBYTE(s0, 1)] ^ Te[3][GETBYTE(s1, 0)] ^ rk[6]; t3 = Te[0][GETBYTE(s3, 3)] ^ Te[1][GETBYTE(s0, 2)] ^ Te[2][GETBYTE(s1, 1)] ^ Te[3][GETBYTE(s2, 0)] ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Te[0][GETBYTE(t0, 3)] ^ Te[1][GETBYTE(t1, 2)] ^ Te[2][GETBYTE(t2, 1)] ^ Te[3][GETBYTE(t3, 0)] ^ rk[0]; s1 = Te[0][GETBYTE(t1, 3)] ^ Te[1][GETBYTE(t2, 2)] ^ Te[2][GETBYTE(t3, 1)] ^ Te[3][GETBYTE(t0, 0)] ^ rk[1]; s2 = Te[0][GETBYTE(t2, 3)] ^ Te[1][GETBYTE(t3, 2)] ^ Te[2][GETBYTE(t0, 1)] ^ Te[3][GETBYTE(t1, 0)] ^ rk[2]; s3 = Te[0][GETBYTE(t3, 3)] ^ Te[1][GETBYTE(t0, 2)] ^ Te[2][GETBYTE(t1, 1)] ^ Te[3][GETBYTE(t2, 0)] ^ rk[3]; } /* * apply last round and * map cipher state to byte array block: */ s0 = (Te[2][GETBYTE(t0, 3)] & 0xff000000) ^ (Te[3][GETBYTE(t1, 2)] & 0x00ff0000) ^ (Te[0][GETBYTE(t2, 1)] & 0x0000ff00) ^ (Te[1][GETBYTE(t3, 0)] & 0x000000ff) ^ rk[0]; s1 = (Te[2][GETBYTE(t1, 3)] & 0xff000000) ^ (Te[3][GETBYTE(t2, 2)] & 0x00ff0000) ^ (Te[0][GETBYTE(t3, 1)] & 0x0000ff00) ^ (Te[1][GETBYTE(t0, 0)] & 0x000000ff) ^ rk[1]; s2 = (Te[2][GETBYTE(t2, 3)] & 0xff000000) ^ (Te[3][GETBYTE(t3, 2)] & 0x00ff0000) ^ (Te[0][GETBYTE(t0, 1)] & 0x0000ff00) ^ (Te[1][GETBYTE(t1, 0)] & 0x000000ff) ^ rk[2]; s3 = (Te[2][GETBYTE(t3, 3)] & 0xff000000) ^ (Te[3][GETBYTE(t0, 2)] & 0x00ff0000) ^ (Te[0][GETBYTE(t1, 1)] & 0x0000ff00) ^ (Te[1][GETBYTE(t2, 0)] & 0x000000ff) ^ rk[3]; /* write out */ #ifdef LITTLE_ENDIAN_ORDER s0 = ByteReverseWord32(s0); s1 = ByteReverseWord32(s1); s2 = ByteReverseWord32(s2); s3 = ByteReverseWord32(s3); #endif XMEMCPY(outBlock, &s0, sizeof(s0)); XMEMCPY(outBlock + sizeof(s0), &s1, sizeof(s1)); XMEMCPY(outBlock + 2 * sizeof(s0), &s2, sizeof(s2)); XMEMCPY(outBlock + 3 * sizeof(s0), &s3, sizeof(s3)); } #endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT || HAVE_AESGCM */ #ifdef HAVE_AES_DECRYPT #if defined(HAVE_AES_CBC) || defined(WOLFSSL_AES_DIRECT) /* load 4 Td Tables into cache by cache line stride */ static INLINE word32 PreFetchTd(void) { word32 x = 0; int i,j; for (i = 0; i < 4; i++) { /* 256 elements, each one is 4 bytes */ for (j = 0; j < 256; j += WC_CACHE_LINE_SZ/4) { x &= Td[i][j]; } } return x; } /* load Td Table4 into cache by cache line stride */ static INLINE word32 PreFetchTd4(void) { word32 x = 0; int i; for (i = 0; i < 256; i += WC_CACHE_LINE_SZ) { x &= (word32)Td4[i]; } return x; } static void wc_AesDecrypt(Aes* aes, const byte* inBlock, byte* outBlock) { word32 s0, s1, s2, s3; word32 t0, t1, t2, t3; word32 r = aes->rounds >> 1; const word32* rk = aes->key; if (r > 7 || r == 0) { WOLFSSL_MSG("AesDecrypt encountered improper key, set it up"); return; /* stop instead of segfaulting, set up your keys! */ } #ifdef WOLFSSL_AESNI if (haveAESNI && aes->use_aesni) { #ifdef DEBUG_AESNI printf("about to aes decrypt\n"); printf("in = %p\n", inBlock); printf("out = %p\n", outBlock); printf("aes->key = %p\n", aes->key); printf("aes->rounds = %d\n", aes->rounds); printf("sz = %d\n", AES_BLOCK_SIZE); #endif /* if input and output same will overwrite input iv */ XMEMCPY(aes->tmp, inBlock, AES_BLOCK_SIZE); AES_ECB_decrypt(inBlock, outBlock, AES_BLOCK_SIZE, (byte*)aes->key, aes->rounds); return; } else { #ifdef DEBUG_AESNI printf("Skipping AES-NI\n"); #endif } #endif /* * map byte array block to cipher state * and add initial round key: */ XMEMCPY(&s0, inBlock, sizeof(s0)); XMEMCPY(&s1, inBlock + sizeof(s0), sizeof(s1)); XMEMCPY(&s2, inBlock + 2 * sizeof(s0), sizeof(s2)); XMEMCPY(&s3, inBlock + 3 * sizeof(s0), sizeof(s3)); #ifdef LITTLE_ENDIAN_ORDER s0 = ByteReverseWord32(s0); s1 = ByteReverseWord32(s1); s2 = ByteReverseWord32(s2); s3 = ByteReverseWord32(s3); #endif s0 ^= rk[0]; s1 ^= rk[1]; s2 ^= rk[2]; s3 ^= rk[3]; s0 |= PreFetchTd(); /* * Nr - 1 full rounds: */ for (;;) { t0 = Td[0][GETBYTE(s0, 3)] ^ Td[1][GETBYTE(s3, 2)] ^ Td[2][GETBYTE(s2, 1)] ^ Td[3][GETBYTE(s1, 0)] ^ rk[4]; t1 = Td[0][GETBYTE(s1, 3)] ^ Td[1][GETBYTE(s0, 2)] ^ Td[2][GETBYTE(s3, 1)] ^ Td[3][GETBYTE(s2, 0)] ^ rk[5]; t2 = Td[0][GETBYTE(s2, 3)] ^ Td[1][GETBYTE(s1, 2)] ^ Td[2][GETBYTE(s0, 1)] ^ Td[3][GETBYTE(s3, 0)] ^ rk[6]; t3 = Td[0][GETBYTE(s3, 3)] ^ Td[1][GETBYTE(s2, 2)] ^ Td[2][GETBYTE(s1, 1)] ^ Td[3][GETBYTE(s0, 0)] ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Td[0][GETBYTE(t0, 3)] ^ Td[1][GETBYTE(t3, 2)] ^ Td[2][GETBYTE(t2, 1)] ^ Td[3][GETBYTE(t1, 0)] ^ rk[0]; s1 = Td[0][GETBYTE(t1, 3)] ^ Td[1][GETBYTE(t0, 2)] ^ Td[2][GETBYTE(t3, 1)] ^ Td[3][GETBYTE(t2, 0)] ^ rk[1]; s2 = Td[0][GETBYTE(t2, 3)] ^ Td[1][GETBYTE(t1, 2)] ^ Td[2][GETBYTE(t0, 1)] ^ Td[3][GETBYTE(t3, 0)] ^ rk[2]; s3 = Td[0][GETBYTE(t3, 3)] ^ Td[1][GETBYTE(t2, 2)] ^ Td[2][GETBYTE(t1, 1)] ^ Td[3][GETBYTE(t0, 0)] ^ rk[3]; } /* * apply last round and * map cipher state to byte array block: */ t0 |= PreFetchTd4(); s0 = ((word32)Td4[GETBYTE(t0, 3)] << 24) ^ ((word32)Td4[GETBYTE(t3, 2)] << 16) ^ ((word32)Td4[GETBYTE(t2, 1)] << 8) ^ ((word32)Td4[GETBYTE(t1, 0)]) ^ rk[0]; s1 = ((word32)Td4[GETBYTE(t1, 3)] << 24) ^ ((word32)Td4[GETBYTE(t0, 2)] << 16) ^ ((word32)Td4[GETBYTE(t3, 1)] << 8) ^ ((word32)Td4[GETBYTE(t2, 0)]) ^ rk[1]; s2 = ((word32)Td4[GETBYTE(t2, 3)] << 24) ^ ((word32)Td4[GETBYTE(t1, 2)] << 16) ^ ((word32)Td4[GETBYTE(t0, 1)] << 8) ^ ((word32)Td4[GETBYTE(t3, 0)]) ^ rk[2]; s3 = ((word32)Td4[GETBYTE(t3, 3)] << 24) ^ ((word32)Td4[GETBYTE(t2, 2)] << 16) ^ ((word32)Td4[GETBYTE(t1, 1)] << 8) ^ ((word32)Td4[GETBYTE(t0, 0)]) ^ rk[3]; /* write out */ #ifdef LITTLE_ENDIAN_ORDER s0 = ByteReverseWord32(s0); s1 = ByteReverseWord32(s1); s2 = ByteReverseWord32(s2); s3 = ByteReverseWord32(s3); #endif XMEMCPY(outBlock, &s0, sizeof(s0)); XMEMCPY(outBlock + sizeof(s0), &s1, sizeof(s1)); XMEMCPY(outBlock + 2 * sizeof(s0), &s2, sizeof(s2)); XMEMCPY(outBlock + 3 * sizeof(s0), &s3, sizeof(s3)); } #endif /* HAVE_AES_DECRYPT */ #endif /* HAVE_AES_CBC || WOLFSSL_AES_DIRECT */ #endif /* NEED_AES_TABLES */ /* wc_AesSetKey */ #if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO) int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { word32 *rk = aes->key; (void)dir; if (!((keylen == 16) || (keylen == 24) || (keylen == 32))) return BAD_FUNC_ARG; aes->rounds = keylen/4 + 6; XMEMCPY(rk, userKey, keylen); #ifndef WOLFSSL_STM32_CUBEMX ByteReverseWords(rk, rk, keylen); #endif return wc_AesSetIV(aes, iv); } #if defined(WOLFSSL_AES_DIRECT) int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { return wc_AesSetKey(aes, userKey, keylen, iv, dir); } #endif #elif defined(HAVE_COLDFIRE_SEC) #if defined (HAVE_THREADX) #include "memory_pools.h" extern TX_BYTE_POOL mp_ncached; /* Non Cached memory pool */ #endif #define AES_BUFFER_SIZE (AES_BLOCK_SIZE * 64) static unsigned char *AESBuffIn = NULL; static unsigned char *AESBuffOut = NULL; static byte *secReg; static byte *secKey; static volatile SECdescriptorType *secDesc; static wolfSSL_Mutex Mutex_AesSEC; #define SEC_DESC_AES_CBC_ENCRYPT 0x60300010 #define SEC_DESC_AES_CBC_DECRYPT 0x60200010 extern volatile unsigned char __MBAR[]; int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { if (AESBuffIn == NULL) { #if defined (HAVE_THREADX) int s1, s2, s3, s4, s5 ; s5 = tx_byte_allocate(&mp_ncached,(void *)&secDesc, sizeof(SECdescriptorType), TX_NO_WAIT); s1 = tx_byte_allocate(&mp_ncached, (void *)&AESBuffIn, AES_BUFFER_SIZE, TX_NO_WAIT); s2 = tx_byte_allocate(&mp_ncached, (void *)&AESBuffOut, AES_BUFFER_SIZE, TX_NO_WAIT); s3 = tx_byte_allocate(&mp_ncached, (void *)&secKey, AES_BLOCK_SIZE*2, TX_NO_WAIT); s4 = tx_byte_allocate(&mp_ncached, (void *)&secReg, AES_BLOCK_SIZE, TX_NO_WAIT); if(s1 || s2 || s3 || s4 || s5) return BAD_FUNC_ARG; #else #warning "Allocate non-Cache buffers" #endif wc_InitMutex(&Mutex_AesSEC); } if (!((keylen == 16) || (keylen == 24) || (keylen == 32))) return BAD_FUNC_ARG; if (aes == NULL) return BAD_FUNC_ARG; aes->rounds = keylen/4 + 6; XMEMCPY(aes->key, userKey, keylen); if (iv) XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE); return 0; } #elif defined(FREESCALE_LTC) int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { if (!((keylen == 16) || (keylen == 24) || (keylen == 32))) return BAD_FUNC_ARG; aes->rounds = keylen/4 + 6; XMEMCPY(aes->key, userKey, keylen); #ifdef WOLFSSL_AES_COUNTER aes->left = 0; #endif /* WOLFSSL_AES_COUNTER */ return wc_AesSetIV(aes, iv); } int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { return wc_AesSetKey(aes, userKey, keylen, iv, dir); } #elif defined(FREESCALE_MMCAU) int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { int ret; byte *rk = (byte*)aes->key; (void)dir; if (!((keylen == 16) || (keylen == 24) || (keylen == 32))) return BAD_FUNC_ARG; if (rk == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_AES_COUNTER aes->left = 0; #endif /* WOLFSSL_AES_COUNTER */ aes->rounds = keylen/4 + 6; ret = wolfSSL_CryptHwMutexLock(); if(ret == 0) { MMCAU_AES_SetKey(userKey, keylen, rk); wolfSSL_CryptHwMutexUnLock(); ret = wc_AesSetIV(aes, iv); } return ret; } int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { return wc_AesSetKey(aes, userKey, keylen, iv, dir); } #elif defined(WOLFSSL_NRF51_AES) int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { int ret; (void)dir; (void)iv; if (keylen != 16) return BAD_FUNC_ARG; aes->rounds = keylen/4 + 6; ret = nrf51_aes_set_key(userKey); return ret; } int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { return wc_AesSetKey(aes, userKey, keylen, iv, dir); } #else static int wc_AesSetKeyLocal(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { word32 temp, *rk = aes->key; unsigned int i = 0; #ifdef WOLFSSL_AESNI aes->use_aesni = 0; #endif /* WOLFSSL_AESNI */ #ifdef WOLFSSL_AES_COUNTER aes->left = 0; #endif /* WOLFSSL_AES_COUNTER */ aes->rounds = keylen/4 + 6; XMEMCPY(rk, userKey, keylen); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(rk, rk, keylen); #endif #ifdef WOLFSSL_PIC32MZ_CRYPT { word32 *akey1 = aes->key_ce; word32 *areg = aes->iv_ce ; aes->keylen = keylen ; XMEMCPY(akey1, userKey, keylen); if (iv) XMEMCPY(areg, iv, AES_BLOCK_SIZE); else XMEMSET(areg, 0, AES_BLOCK_SIZE); } #endif switch(keylen) { #if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 128 case 16: while (1) { temp = rk[3]; rk[4] = rk[0] ^ (Te[2][GETBYTE(temp, 2)] & 0xff000000) ^ (Te[3][GETBYTE(temp, 1)] & 0x00ff0000) ^ (Te[0][GETBYTE(temp, 0)] & 0x0000ff00) ^ (Te[1][GETBYTE(temp, 3)] & 0x000000ff) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) break; rk += 4; } break; #endif /* 128 */ #if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 192 case 24: /* for (;;) here triggers a bug in VC60 SP4 w/ Pro Pack */ while (1) { temp = rk[ 5]; rk[ 6] = rk[ 0] ^ (Te[2][GETBYTE(temp, 2)] & 0xff000000) ^ (Te[3][GETBYTE(temp, 1)] & 0x00ff0000) ^ (Te[0][GETBYTE(temp, 0)] & 0x0000ff00) ^ (Te[1][GETBYTE(temp, 3)] & 0x000000ff) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) break; rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } break; #endif /* 192 */ #if defined(AES_MAX_KEY_SIZE) && AES_MAX_KEY_SIZE >= 256 case 32: while (1) { temp = rk[ 7]; rk[ 8] = rk[ 0] ^ (Te[2][GETBYTE(temp, 2)] & 0xff000000) ^ (Te[3][GETBYTE(temp, 1)] & 0x00ff0000) ^ (Te[0][GETBYTE(temp, 0)] & 0x0000ff00) ^ (Te[1][GETBYTE(temp, 3)] & 0x000000ff) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) break; temp = rk[11]; rk[12] = rk[ 4] ^ (Te[2][GETBYTE(temp, 3)] & 0xff000000) ^ (Te[3][GETBYTE(temp, 2)] & 0x00ff0000) ^ (Te[0][GETBYTE(temp, 1)] & 0x0000ff00) ^ (Te[1][GETBYTE(temp, 0)] & 0x000000ff); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } break; #endif /* 256 */ default: return BAD_FUNC_ARG; } #ifdef HAVE_AES_DECRYPT if (dir == AES_DECRYPTION) { unsigned int j; rk = aes->key; /* invert the order of the round keys: */ for (i = 0, j = 4* aes->rounds; i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < aes->rounds; i++) { rk += 4; rk[0] = Td[0][Te[1][GETBYTE(rk[0], 3)] & 0xff] ^ Td[1][Te[1][GETBYTE(rk[0], 2)] & 0xff] ^ Td[2][Te[1][GETBYTE(rk[0], 1)] & 0xff] ^ Td[3][Te[1][GETBYTE(rk[0], 0)] & 0xff]; rk[1] = Td[0][Te[1][GETBYTE(rk[1], 3)] & 0xff] ^ Td[1][Te[1][GETBYTE(rk[1], 2)] & 0xff] ^ Td[2][Te[1][GETBYTE(rk[1], 1)] & 0xff] ^ Td[3][Te[1][GETBYTE(rk[1], 0)] & 0xff]; rk[2] = Td[0][Te[1][GETBYTE(rk[2], 3)] & 0xff] ^ Td[1][Te[1][GETBYTE(rk[2], 2)] & 0xff] ^ Td[2][Te[1][GETBYTE(rk[2], 1)] & 0xff] ^ Td[3][Te[1][GETBYTE(rk[2], 0)] & 0xff]; rk[3] = Td[0][Te[1][GETBYTE(rk[3], 3)] & 0xff] ^ Td[1][Te[1][GETBYTE(rk[3], 2)] & 0xff] ^ Td[2][Te[1][GETBYTE(rk[3], 1)] & 0xff] ^ Td[3][Te[1][GETBYTE(rk[3], 0)] & 0xff]; } } #else (void)dir; #endif /* HAVE_AES_DECRYPT */ return wc_AesSetIV(aes, iv); } int wc_AesSetKey(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { #if defined(AES_MAX_KEY_SIZE) const word32 max_key_len = (AES_MAX_KEY_SIZE / 8); #endif if (aes == NULL) return BAD_FUNC_ARG; if (!((keylen == 16) || (keylen == 24) || (keylen == 32))) return BAD_FUNC_ARG; #if defined(AES_MAX_KEY_SIZE) /* Check key length */ if (keylen > max_key_len) { return BAD_FUNC_ARG; } #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_CAVIUM) if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES) { return NitroxAesSetKey(aes, userKey, keylen, iv); } #endif #ifdef WOLFSSL_AESNI if (checkAESNI == 0) { haveAESNI = Check_CPU_support_AES(); checkAESNI = 1; } if (haveAESNI) { #ifdef WOLFSSL_AES_COUNTER aes->left = 0; #endif /* WOLFSSL_AES_COUNTER */ aes->use_aesni = 1; if (iv) XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE); if (dir == AES_ENCRYPTION) return AES_set_encrypt_key(userKey, keylen * 8, aes); #ifdef HAVE_AES_DECRYPT else return AES_set_decrypt_key(userKey, keylen * 8, aes); #endif } #endif /* WOLFSSL_AESNI */ return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir); } #if defined(WOLFSSL_AES_DIRECT) || defined(WOLFSSL_AES_COUNTER) /* AES-CTR and AES-DIRECT need to use this for key setup, no aesni yet */ int wc_AesSetKeyDirect(Aes* aes, const byte* userKey, word32 keylen, const byte* iv, int dir) { return wc_AesSetKeyLocal(aes, userKey, keylen, iv, dir); } #endif /* WOLFSSL_AES_DIRECT || WOLFSSL_AES_COUNTER */ #endif /* wc_AesSetKey block */ /* wc_AesSetIV is shared between software and hardware */ int wc_AesSetIV(Aes* aes, const byte* iv) { if (aes == NULL) return BAD_FUNC_ARG; if (iv) XMEMCPY(aes->reg, iv, AES_BLOCK_SIZE); else XMEMSET(aes->reg, 0, AES_BLOCK_SIZE); return 0; } /* set the heap hint for aes struct */ int wc_InitAes_h(Aes* aes, void* h) { if (aes == NULL) return BAD_FUNC_ARG; aes->heap = h; return 0; } /* AES-DIRECT */ #if defined(WOLFSSL_AES_DIRECT) #if defined(HAVE_COLDFIRE_SEC) #error "Coldfire SEC doesn't yet support AES direct" #elif defined(WOLFSSL_PIC32MZ_CRYPT) #error "PIC32MZ doesn't yet support AES direct" #elif defined(FREESCALE_LTC) /* Allow direct access to one block encrypt */ void wc_AesEncryptDirect(Aes* aes, byte* out, const byte* in) { byte *key; uint32_t keySize; key = (byte*)aes->key; wc_AesGetKeySize(aes, &keySize); LTC_AES_EncryptEcb(LTC_BASE, in, out, AES_BLOCK_SIZE, key, keySize); } /* Allow direct access to one block decrypt */ void wc_AesDecryptDirect(Aes* aes, byte* out, const byte* in) { byte *key; uint32_t keySize; key = (byte*)aes->key; wc_AesGetKeySize(aes, &keySize); LTC_AES_DecryptEcb(LTC_BASE, in, out, AES_BLOCK_SIZE, key, keySize, kLTC_EncryptKey); } #else /* Allow direct access to one block encrypt */ void wc_AesEncryptDirect(Aes* aes, byte* out, const byte* in) { wc_AesEncrypt(aes, in, out); } #ifdef HAVE_AES_DECRYPT /* Allow direct access to one block decrypt */ void wc_AesDecryptDirect(Aes* aes, byte* out, const byte* in) { wc_AesDecrypt(aes, in, out); } #endif /* HAVE_AES_DECRYPT */ #endif /* AES direct block */ #endif /* WOLFSSL_AES_DIRECT */ /* AES-CBC */ #ifdef HAVE_AES_CBC #if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO) #ifdef WOLFSSL_STM32_CUBEMX int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { int ret = 0; CRYP_HandleTypeDef hcryp; XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef)); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_128B; break; case 12: /* 192-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_192B; break; case 14: /* 256-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_256B; break; default: break; } hcryp.Instance = CRYP; hcryp.Init.DataType = CRYP_DATATYPE_8B; hcryp.Init.pKey = (uint8_t*)aes->key; hcryp.Init.pInitVect = (uint8_t*)aes->reg; HAL_CRYP_Init(&hcryp); while (sz > 0) { if (HAL_CRYP_AESCBC_Encrypt(&hcryp, (uint8_t*)in, AES_BLOCK_SIZE, out, STM32_HAL_TIMEOUT) != HAL_OK) { ret = WC_TIMEOUT_E; break; } /* store iv for next call */ XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE); sz -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } HAL_CRYP_DeInit(&hcryp); return ret; } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { int ret = 0; CRYP_HandleTypeDef hcryp; /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_128B; break; case 12: /* 192-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_192B; break; case 14: /* 256-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_256B; break; default: break; } XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef)); hcryp.Instance = CRYP; hcryp.Init.DataType = CRYP_DATATYPE_8B; hcryp.Init.pKey = (uint8_t*)aes->key; hcryp.Init.pInitVect = (uint8_t*)aes->reg; HAL_CRYP_Init(&hcryp); while (sz > 0) { if (HAL_CRYP_AESCBC_Decrypt(&hcryp, (uint8_t*)in, AES_BLOCK_SIZE, out, STM32_HAL_TIMEOUT) != HAL_OK) { ret = WC_TIMEOUT_E; } /* store iv for next call */ XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE); sz -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } HAL_CRYP_DeInit(&hcryp); return ret; } #endif /* HAVE_AES_DECRYPT */ #else int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { word32 *enc_key, *iv; CRYP_InitTypeDef AES_CRYP_InitStructure; CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; CRYP_IVInitTypeDef AES_CRYP_IVInitStructure; enc_key = aes->key; iv = aes->reg; /* crypto structure initialization */ CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); CRYP_StructInit(&AES_CRYP_InitStructure); CRYP_IVStructInit(&AES_CRYP_IVInitStructure); /* reset registers to their default values */ CRYP_DeInit(); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[3]; break; case 12: /* 192-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[5]; break; case 14: /* 256-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; AES_CRYP_KeyInitStructure.CRYP_Key0Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key0Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[5]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[6]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[7]; break; default: break; } CRYP_KeyInit(&AES_CRYP_KeyInitStructure); /* set iv */ ByteReverseWords(iv, iv, AES_BLOCK_SIZE); AES_CRYP_IVInitStructure.CRYP_IV0Left = iv[0]; AES_CRYP_IVInitStructure.CRYP_IV0Right = iv[1]; AES_CRYP_IVInitStructure.CRYP_IV1Left = iv[2]; AES_CRYP_IVInitStructure.CRYP_IV1Right = iv[3]; CRYP_IVInit(&AES_CRYP_IVInitStructure); /* set direction, mode, and datatype */ AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC; AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; CRYP_Init(&AES_CRYP_InitStructure); /* enable crypto processor */ CRYP_Cmd(ENABLE); while (sz > 0) { /* flush IN/OUT FIFOs */ CRYP_FIFOFlush(); CRYP_DataIn(*(uint32_t*)&in[0]); CRYP_DataIn(*(uint32_t*)&in[4]); CRYP_DataIn(*(uint32_t*)&in[8]); CRYP_DataIn(*(uint32_t*)&in[12]); /* wait until the complete message has been processed */ while(CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {} *(uint32_t*)&out[0] = CRYP_DataOut(); *(uint32_t*)&out[4] = CRYP_DataOut(); *(uint32_t*)&out[8] = CRYP_DataOut(); *(uint32_t*)&out[12] = CRYP_DataOut(); /* store iv for next call */ XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE); sz -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } /* disable crypto processor */ CRYP_Cmd(DISABLE); return 0; } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { word32 *dec_key, *iv; CRYP_InitTypeDef AES_CRYP_InitStructure; CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; CRYP_IVInitTypeDef AES_CRYP_IVInitStructure; dec_key = aes->key; iv = aes->reg; /* crypto structure initialization */ CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); CRYP_StructInit(&AES_CRYP_InitStructure); CRYP_IVStructInit(&AES_CRYP_IVInitStructure); /* if input and output same will overwrite input iv */ XMEMCPY(aes->tmp, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE); /* reset registers to their default values */ CRYP_DeInit(); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; AES_CRYP_KeyInitStructure.CRYP_Key2Left = dec_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = dec_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = dec_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = dec_key[3]; break; case 12: /* 192-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; AES_CRYP_KeyInitStructure.CRYP_Key1Left = dec_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = dec_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = dec_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = dec_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = dec_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = dec_key[5]; break; case 14: /* 256-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; AES_CRYP_KeyInitStructure.CRYP_Key0Left = dec_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key0Right = dec_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key1Left = dec_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = dec_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = dec_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = dec_key[5]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = dec_key[6]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = dec_key[7]; break; default: break; } /* set direction, mode, and datatype for key preparation */ AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key; AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b; CRYP_Init(&AES_CRYP_InitStructure); CRYP_KeyInit(&AES_CRYP_KeyInitStructure); /* enable crypto processor */ CRYP_Cmd(ENABLE); /* wait until key has been prepared */ while(CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {} /* set direction, mode, and datatype for decryption */ AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC; AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; CRYP_Init(&AES_CRYP_InitStructure); /* set iv */ ByteReverseWords(iv, iv, AES_BLOCK_SIZE); AES_CRYP_IVInitStructure.CRYP_IV0Left = iv[0]; AES_CRYP_IVInitStructure.CRYP_IV0Right = iv[1]; AES_CRYP_IVInitStructure.CRYP_IV1Left = iv[2]; AES_CRYP_IVInitStructure.CRYP_IV1Right = iv[3]; CRYP_IVInit(&AES_CRYP_IVInitStructure); /* enable crypto processor */ CRYP_Cmd(ENABLE); while (sz > 0) { /* flush IN/OUT FIFOs */ CRYP_FIFOFlush(); CRYP_DataIn(*(uint32_t*)&in[0]); CRYP_DataIn(*(uint32_t*)&in[4]); CRYP_DataIn(*(uint32_t*)&in[8]); CRYP_DataIn(*(uint32_t*)&in[12]); /* wait until the complete message has been processed */ while(CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {} *(uint32_t*)&out[0] = CRYP_DataOut(); *(uint32_t*)&out[4] = CRYP_DataOut(); *(uint32_t*)&out[8] = CRYP_DataOut(); *(uint32_t*)&out[12] = CRYP_DataOut(); /* store iv for next call */ XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE); sz -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } /* disable crypto processor */ CRYP_Cmd(DISABLE); return 0; } #endif /* HAVE_AES_DECRYPT */ #endif /* WOLFSSL_STM32_CUBEMX */ #elif defined(HAVE_COLDFIRE_SEC) static int wc_AesCbcCrypt(Aes* aes, byte* po, const byte* pi, word32 sz, word32 descHeader) { #ifdef DEBUG_WOLFSSL int i; int stat1, stat2; int ret; #endif int size; volatile int v; if ((pi == NULL) || (po == NULL)) return BAD_FUNC_ARG; /*wrong pointer*/ wc_LockMutex(&Mutex_AesSEC); /* Set descriptor for SEC */ secDesc->length1 = 0x0; secDesc->pointer1 = NULL; secDesc->length2 = AES_BLOCK_SIZE; secDesc->pointer2 = (byte *)secReg; /* Initial Vector */ switch(aes->rounds) { case 10: secDesc->length3 = 16 ; break ; case 12: secDesc->length3 = 24 ; break ; case 14: secDesc->length3 = 32 ; break ; } XMEMCPY(secKey, aes->key, secDesc->length3); secDesc->pointer3 = (byte *)secKey; secDesc->pointer4 = AESBuffIn; secDesc->pointer5 = AESBuffOut; secDesc->length6 = 0x0; secDesc->pointer6 = NULL; secDesc->length7 = 0x0; secDesc->pointer7 = NULL; secDesc->nextDescriptorPtr = NULL; while (sz) { secDesc->header = descHeader; XMEMCPY(secReg, aes->reg, AES_BLOCK_SIZE); if ((sz % AES_BUFFER_SIZE) == sz) { size = sz; sz = 0; } else { size = AES_BUFFER_SIZE; sz -= AES_BUFFER_SIZE; } secDesc->length4 = size; secDesc->length5 = size; XMEMCPY(AESBuffIn, pi, size); if(descHeader == SEC_DESC_AES_CBC_DECRYPT) { XMEMCPY((void*)aes->tmp, (void*)&(pi[size-AES_BLOCK_SIZE]), AES_BLOCK_SIZE); } /* Point SEC to the location of the descriptor */ MCF_SEC_FR0 = (uint32)secDesc; /* Initialize SEC and wait for encryption to complete */ MCF_SEC_CCCR0 = 0x0000001a; /* poll SISR to determine when channel is complete */ v=0; while ((secDesc->header>> 24) != 0xff) v++; #ifdef DEBUG_WOLFSSL ret = MCF_SEC_SISRH; stat1 = MCF_SEC_AESSR; stat2 = MCF_SEC_AESISR; if (ret & 0xe0000000) { db_printf("Aes_Cbc(i=%d):ISRH=%08x, AESSR=%08x, " "AESISR=%08x\n", i, ret, stat1, stat2); } #endif XMEMCPY(po, AESBuffOut, size); if (descHeader == SEC_DESC_AES_CBC_ENCRYPT) { XMEMCPY((void*)aes->reg, (void*)&(po[size-AES_BLOCK_SIZE]), AES_BLOCK_SIZE); } else { XMEMCPY((void*)aes->reg, (void*)aes->tmp, AES_BLOCK_SIZE); } pi += size; po += size; } wc_UnLockMutex(&Mutex_AesSEC); return 0; } int wc_AesCbcEncrypt(Aes* aes, byte* po, const byte* pi, word32 sz) { return (wc_AesCbcCrypt(aes, po, pi, sz, SEC_DESC_AES_CBC_ENCRYPT)); } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* po, const byte* pi, word32 sz) { return (wc_AesCbcCrypt(aes, po, pi, sz, SEC_DESC_AES_CBC_DECRYPT)); } #endif /* HAVE_AES_DECRYPT */ #elif defined(FREESCALE_LTC) int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { uint32_t keySize; status_t status; byte *iv, *enc_key; iv = (byte*)aes->reg; enc_key = (byte*)aes->key; status = wc_AesGetKeySize(aes, &keySize); if (status != 0) { return status; } status = LTC_AES_EncryptCbc(LTC_BASE, in, out, sz, iv, enc_key, keySize); return (status == kStatus_Success) ? 0 : -1; } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { uint32_t keySize; status_t status; byte* iv, *dec_key; iv = (byte*)aes->reg; dec_key = (byte*)aes->key; status = wc_AesGetKeySize(aes, &keySize); if (status != 0) { return status; } status = LTC_AES_DecryptCbc(LTC_BASE, in, out, sz, iv, dec_key, keySize, kLTC_EncryptKey); return (status == kStatus_Success) ? 0 : -1; } #endif /* HAVE_AES_DECRYPT */ #elif defined(FREESCALE_MMCAU) int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { int i; int offset = 0; int len = sz; byte *iv; byte temp_block[AES_BLOCK_SIZE]; iv = (byte*)aes->reg; while (len > 0) { XMEMCPY(temp_block, in + offset, AES_BLOCK_SIZE); /* XOR block with IV for CBC */ for (i = 0; i < AES_BLOCK_SIZE; i++) temp_block[i] ^= iv[i]; wc_AesEncrypt(aes, temp_block, out + offset); len -= AES_BLOCK_SIZE; offset += AES_BLOCK_SIZE; /* store IV for next block */ XMEMCPY(iv, out + offset - AES_BLOCK_SIZE, AES_BLOCK_SIZE); } return 0; } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { int i; int offset = 0; int len = sz; byte* iv; byte temp_block[AES_BLOCK_SIZE]; iv = (byte*)aes->reg; while (len > 0) { XMEMCPY(temp_block, in + offset, AES_BLOCK_SIZE); wc_AesDecrypt(aes, in + offset, out + offset); /* XOR block with IV for CBC */ for (i = 0; i < AES_BLOCK_SIZE; i++) (out + offset)[i] ^= iv[i]; /* store IV for next block */ XMEMCPY(iv, temp_block, AES_BLOCK_SIZE); len -= AES_BLOCK_SIZE; offset += AES_BLOCK_SIZE; } return 0; } #endif /* HAVE_AES_DECRYPT */ #elif defined(WOLFSSL_PIC32MZ_CRYPT) /* core hardware crypt engine driver */ static void wc_AesCrypt(Aes *aes, byte* out, const byte* in, word32 sz, int dir, int algo, int cryptoalgo) { securityAssociation *sa_p ; bufferDescriptor *bd_p ; volatile securityAssociation sa __attribute__((aligned (8))); volatile bufferDescriptor bd __attribute__((aligned (8))); volatile int k ; /* get uncached address */ sa_p = KVA0_TO_KVA1(&sa) ; bd_p = KVA0_TO_KVA1(&bd) ; /* Sync cache and physical memory */ if(PIC32MZ_IF_RAM(in)) { XMEMCPY((void *)KVA0_TO_KVA1(in), (void *)in, sz); } XMEMSET((void *)KVA0_TO_KVA1(out), 0, sz); /* Set up the Security Association */ XMEMSET((byte *)KVA0_TO_KVA1(&sa), 0, sizeof(sa)); sa_p->SA_CTRL.ALGO = algo ; /* AES */ sa_p->SA_CTRL.LNC = 1; sa_p->SA_CTRL.LOADIV = 1; sa_p->SA_CTRL.FB = 1; sa_p->SA_CTRL.ENCTYPE = dir ; /* Encryption/Decryption */ sa_p->SA_CTRL.CRYPTOALGO = cryptoalgo; if(cryptoalgo == PIC32_CRYPTOALGO_AES_GCM){ switch(aes->keylen) { case 32: sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_256 ; break ; case 24: sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_192 ; break ; case 16: sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_128 ; break ; } } else sa_p->SA_CTRL.KEYSIZE = PIC32_AES_KEYSIZE_128 ; ByteReverseWords( (word32 *)KVA0_TO_KVA1(sa.SA_ENCKEY + 8 - aes->keylen/sizeof(word32)), (word32 *)aes->key_ce, aes->keylen); ByteReverseWords( (word32*)KVA0_TO_KVA1(sa.SA_ENCIV), (word32 *)aes->iv_ce, 16); XMEMSET((byte *)KVA0_TO_KVA1(&bd), 0, sizeof(bd)); /* Set up the Buffer Descriptor */ bd_p->BD_CTRL.BUFLEN = sz; if(cryptoalgo == PIC32_CRYPTOALGO_AES_GCM) { if(sz % 0x10) bd_p->BD_CTRL.BUFLEN = (sz/0x10 + 1) * 0x10 ; } bd_p->BD_CTRL.LIFM = 1; bd_p->BD_CTRL.SA_FETCH_EN = 1; bd_p->BD_CTRL.LAST_BD = 1; bd_p->BD_CTRL.DESC_EN = 1; bd_p->SA_ADDR = (unsigned int)KVA_TO_PA(&sa) ; bd_p->SRCADDR = (unsigned int)KVA_TO_PA(in) ; bd_p->DSTADDR = (unsigned int)KVA_TO_PA(out); bd_p->MSGLEN = sz ; CECON = 1 << 6; while (CECON); /* Run the engine */ CEBDPADDR = (unsigned int)KVA_TO_PA(&bd) ; CEINTEN = 0x07; CECON = 0x27; WAIT_ENGINE ; if((cryptoalgo == PIC32_CRYPTOALGO_CBC) || (cryptoalgo == PIC32_CRYPTOALGO_TCBC)|| (cryptoalgo == PIC32_CRYPTOALGO_RCBC)) { /* set iv for the next call */ if(dir == PIC32_ENCRYPTION) { XMEMCPY((void *)aes->iv_ce, (void*)KVA0_TO_KVA1(out + sz - AES_BLOCK_SIZE), AES_BLOCK_SIZE) ; } else { ByteReverseWords((word32*)aes->iv_ce, (word32 *)KVA0_TO_KVA1(in + sz - AES_BLOCK_SIZE), AES_BLOCK_SIZE); } } XMEMCPY((byte *)out, (byte *)KVA0_TO_KVA1(out), sz) ; ByteReverseWords((word32*)out, (word32 *)out, sz); } int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { wc_AesCrypt(aes, out, in, sz, PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCBC ); return 0 ; } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { wc_AesCrypt(aes, out, in, sz, PIC32_DECRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCBC); return 0 ; } #endif /* HAVE_AES_DECRYPT */ #else int wc_AesCbcEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { word32 blocks = sz / AES_BLOCK_SIZE; #if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_CAVIUM) if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES) return NitroxAesCbcEncrypt(aes, out, in, sz); #endif #ifdef WOLFSSL_AESNI if (haveAESNI) { #ifdef DEBUG_AESNI printf("about to aes cbc encrypt\n"); printf("in = %p\n", in); printf("out = %p\n", out); printf("aes->key = %p\n", aes->key); printf("aes->reg = %p\n", aes->reg); printf("aes->rounds = %d\n", aes->rounds); printf("sz = %d\n", sz); #endif /* check alignment, decrypt doesn't need alignment */ if ((wolfssl_word)in % 16) { #ifndef NO_WOLFSSL_ALLOC_ALIGN byte* tmp = (byte*)XMALLOC(sz, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); WOLFSSL_MSG("AES-CBC encrypt with bad alignment"); if (tmp == NULL) return MEMORY_E; XMEMCPY(tmp, in, sz); AES_CBC_encrypt(tmp, tmp, (byte*)aes->reg, sz, (byte*)aes->key, aes->rounds); /* store iv for next call */ XMEMCPY(aes->reg, tmp + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE); XMEMCPY(out, tmp, sz); XFREE(tmp, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); return 0; #else return BAD_ALIGN_E; #endif } AES_CBC_encrypt(in, out, (byte*)aes->reg, sz, (byte*)aes->key, aes->rounds); /* store iv for next call */ XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE); return 0; } #endif while (blocks--) { xorbuf((byte*)aes->reg, in, AES_BLOCK_SIZE); wc_AesEncrypt(aes, (byte*)aes->reg, (byte*)aes->reg); XMEMCPY(out, aes->reg, AES_BLOCK_SIZE); out += AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; } return 0; } #ifdef HAVE_AES_DECRYPT int wc_AesCbcDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { word32 blocks = sz / AES_BLOCK_SIZE; #if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_CAVIUM) if (aes->asyncDev.marker == WOLFSSL_ASYNC_MARKER_AES) { return NitroxAesCbcDecrypt(aes, out, in, sz); } #endif #ifdef WOLFSSL_AESNI if (haveAESNI) { #ifdef DEBUG_AESNI printf("about to aes cbc decrypt\n"); printf("in = %p\n", in); printf("out = %p\n", out); printf("aes->key = %p\n", aes->key); printf("aes->reg = %p\n", aes->reg); printf("aes->rounds = %d\n", aes->rounds); printf("sz = %d\n", sz); #endif /* if input and output same will overwrite input iv */ XMEMCPY(aes->tmp, in + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE); #if defined(WOLFSSL_AESNI_BY4) AES_CBC_decrypt_by4(in, out, (byte*)aes->reg, sz, (byte*)aes->key, aes->rounds); #elif defined(WOLFSSL_AESNI_BY6) AES_CBC_decrypt_by6(in, out, (byte*)aes->reg, sz, (byte*)aes->key, aes->rounds); #else /* WOLFSSL_AESNI_BYx */ AES_CBC_decrypt_by8(in, out, (byte*)aes->reg, sz, (byte*)aes->key, aes->rounds); #endif /* WOLFSSL_AESNI_BYx */ /* store iv for next call */ XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE); return 0; } #endif while (blocks--) { XMEMCPY(aes->tmp, in, AES_BLOCK_SIZE); wc_AesDecrypt(aes, (byte*)aes->tmp, out); xorbuf(out, (byte*)aes->reg, AES_BLOCK_SIZE); XMEMCPY(aes->reg, aes->tmp, AES_BLOCK_SIZE); out += AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; } return 0; } #endif #endif /* AES-CBC block */ #endif /* HAVE_AES_CBC */ #ifdef HAVE_AES_ECB int wc_AesEcbEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { if ((in == NULL) || (out == NULL) || (aes == NULL)) return BAD_FUNC_ARG; while (sz>0) { wc_AesEncryptDirect(aes, out, in); out += AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; sz -= AES_BLOCK_SIZE; } return 0; } int wc_AesEcbDecrypt(Aes* aes, byte* out, const byte* in, word32 sz) { if ((in == NULL) || (out == NULL) || (aes == NULL)) return BAD_FUNC_ARG; while (sz>0) { wc_AesDecryptDirect(aes, out, in); out += AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; sz -= AES_BLOCK_SIZE; } return 0; } #endif /* AES-CTR */ #ifdef WOLFSSL_AES_COUNTER #if defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO) #ifdef WOLFSSL_STM32_CUBEMX void wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { CRYP_HandleTypeDef hcryp; XMEMSET(&hcryp, 0, sizeof(CRYP_HandleTypeDef)); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_128B; break; case 12: /* 192-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_192B; break; case 14: /* 256-bit key */ hcryp.Init.KeySize = CRYP_KEYSIZE_256B; break; default: break; } hcryp.Instance = CRYP; hcryp.Init.DataType = CRYP_DATATYPE_8B; hcryp.Init.pKey = aes->key; hcryp.Init.pInitVect = aes->reg; HAL_CRYP_Init(&hcryp); HAL_CRYP_AESCTR_Encrypt(&hcryp, in, AES_BLOCK_SIZE, out, STM32_HAL_TIMEOUT); HAL_CRYP_DeInit(&hcryp); } #else void wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { word32 *enc_key, *iv; CRYP_InitTypeDef AES_CRYP_InitStructure; CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; CRYP_IVInitTypeDef AES_CRYP_IVInitStructure; enc_key = aes->key; iv = aes->reg; /* crypto structure initialization */ CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); CRYP_StructInit(&AES_CRYP_InitStructure); CRYP_IVStructInit(&AES_CRYP_IVInitStructure); /* reset registers to their default values */ CRYP_DeInit(); /* load key into correct registers */ switch(aes->rounds) { case 10: /* 128-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[3]; break; case 12: /* 192-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[5]; break; case 14: /* 256-bit key */ AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; AES_CRYP_KeyInitStructure.CRYP_Key0Left = enc_key[0]; AES_CRYP_KeyInitStructure.CRYP_Key0Right = enc_key[1]; AES_CRYP_KeyInitStructure.CRYP_Key1Left = enc_key[2]; AES_CRYP_KeyInitStructure.CRYP_Key1Right = enc_key[3]; AES_CRYP_KeyInitStructure.CRYP_Key2Left = enc_key[4]; AES_CRYP_KeyInitStructure.CRYP_Key2Right = enc_key[5]; AES_CRYP_KeyInitStructure.CRYP_Key3Left = enc_key[6]; AES_CRYP_KeyInitStructure.CRYP_Key3Right = enc_key[7]; break; default: break; } CRYP_KeyInit(&AES_CRYP_KeyInitStructure); /* set iv */ ByteReverseWords(iv, iv, AES_BLOCK_SIZE); AES_CRYP_IVInitStructure.CRYP_IV0Left = iv[0]; AES_CRYP_IVInitStructure.CRYP_IV0Right = iv[1]; AES_CRYP_IVInitStructure.CRYP_IV1Left = iv[2]; AES_CRYP_IVInitStructure.CRYP_IV1Right = iv[3]; CRYP_IVInit(&AES_CRYP_IVInitStructure); /* set direction, mode, and datatype */ AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CTR; AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; CRYP_Init(&AES_CRYP_InitStructure); /* enable crypto processor */ CRYP_Cmd(ENABLE); while (sz > 0) { /* flush IN/OUT FIFOs */ CRYP_FIFOFlush(); CRYP_DataIn(*(uint32_t*)&in[0]); CRYP_DataIn(*(uint32_t*)&in[4]); CRYP_DataIn(*(uint32_t*)&in[8]); CRYP_DataIn(*(uint32_t*)&in[12]); /* wait until the complete message has been processed */ while(CRYP_GetFlagStatus(CRYP_FLAG_BUSY) != RESET) {} *(uint32_t*)&out[0] = CRYP_DataOut(); *(uint32_t*)&out[4] = CRYP_DataOut(); *(uint32_t*)&out[8] = CRYP_DataOut(); *(uint32_t*)&out[12] = CRYP_DataOut(); /* store iv for next call */ XMEMCPY(aes->reg, out + sz - AES_BLOCK_SIZE, AES_BLOCK_SIZE); sz -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } /* disable crypto processor */ CRYP_Cmd(DISABLE); } #endif /* WOLFSSL_STM32_CUBEMX */ #elif defined(WOLFSSL_PIC32MZ_CRYPT) void wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { int i ; char out_block[AES_BLOCK_SIZE] ; int odd ; int even ; char *tmp ; /* (char *)aes->tmp, for short */ tmp = (char *)aes->tmp ; if(aes->left) { if((aes->left + sz) >= AES_BLOCK_SIZE){ odd = AES_BLOCK_SIZE - aes->left ; } else { odd = sz ; } XMEMCPY(tmp+aes->left, in, odd) ; if((odd+aes->left) == AES_BLOCK_SIZE){ wc_AesCrypt(aes, out_block, tmp, AES_BLOCK_SIZE, PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCTR); XMEMCPY(out, out_block+aes->left, odd) ; aes->left = 0 ; XMEMSET(tmp, 0x0, AES_BLOCK_SIZE) ; /* Increment IV */ for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) { if (++((byte *)aes->iv_ce)[i]) break ; } } in += odd ; out+= odd ; sz -= odd ; } odd = sz % AES_BLOCK_SIZE ; /* if there is tail fragment */ if(sz / AES_BLOCK_SIZE) { even = (sz/AES_BLOCK_SIZE)*AES_BLOCK_SIZE ; wc_AesCrypt(aes, out, in, even, PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCTR); out += even ; in += even ; do { /* Increment IV */ for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) { if (++((byte *)aes->iv_ce)[i]) break ; } even -= AES_BLOCK_SIZE ; } while((int)even > 0) ; } if(odd) { XMEMSET(tmp+aes->left, 0x0, AES_BLOCK_SIZE - aes->left) ; XMEMCPY(tmp+aes->left, in, odd) ; wc_AesCrypt(aes, out_block, tmp, AES_BLOCK_SIZE, PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_RCTR); XMEMCPY(out, out_block+aes->left,odd) ; aes->left += odd ; } } #elif defined(HAVE_COLDFIRE_SEC) #error "Coldfire SEC doesn't currently support AES-CTR mode" #elif defined(FREESCALE_LTC) void wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { uint32_t keySize; byte *iv, *enc_key; byte* tmp = (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left; /* consume any unused bytes left in aes->tmp */ while (aes->left && sz) { *(out++) = *(in++) ^ *(tmp++); aes->left--; sz--; } if (sz) { iv = (byte*)aes->reg; enc_key = (byte*)aes->key; wc_AesGetKeySize(aes, &keySize); LTC_AES_CryptCtr(LTC_BASE, in, out, sz, iv, enc_key, keySize, (byte*)aes->tmp, (uint32_t*)&(aes->left)); } } #else /* Increment AES counter */ static INLINE void IncrementAesCounter(byte* inOutCtr) { int i; /* in network byte order so start at end and work back */ for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) { if (++inOutCtr[i]) /* we're done unless we overflow */ return; } } void wc_AesCtrEncrypt(Aes* aes, byte* out, const byte* in, word32 sz) { byte* tmp = (byte*)aes->tmp + AES_BLOCK_SIZE - aes->left; /* consume any unused bytes left in aes->tmp */ while (aes->left && sz) { *(out++) = *(in++) ^ *(tmp++); aes->left--; sz--; } /* do as many block size ops as possible */ while (sz >= AES_BLOCK_SIZE) { wc_AesEncrypt(aes, (byte*)aes->reg, out); IncrementAesCounter((byte*)aes->reg); xorbuf(out, in, AES_BLOCK_SIZE); out += AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; sz -= AES_BLOCK_SIZE; aes->left = 0; } /* handle non block size remaining and store unused byte count in left */ if (sz) { wc_AesEncrypt(aes, (byte*)aes->reg, (byte*)aes->tmp); IncrementAesCounter((byte*)aes->reg); aes->left = AES_BLOCK_SIZE; tmp = (byte*)aes->tmp; while (sz--) { *(out++) = *(in++) ^ *(tmp++); aes->left--; } } } #endif /* AES-CTR block */ #endif /* WOLFSSL_AES_COUNTER */ #ifdef HAVE_AESGCM /* * The IV for AES GCM, stored in struct Aes's member reg, is comprised of * three parts in order: * 1. The implicit IV. This is generated from the PRF using the shared * secrets between endpoints. It is 4 bytes long. * 2. The explicit IV. This is set by the user of the AES. It needs to be * unique for each call to encrypt. The explicit IV is shared with the * other end of the transaction in the clear. * 3. The counter. Each block of data is encrypted with its own sequence * number counter. */ #if defined(HAVE_COLDFIRE_SEC) #error "Coldfire SEC doesn't currently support AES-GCM mode" #elif defined(WOLFSSL_NRF51_AES) #error "nRF51 doesn't currently support AES-GCM mode" #endif enum { NONCE_SZ = 12, CTR_SZ = 4 }; #if !defined(FREESCALE_LTC_AES_GCM) static INLINE void IncrementGcmCounter(byte* inOutCtr) { int i; /* in network byte order so start at end and work back */ for (i = AES_BLOCK_SIZE - 1; i >= AES_BLOCK_SIZE - CTR_SZ; i--) { if (++inOutCtr[i]) /* we're done unless we overflow */ return; } } #endif /* !FREESCALE_LTC_AES_GCM */ #if defined(GCM_SMALL) || defined(GCM_TABLE) static INLINE void FlattenSzInBits(byte* buf, word32 sz) { /* Multiply the sz by 8 */ word32 szHi = (sz >> (8*sizeof(sz) - 3)); sz <<= 3; /* copy over the words of the sz into the destination buffer */ buf[0] = (szHi >> 24) & 0xff; buf[1] = (szHi >> 16) & 0xff; buf[2] = (szHi >> 8) & 0xff; buf[3] = szHi & 0xff; buf[4] = (sz >> 24) & 0xff; buf[5] = (sz >> 16) & 0xff; buf[6] = (sz >> 8) & 0xff; buf[7] = sz & 0xff; } static INLINE void RIGHTSHIFTX(byte* x) { int i; int carryOut = 0; int carryIn = 0; int borrow = x[15] & 0x01; for (i = 0; i < AES_BLOCK_SIZE; i++) { carryOut = x[i] & 0x01; x[i] = (x[i] >> 1) | (carryIn ? 0x80 : 0); carryIn = carryOut; } if (borrow) x[0] ^= 0xE1; } #endif /* defined(GCM_SMALL) || defined(GCM_TABLE) */ #ifdef GCM_TABLE static void GenerateM0(Aes* aes) { int i, j; byte (*m)[AES_BLOCK_SIZE] = aes->M0; XMEMCPY(m[128], aes->H, AES_BLOCK_SIZE); for (i = 64; i > 0; i /= 2) { XMEMCPY(m[i], m[i*2], AES_BLOCK_SIZE); RIGHTSHIFTX(m[i]); } for (i = 2; i < 256; i *= 2) { for (j = 1; j < i; j++) { XMEMCPY(m[i+j], m[i], AES_BLOCK_SIZE); xorbuf(m[i+j], m[j], AES_BLOCK_SIZE); } } XMEMSET(m[0], 0, AES_BLOCK_SIZE); } #endif /* GCM_TABLE */ int wc_AesGcmSetKey(Aes* aes, const byte* key, word32 len) { int ret; byte iv[AES_BLOCK_SIZE]; if (!((len == 16) || (len == 24) || (len == 32))) return BAD_FUNC_ARG; XMEMSET(iv, 0, AES_BLOCK_SIZE); ret = wc_AesSetKey(aes, key, len, iv, AES_ENCRYPTION); #ifdef WOLFSSL_AESNI /* AES-NI code generates its own H value. */ if (haveAESNI) return ret; #endif /* WOLFSSL_AESNI */ #if !defined(FREESCALE_LTC_AES_GCM) if (ret == 0) { wc_AesEncrypt(aes, iv, aes->H); #ifdef GCM_TABLE GenerateM0(aes); #endif /* GCM_TABLE */ } #endif /* FREESCALE_LTC_AES_GCM */ return ret; } #ifdef WOLFSSL_AESNI void gfmul(__m128i a, __m128i b, __m128i* out) XASM_LINK("gfmul"); /* See Intel® Carry-Less Multiplication Instruction * and its Usage for Computing the GCM Mode White Paper * by Shay Gueron, Intel Mobility Group, Israel Development Center; * and Michael E. Kounavis, Intel Labs, Circuits and Systems Research */ /* Figure 9. AES-GCM – Encrypt With Single Block Ghash at a Time */ static void AES_GCM_encrypt(const unsigned char *in, unsigned char *out, const unsigned char* addt, const unsigned char* ivec, unsigned char *tag, int nbytes, int abytes, int ibytes, const unsigned char* key, int nr) { int i, j ,k; __m128i tmp1, tmp2, tmp3, tmp4; __m128i H, Y, T; __m128i *KEY = (__m128i*)key; __m128i ctr1, ctr2, ctr3, ctr4; __m128i last_block = _mm_setzero_si128(); __m128i ONE = _mm_set_epi32(0, 1, 0, 0); __m128i FOUR = _mm_set_epi32(0, 4, 0, 0); __m128i BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7); __m128i BSWAP_MASK = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15); __m128i X = _mm_setzero_si128(); if(ibytes == 96/8) { Y = _mm_setzero_si128(); for(j=0; j < ibytes%16; j++) ((unsigned char*)&Y)[j] = ivec[j]; Y = _mm_insert_epi32(Y, 0x1000000, 3); /* (Compute E[ZERO, KS] and E[Y0, KS] together */ tmp1 = _mm_xor_si128(X, KEY[0]); tmp2 = _mm_xor_si128(Y, KEY[0]); for(j=1; j < nr-1; j+=2) { tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j]); tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]); H = _mm_aesenclast_si128(tmp1, KEY[nr]); T = _mm_aesenclast_si128(tmp2, KEY[nr]); H = _mm_shuffle_epi8(H, BSWAP_MASK); } else { tmp1 = _mm_xor_si128(X, KEY[0]); for(j=1; j <nr; j++) tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); H = _mm_aesenclast_si128(tmp1, KEY[nr]); H = _mm_shuffle_epi8(H, BSWAP_MASK); Y = _mm_setzero_si128(); for(i=0; i < ibytes/16; i++) { tmp1 = _mm_loadu_si128(&((__m128i*)ivec)[i]); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); Y = _mm_xor_si128(Y, tmp1); gfmul(Y, H, &Y); } if(ibytes%16) { for(j=0; j < ibytes%16; j++) ((unsigned char*)&last_block)[j] = ivec[i*16+j]; tmp1 = last_block; tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); Y = _mm_xor_si128(Y, tmp1); gfmul(Y, H, &Y); } tmp1 = _mm_insert_epi64(tmp1, ibytes*8, 0); tmp1 = _mm_insert_epi64(tmp1, 0, 1); Y = _mm_xor_si128(Y, tmp1); gfmul(Y, H, &Y); Y = _mm_shuffle_epi8(Y, BSWAP_MASK); /* Compute E(K, Y0) */ tmp1 = _mm_xor_si128(Y, KEY[0]); for(j=1; j < nr; j++) tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); T = _mm_aesenclast_si128(tmp1, KEY[nr]); } for(i=0; i<abytes/16; i++){ tmp1 = _mm_loadu_si128(&((__m128i*)addt)[i]); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); } if(abytes%16){ last_block = _mm_setzero_si128(); for(j=0; j<abytes%16; j++) ((unsigned char*)&last_block)[j] = addt[i*16+j]; tmp1 = last_block; tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); } ctr1 = _mm_shuffle_epi8(Y, BSWAP_EPI64); ctr1 = _mm_add_epi32(ctr1, ONE); ctr2 = _mm_add_epi32(ctr1, ONE); ctr3 = _mm_add_epi32(ctr2, ONE); ctr4 = _mm_add_epi32(ctr3, ONE); for(i=0; i < nbytes/16/4; i++){ tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64); tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64); tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64); ctr1 = _mm_add_epi32(ctr1, FOUR); ctr2 = _mm_add_epi32(ctr2, FOUR); ctr3 = _mm_add_epi32(ctr3, FOUR); ctr4 = _mm_add_epi32(ctr4, FOUR); tmp1 =_mm_xor_si128(tmp1, KEY[0]); tmp2 =_mm_xor_si128(tmp2, KEY[0]); tmp3 =_mm_xor_si128(tmp3, KEY[0]); tmp4 =_mm_xor_si128(tmp4, KEY[0]); for(j=1; j < nr-1; j+=2){ tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j]); tmp3 = _mm_aesenc_si128(tmp3, KEY[j]); tmp4 = _mm_aesenc_si128(tmp4, KEY[j]); tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]); tmp3 = _mm_aesenc_si128(tmp3, KEY[j+1]); tmp4 = _mm_aesenc_si128(tmp4, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]); tmp3 = _mm_aesenc_si128(tmp3, KEY[nr-1]); tmp4 = _mm_aesenc_si128(tmp4, KEY[nr-1]); tmp1 =_mm_aesenclast_si128(tmp1, KEY[nr]); tmp2 =_mm_aesenclast_si128(tmp2, KEY[nr]); tmp3 =_mm_aesenclast_si128(tmp3, KEY[nr]); tmp4 =_mm_aesenclast_si128(tmp4, KEY[nr]); tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[i*4+0])); tmp2 = _mm_xor_si128(tmp2, _mm_loadu_si128(&((__m128i*)in)[i*4+1])); tmp3 = _mm_xor_si128(tmp3, _mm_loadu_si128(&((__m128i*)in)[i*4+2])); tmp4 = _mm_xor_si128(tmp4, _mm_loadu_si128(&((__m128i*)in)[i*4+3])); _mm_storeu_si128(&((__m128i*)out)[i*4+0], tmp1); _mm_storeu_si128(&((__m128i*)out)[i*4+1], tmp2); _mm_storeu_si128(&((__m128i*)out)[i*4+2], tmp3); _mm_storeu_si128(&((__m128i*)out)[i*4+3], tmp4); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK); tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK); tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); X = _mm_xor_si128(X, tmp2); gfmul(X, H, &X); X = _mm_xor_si128(X, tmp3); gfmul(X, H, &X); X = _mm_xor_si128(X, tmp4); gfmul(X, H, &X); } for(k = i*4; k < nbytes/16; k++){ tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); ctr1 = _mm_add_epi32(ctr1, ONE); tmp1 = _mm_xor_si128(tmp1, KEY[0]); for(j=1; j<nr-1; j+=2){ tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]); tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[k])); _mm_storeu_si128(&((__m128i*)out)[k], tmp1); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X =_mm_xor_si128(X, tmp1); gfmul(X, H, &X); } /* If one partial block remains */ if(nbytes%16){ tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); tmp1 = _mm_xor_si128(tmp1, KEY[0]); for(j=1; j<nr-1; j+=2){ tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]); for(j=0; j < nbytes%16; j++) ((unsigned char*)&last_block)[j]= in[k*16+j]; tmp1 = _mm_xor_si128(tmp1, last_block); last_block = tmp1; for(j=0; j < nbytes%16; j++) out[k*16+j]=((unsigned char*)&last_block)[j]; for(; j<16; j++) ((unsigned char*)&last_block)[j]=0; tmp1 = last_block; tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X =_mm_xor_si128(X, tmp1); gfmul(X, H, &X); } tmp1 = _mm_insert_epi64(tmp1, nbytes*8, 0); tmp1 = _mm_insert_epi64(tmp1, abytes*8, 1); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); X = _mm_shuffle_epi8(X, BSWAP_MASK); T = _mm_xor_si128(X, T); _mm_storeu_si128((__m128i*)tag, T); } #ifdef HAVE_AES_DECRYPT /* Figure 10. AES-GCM – Decrypt With Single Block Ghash at a Time */ static int AES_GCM_decrypt(const unsigned char *in, unsigned char *out, const unsigned char* addt, const unsigned char* ivec, const unsigned char *tag, int nbytes, int abytes, int ibytes, const unsigned char* key, int nr) { int i, j ,k; __m128i tmp1, tmp2, tmp3, tmp4; __m128i H, Y, T; __m128i *KEY = (__m128i*)key; __m128i ctr1, ctr2, ctr3, ctr4; __m128i last_block = _mm_setzero_si128(); __m128i ONE = _mm_set_epi32(0, 1, 0, 0); __m128i FOUR = _mm_set_epi32(0, 4, 0, 0); __m128i BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7); __m128i BSWAP_MASK = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15); __m128i X = _mm_setzero_si128(); if (ibytes == 96/8) { Y = _mm_setzero_si128(); for(j=0; j < ibytes%16; j++) ((unsigned char*)&Y)[j] = ivec[j]; Y = _mm_insert_epi32(Y, 0x1000000, 3); /* (Compute E[ZERO, KS] and E[Y0, KS] together */ tmp1 = _mm_xor_si128(X, KEY[0]); tmp2 = _mm_xor_si128(Y, KEY[0]); for (j = 1; j < nr - 1; j += 2) { tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j]); tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]); H = _mm_aesenclast_si128(tmp1, KEY[nr]); T = _mm_aesenclast_si128(tmp2, KEY[nr]); H = _mm_shuffle_epi8(H, BSWAP_MASK); } else { tmp1 = _mm_xor_si128(X, KEY[0]); for (j = 1; j < nr; j++) tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); H = _mm_aesenclast_si128(tmp1, KEY[nr]); H = _mm_shuffle_epi8(H, BSWAP_MASK); Y = _mm_setzero_si128(); for (i = 0; i < ibytes / 16; i++) { tmp1 = _mm_loadu_si128(&((__m128i*)ivec)[i]); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); Y = _mm_xor_si128(Y, tmp1); gfmul(Y, H, &Y); } if (ibytes % 16) { for(j = 0; j < ibytes % 16; j++) ((unsigned char*)&last_block)[j] = ivec[i*16+j]; tmp1 = last_block; tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); Y = _mm_xor_si128(Y, tmp1); gfmul(Y, H, &Y); } tmp1 = _mm_insert_epi64(tmp1, ibytes*8, 0); tmp1 = _mm_insert_epi64(tmp1, 0, 1); Y = _mm_xor_si128(Y, tmp1); gfmul(Y, H, &Y); Y = _mm_shuffle_epi8(Y, BSWAP_MASK); /* Compute E(K, Y0) */ tmp1 = _mm_xor_si128(Y, KEY[0]); for(j=1; j < nr; j++) tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); T = _mm_aesenclast_si128(tmp1, KEY[nr]); } for (i = 0; i < abytes / 16; i++) { tmp1 = _mm_loadu_si128(&((__m128i*)addt)[i]); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); } if (abytes % 16) { last_block = _mm_setzero_si128(); for (j = 0;j < abytes % 16; j++) ((unsigned char*)&last_block)[j] = addt[i*16+j]; tmp1 = last_block; tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X =_mm_xor_si128(X, tmp1); gfmul(X, H, &X); } for (i = 0; i < nbytes / 16; i++) { tmp1 = _mm_loadu_si128(&((__m128i*)in)[i]); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); } if (nbytes % 16) { last_block = _mm_setzero_si128(); for(j = 0; j < nbytes % 16; j++) ((unsigned char*)&last_block)[j] = in[i*16+j]; tmp1 = last_block; tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); } tmp1 = _mm_insert_epi64(tmp1, nbytes * 8, 0); tmp1 = _mm_insert_epi64(tmp1, abytes * 8, 1); X = _mm_xor_si128(X, tmp1); gfmul(X, H, &X); X = _mm_shuffle_epi8(X, BSWAP_MASK); T = _mm_xor_si128(X, T); if (0xffff != _mm_movemask_epi8(_mm_cmpeq_epi8(T, _mm_loadu_si128((__m128i*)tag)))) return 0; /* in case the authentication failed */ ctr1 = _mm_shuffle_epi8(Y, BSWAP_EPI64); ctr1 = _mm_add_epi32(ctr1, ONE); ctr2 = _mm_add_epi32(ctr1, ONE); ctr3 = _mm_add_epi32(ctr2, ONE); ctr4 = _mm_add_epi32(ctr3, ONE); for (i=0; i < nbytes/16/4; i++) { tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64); tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64); tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64); ctr1 = _mm_add_epi32(ctr1, FOUR); ctr2 = _mm_add_epi32(ctr2, FOUR); ctr3 = _mm_add_epi32(ctr3, FOUR); ctr4 = _mm_add_epi32(ctr4, FOUR); tmp1 =_mm_xor_si128(tmp1, KEY[0]); tmp2 =_mm_xor_si128(tmp2, KEY[0]); tmp3 =_mm_xor_si128(tmp3, KEY[0]); tmp4 =_mm_xor_si128(tmp4, KEY[0]); for (j = 1; j < nr - 1; j += 2) { tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j]); tmp3 = _mm_aesenc_si128(tmp3, KEY[j]); tmp4 = _mm_aesenc_si128(tmp4, KEY[j]); tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]); tmp3 = _mm_aesenc_si128(tmp3, KEY[j+1]); tmp4 = _mm_aesenc_si128(tmp4, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]); tmp3 = _mm_aesenc_si128(tmp3, KEY[nr-1]); tmp4 = _mm_aesenc_si128(tmp4, KEY[nr-1]); tmp1 =_mm_aesenclast_si128(tmp1, KEY[nr]); tmp2 =_mm_aesenclast_si128(tmp2, KEY[nr]); tmp3 =_mm_aesenclast_si128(tmp3, KEY[nr]); tmp4 =_mm_aesenclast_si128(tmp4, KEY[nr]); tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[i*4+0])); tmp2 = _mm_xor_si128(tmp2, _mm_loadu_si128(&((__m128i*)in)[i*4+1])); tmp3 = _mm_xor_si128(tmp3, _mm_loadu_si128(&((__m128i*)in)[i*4+2])); tmp4 = _mm_xor_si128(tmp4, _mm_loadu_si128(&((__m128i*)in)[i*4+3])); _mm_storeu_si128(&((__m128i*)out)[i*4+0], tmp1); _mm_storeu_si128(&((__m128i*)out)[i*4+1], tmp2); _mm_storeu_si128(&((__m128i*)out)[i*4+2], tmp3); _mm_storeu_si128(&((__m128i*)out)[i*4+3], tmp4); tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK); tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK); tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK); tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK); } /* Acknowledge the dead store and continue */ (void) tmp1; (void) tmp2; (void) tmp3; (void) tmp4; for (k = i*4; k < nbytes/16; k++) { tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); ctr1 = _mm_add_epi32(ctr1, ONE); tmp1 = _mm_xor_si128(tmp1, KEY[0]); for (j = 1; j < nr-1; j += 2) { tmp1 = _mm_aesenc_si128(tmp1, KEY[j]); tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]); tmp1 = _mm_xor_si128(tmp1, _mm_loadu_si128(&((__m128i*)in)[k])); _mm_storeu_si128(&((__m128i*)out)[k], tmp1); } /* If one partial block remains */ if (nbytes % 16) { tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); tmp1 = _mm_xor_si128(tmp1, KEY[0]); for (j = 1; j < nr-1; j += 2) { tmp1 =_mm_aesenc_si128(tmp1, KEY[j]); tmp1 =_mm_aesenc_si128(tmp1, KEY[j+1]); } tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]); tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]); for(j=0; j < nbytes%16; j++) ((unsigned char*)&last_block)[j]= in[k*16+j]; tmp1 = _mm_xor_si128(tmp1, last_block); last_block = tmp1; for (j = 0; j < nbytes % 16; j++) out[k*16+j]=((unsigned char*)&last_block)[j]; } return 1; /* when successful returns 1 */ } #endif /* HAVE_AES_DECRYPT */ #endif /* WOLFSSL_AESNI */ #if defined(GCM_SMALL) static void GMULT(byte* X, byte* Y) { byte Z[AES_BLOCK_SIZE]; byte V[AES_BLOCK_SIZE]; int i, j; XMEMSET(Z, 0, AES_BLOCK_SIZE); XMEMCPY(V, X, AES_BLOCK_SIZE); for (i = 0; i < AES_BLOCK_SIZE; i++) { byte y = Y[i]; for (j = 0; j < 8; j++) { if (y & 0x80) { xorbuf(Z, V, AES_BLOCK_SIZE); } RIGHTSHIFTX(V); y = y << 1; } } XMEMCPY(X, Z, AES_BLOCK_SIZE); } static void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c, word32 cSz, byte* s, word32 sSz) { byte x[AES_BLOCK_SIZE]; byte scratch[AES_BLOCK_SIZE]; word32 blocks, partial; byte* h = aes->H; XMEMSET(x, 0, AES_BLOCK_SIZE); /* Hash in A, the Additional Authentication Data */ if (aSz != 0 && a != NULL) { blocks = aSz / AES_BLOCK_SIZE; partial = aSz % AES_BLOCK_SIZE; while (blocks--) { xorbuf(x, a, AES_BLOCK_SIZE); GMULT(x, h); a += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(scratch, 0, AES_BLOCK_SIZE); XMEMCPY(scratch, a, partial); xorbuf(x, scratch, AES_BLOCK_SIZE); GMULT(x, h); } } /* Hash in C, the Ciphertext */ if (cSz != 0 && c != NULL) { blocks = cSz / AES_BLOCK_SIZE; partial = cSz % AES_BLOCK_SIZE; while (blocks--) { xorbuf(x, c, AES_BLOCK_SIZE); GMULT(x, h); c += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(scratch, 0, AES_BLOCK_SIZE); XMEMCPY(scratch, c, partial); xorbuf(x, scratch, AES_BLOCK_SIZE); GMULT(x, h); } } /* Hash in the lengths of A and C in bits */ FlattenSzInBits(&scratch[0], aSz); FlattenSzInBits(&scratch[8], cSz); xorbuf(x, scratch, AES_BLOCK_SIZE); GMULT(x, h); /* Copy the result into s. */ XMEMCPY(s, x, sSz); } /* end GCM_SMALL */ #elif defined(GCM_TABLE) static const byte R[256][2] = { {0x00, 0x00}, {0x01, 0xc2}, {0x03, 0x84}, {0x02, 0x46}, {0x07, 0x08}, {0x06, 0xca}, {0x04, 0x8c}, {0x05, 0x4e}, {0x0e, 0x10}, {0x0f, 0xd2}, {0x0d, 0x94}, {0x0c, 0x56}, {0x09, 0x18}, {0x08, 0xda}, {0x0a, 0x9c}, {0x0b, 0x5e}, {0x1c, 0x20}, {0x1d, 0xe2}, {0x1f, 0xa4}, {0x1e, 0x66}, {0x1b, 0x28}, {0x1a, 0xea}, {0x18, 0xac}, {0x19, 0x6e}, {0x12, 0x30}, {0x13, 0xf2}, {0x11, 0xb4}, {0x10, 0x76}, {0x15, 0x38}, {0x14, 0xfa}, {0x16, 0xbc}, {0x17, 0x7e}, {0x38, 0x40}, {0x39, 0x82}, {0x3b, 0xc4}, {0x3a, 0x06}, {0x3f, 0x48}, {0x3e, 0x8a}, {0x3c, 0xcc}, {0x3d, 0x0e}, {0x36, 0x50}, {0x37, 0x92}, {0x35, 0xd4}, {0x34, 0x16}, {0x31, 0x58}, {0x30, 0x9a}, {0x32, 0xdc}, {0x33, 0x1e}, {0x24, 0x60}, {0x25, 0xa2}, {0x27, 0xe4}, {0x26, 0x26}, {0x23, 0x68}, {0x22, 0xaa}, {0x20, 0xec}, {0x21, 0x2e}, {0x2a, 0x70}, {0x2b, 0xb2}, {0x29, 0xf4}, {0x28, 0x36}, {0x2d, 0x78}, {0x2c, 0xba}, {0x2e, 0xfc}, {0x2f, 0x3e}, {0x70, 0x80}, {0x71, 0x42}, {0x73, 0x04}, {0x72, 0xc6}, {0x77, 0x88}, {0x76, 0x4a}, {0x74, 0x0c}, {0x75, 0xce}, {0x7e, 0x90}, {0x7f, 0x52}, {0x7d, 0x14}, {0x7c, 0xd6}, {0x79, 0x98}, {0x78, 0x5a}, {0x7a, 0x1c}, {0x7b, 0xde}, {0x6c, 0xa0}, {0x6d, 0x62}, {0x6f, 0x24}, {0x6e, 0xe6}, {0x6b, 0xa8}, {0x6a, 0x6a}, {0x68, 0x2c}, {0x69, 0xee}, {0x62, 0xb0}, {0x63, 0x72}, {0x61, 0x34}, {0x60, 0xf6}, {0x65, 0xb8}, {0x64, 0x7a}, {0x66, 0x3c}, {0x67, 0xfe}, {0x48, 0xc0}, {0x49, 0x02}, {0x4b, 0x44}, {0x4a, 0x86}, {0x4f, 0xc8}, {0x4e, 0x0a}, {0x4c, 0x4c}, {0x4d, 0x8e}, {0x46, 0xd0}, {0x47, 0x12}, {0x45, 0x54}, {0x44, 0x96}, {0x41, 0xd8}, {0x40, 0x1a}, {0x42, 0x5c}, {0x43, 0x9e}, {0x54, 0xe0}, {0x55, 0x22}, {0x57, 0x64}, {0x56, 0xa6}, {0x53, 0xe8}, {0x52, 0x2a}, {0x50, 0x6c}, {0x51, 0xae}, {0x5a, 0xf0}, {0x5b, 0x32}, {0x59, 0x74}, {0x58, 0xb6}, {0x5d, 0xf8}, {0x5c, 0x3a}, {0x5e, 0x7c}, {0x5f, 0xbe}, {0xe1, 0x00}, {0xe0, 0xc2}, {0xe2, 0x84}, {0xe3, 0x46}, {0xe6, 0x08}, {0xe7, 0xca}, {0xe5, 0x8c}, {0xe4, 0x4e}, {0xef, 0x10}, {0xee, 0xd2}, {0xec, 0x94}, {0xed, 0x56}, {0xe8, 0x18}, {0xe9, 0xda}, {0xeb, 0x9c}, {0xea, 0x5e}, {0xfd, 0x20}, {0xfc, 0xe2}, {0xfe, 0xa4}, {0xff, 0x66}, {0xfa, 0x28}, {0xfb, 0xea}, {0xf9, 0xac}, {0xf8, 0x6e}, {0xf3, 0x30}, {0xf2, 0xf2}, {0xf0, 0xb4}, {0xf1, 0x76}, {0xf4, 0x38}, {0xf5, 0xfa}, {0xf7, 0xbc}, {0xf6, 0x7e}, {0xd9, 0x40}, {0xd8, 0x82}, {0xda, 0xc4}, {0xdb, 0x06}, {0xde, 0x48}, {0xdf, 0x8a}, {0xdd, 0xcc}, {0xdc, 0x0e}, {0xd7, 0x50}, {0xd6, 0x92}, {0xd4, 0xd4}, {0xd5, 0x16}, {0xd0, 0x58}, {0xd1, 0x9a}, {0xd3, 0xdc}, {0xd2, 0x1e}, {0xc5, 0x60}, {0xc4, 0xa2}, {0xc6, 0xe4}, {0xc7, 0x26}, {0xc2, 0x68}, {0xc3, 0xaa}, {0xc1, 0xec}, {0xc0, 0x2e}, {0xcb, 0x70}, {0xca, 0xb2}, {0xc8, 0xf4}, {0xc9, 0x36}, {0xcc, 0x78}, {0xcd, 0xba}, {0xcf, 0xfc}, {0xce, 0x3e}, {0x91, 0x80}, {0x90, 0x42}, {0x92, 0x04}, {0x93, 0xc6}, {0x96, 0x88}, {0x97, 0x4a}, {0x95, 0x0c}, {0x94, 0xce}, {0x9f, 0x90}, {0x9e, 0x52}, {0x9c, 0x14}, {0x9d, 0xd6}, {0x98, 0x98}, {0x99, 0x5a}, {0x9b, 0x1c}, {0x9a, 0xde}, {0x8d, 0xa0}, {0x8c, 0x62}, {0x8e, 0x24}, {0x8f, 0xe6}, {0x8a, 0xa8}, {0x8b, 0x6a}, {0x89, 0x2c}, {0x88, 0xee}, {0x83, 0xb0}, {0x82, 0x72}, {0x80, 0x34}, {0x81, 0xf6}, {0x84, 0xb8}, {0x85, 0x7a}, {0x87, 0x3c}, {0x86, 0xfe}, {0xa9, 0xc0}, {0xa8, 0x02}, {0xaa, 0x44}, {0xab, 0x86}, {0xae, 0xc8}, {0xaf, 0x0a}, {0xad, 0x4c}, {0xac, 0x8e}, {0xa7, 0xd0}, {0xa6, 0x12}, {0xa4, 0x54}, {0xa5, 0x96}, {0xa0, 0xd8}, {0xa1, 0x1a}, {0xa3, 0x5c}, {0xa2, 0x9e}, {0xb5, 0xe0}, {0xb4, 0x22}, {0xb6, 0x64}, {0xb7, 0xa6}, {0xb2, 0xe8}, {0xb3, 0x2a}, {0xb1, 0x6c}, {0xb0, 0xae}, {0xbb, 0xf0}, {0xba, 0x32}, {0xb8, 0x74}, {0xb9, 0xb6}, {0xbc, 0xf8}, {0xbd, 0x3a}, {0xbf, 0x7c}, {0xbe, 0xbe} }; static void GMULT(byte *x, byte m[256][AES_BLOCK_SIZE]) { int i, j; byte Z[AES_BLOCK_SIZE]; byte a; XMEMSET(Z, 0, sizeof(Z)); for (i = 15; i > 0; i--) { xorbuf(Z, m[x[i]], AES_BLOCK_SIZE); a = Z[15]; for (j = 15; j > 0; j--) { Z[j] = Z[j-1]; } Z[0] = R[a][0]; Z[1] ^= R[a][1]; } xorbuf(Z, m[x[0]], AES_BLOCK_SIZE); XMEMCPY(x, Z, AES_BLOCK_SIZE); } static void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c, word32 cSz, byte* s, word32 sSz) { byte x[AES_BLOCK_SIZE]; byte scratch[AES_BLOCK_SIZE]; word32 blocks, partial; XMEMSET(x, 0, AES_BLOCK_SIZE); /* Hash in A, the Additional Authentication Data */ if (aSz != 0 && a != NULL) { blocks = aSz / AES_BLOCK_SIZE; partial = aSz % AES_BLOCK_SIZE; while (blocks--) { xorbuf(x, a, AES_BLOCK_SIZE); GMULT(x, aes->M0); a += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(scratch, 0, AES_BLOCK_SIZE); XMEMCPY(scratch, a, partial); xorbuf(x, scratch, AES_BLOCK_SIZE); GMULT(x, aes->M0); } } /* Hash in C, the Ciphertext */ if (cSz != 0 && c != NULL) { blocks = cSz / AES_BLOCK_SIZE; partial = cSz % AES_BLOCK_SIZE; while (blocks--) { xorbuf(x, c, AES_BLOCK_SIZE); GMULT(x, aes->M0); c += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(scratch, 0, AES_BLOCK_SIZE); XMEMCPY(scratch, c, partial); xorbuf(x, scratch, AES_BLOCK_SIZE); GMULT(x, aes->M0); } } /* Hash in the lengths of A and C in bits */ FlattenSzInBits(&scratch[0], aSz); FlattenSzInBits(&scratch[8], cSz); xorbuf(x, scratch, AES_BLOCK_SIZE); GMULT(x, aes->M0); /* Copy the result into s. */ XMEMCPY(s, x, sSz); } /* end GCM_TABLE */ #elif defined(WORD64_AVAILABLE) && !defined(GCM_WORD32) #if !defined(FREESCALE_LTC_AES_GCM) static void GMULT(word64* X, word64* Y) { word64 Z[2] = {0,0}; word64 V[2] ; int i, j; V[0] = X[0] ; V[1] = X[1] ; for (i = 0; i < 2; i++) { word64 y = Y[i]; for (j = 0; j < 64; j++) { if (y & 0x8000000000000000ULL) { Z[0] ^= V[0]; Z[1] ^= V[1]; } if (V[1] & 0x0000000000000001) { V[1] >>= 1; V[1] |= ((V[0] & 0x0000000000000001) ? 0x8000000000000000ULL : 0); V[0] >>= 1; V[0] ^= 0xE100000000000000ULL; } else { V[1] >>= 1; V[1] |= ((V[0] & 0x0000000000000001) ? 0x8000000000000000ULL : 0); V[0] >>= 1; } y <<= 1; } } X[0] = Z[0]; X[1] = Z[1]; } static void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c, word32 cSz, byte* s, word32 sSz) { word64 x[2] = {0,0}; word32 blocks, partial; word64 bigH[2]; XMEMCPY(bigH, aes->H, AES_BLOCK_SIZE); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords64(bigH, bigH, AES_BLOCK_SIZE); #endif /* Hash in A, the Additional Authentication Data */ if (aSz != 0 && a != NULL) { word64 bigA[2]; blocks = aSz / AES_BLOCK_SIZE; partial = aSz % AES_BLOCK_SIZE; while (blocks--) { XMEMCPY(bigA, a, AES_BLOCK_SIZE); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords64(bigA, bigA, AES_BLOCK_SIZE); #endif x[0] ^= bigA[0]; x[1] ^= bigA[1]; GMULT(x, bigH); a += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(bigA, 0, AES_BLOCK_SIZE); XMEMCPY(bigA, a, partial); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords64(bigA, bigA, AES_BLOCK_SIZE); #endif x[0] ^= bigA[0]; x[1] ^= bigA[1]; GMULT(x, bigH); } } /* Hash in C, the Ciphertext */ if (cSz != 0 && c != NULL) { word64 bigC[2]; blocks = cSz / AES_BLOCK_SIZE; partial = cSz % AES_BLOCK_SIZE; while (blocks--) { XMEMCPY(bigC, c, AES_BLOCK_SIZE); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords64(bigC, bigC, AES_BLOCK_SIZE); #endif x[0] ^= bigC[0]; x[1] ^= bigC[1]; GMULT(x, bigH); c += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(bigC, 0, AES_BLOCK_SIZE); XMEMCPY(bigC, c, partial); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords64(bigC, bigC, AES_BLOCK_SIZE); #endif x[0] ^= bigC[0]; x[1] ^= bigC[1]; GMULT(x, bigH); } } /* Hash in the lengths in bits of A and C */ { word64 len[2] ; len[0] = aSz ; len[1] = cSz; /* Lengths are in bytes. Convert to bits. */ len[0] *= 8; len[1] *= 8; x[0] ^= len[0]; x[1] ^= len[1]; GMULT(x, bigH); } #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords64(x, x, AES_BLOCK_SIZE); #endif XMEMCPY(s, x, sSz); } #endif /* !FREESCALE_LTC_AES_GCM */ /* end defined(WORD64_AVAILABLE) && !defined(GCM_WORD32) */ #else /* GCM_WORD32 */ static void GMULT(word32* X, word32* Y) { word32 Z[4] = {0,0,0,0}; word32 V[4] ; int i, j; V[0] = X[0]; V[1] = X[1]; V[2] = X[2]; V[3] = X[3]; for (i = 0; i < 4; i++) { word32 y = Y[i]; for (j = 0; j < 32; j++) { if (y & 0x80000000) { Z[0] ^= V[0]; Z[1] ^= V[1]; Z[2] ^= V[2]; Z[3] ^= V[3]; } if (V[3] & 0x00000001) { V[3] >>= 1; V[3] |= ((V[2] & 0x00000001) ? 0x80000000 : 0); V[2] >>= 1; V[2] |= ((V[1] & 0x00000001) ? 0x80000000 : 0); V[1] >>= 1; V[1] |= ((V[0] & 0x00000001) ? 0x80000000 : 0); V[0] >>= 1; V[0] ^= 0xE1000000; } else { V[3] >>= 1; V[3] |= ((V[2] & 0x00000001) ? 0x80000000 : 0); V[2] >>= 1; V[2] |= ((V[1] & 0x00000001) ? 0x80000000 : 0); V[1] >>= 1; V[1] |= ((V[0] & 0x00000001) ? 0x80000000 : 0); V[0] >>= 1; } y <<= 1; } } X[0] = Z[0]; X[1] = Z[1]; X[2] = Z[2]; X[3] = Z[3]; } static void GHASH(Aes* aes, const byte* a, word32 aSz, const byte* c, word32 cSz, byte* s, word32 sSz) { word32 x[4] = {0,0,0,0}; word32 blocks, partial; word32 bigH[4]; XMEMCPY(bigH, aes->H, AES_BLOCK_SIZE); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(bigH, bigH, AES_BLOCK_SIZE); #endif /* Hash in A, the Additional Authentication Data */ if (aSz != 0 && a != NULL) { word32 bigA[4]; blocks = aSz / AES_BLOCK_SIZE; partial = aSz % AES_BLOCK_SIZE; while (blocks--) { XMEMCPY(bigA, a, AES_BLOCK_SIZE); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(bigA, bigA, AES_BLOCK_SIZE); #endif x[0] ^= bigA[0]; x[1] ^= bigA[1]; x[2] ^= bigA[2]; x[3] ^= bigA[3]; GMULT(x, bigH); a += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(bigA, 0, AES_BLOCK_SIZE); XMEMCPY(bigA, a, partial); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(bigA, bigA, AES_BLOCK_SIZE); #endif x[0] ^= bigA[0]; x[1] ^= bigA[1]; x[2] ^= bigA[2]; x[3] ^= bigA[3]; GMULT(x, bigH); } } /* Hash in C, the Ciphertext */ if (cSz != 0 && c != NULL) { word32 bigC[4]; blocks = cSz / AES_BLOCK_SIZE; partial = cSz % AES_BLOCK_SIZE; while (blocks--) { XMEMCPY(bigC, c, AES_BLOCK_SIZE); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(bigC, bigC, AES_BLOCK_SIZE); #endif x[0] ^= bigC[0]; x[1] ^= bigC[1]; x[2] ^= bigC[2]; x[3] ^= bigC[3]; GMULT(x, bigH); c += AES_BLOCK_SIZE; } if (partial != 0) { XMEMSET(bigC, 0, AES_BLOCK_SIZE); XMEMCPY(bigC, c, partial); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(bigC, bigC, AES_BLOCK_SIZE); #endif x[0] ^= bigC[0]; x[1] ^= bigC[1]; x[2] ^= bigC[2]; x[3] ^= bigC[3]; GMULT(x, bigH); } } /* Hash in the lengths in bits of A and C */ { word32 len[4]; /* Lengths are in bytes. Convert to bits. */ len[0] = (aSz >> (8*sizeof(aSz) - 3)); len[1] = aSz << 3; len[2] = (cSz >> (8*sizeof(cSz) - 3)); len[3] = cSz << 3; x[0] ^= len[0]; x[1] ^= len[1]; x[2] ^= len[2]; x[3] ^= len[3]; GMULT(x, bigH); } #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(x, x, AES_BLOCK_SIZE); #endif XMEMCPY(s, x, sSz); } #endif /* end GCM_WORD32 */ int wc_AesGcmEncrypt(Aes* aes, byte* out, const byte* in, word32 sz, const byte* iv, word32 ivSz, byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { #if defined(FREESCALE_LTC_AES_GCM) ||((defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)) && !defined(WOLFSSL_STM32_CUBEMX)) byte *key; uint32_t keySize; int status; key = (byte*)aes->key; status = wc_AesGetKeySize(aes, &keySize); if (status != 0) { return status; } #if defined(FREESCALE_LTC_AES_GCM) status = LTC_AES_EncryptTagGcm(LTC_BASE, in, out, sz, iv, ivSz, authIn, authInSz, key, keySize, authTag, authTagSz); return (status == kStatus_Success) ? 0 : AES_GCM_AUTH_E; #elif ((defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)) && !defined(WOLFSSL_STM32_CUBEMX)) //#define DEBUG_AES #ifdef DEBUG_AES #include "stdio.h" #define PRINT(title, data, size) { int len = size; const unsigned char *ch=data; printf("%s: ",title); for( ; len > 0; len--, ch++)printf("%02x,",*ch); printf("\n");} #else #define PRINT(title, data, size) #endif { #define STM32_TAGSZ 16 #define STM32_IVSZ 16 byte tag[STM32_TAGSZ]; byte scratch[AES_BLOCK_SIZE]; byte *dummy; /* Dummy buffer for gcm decrypt */ word32 blocks = sz / AES_BLOCK_SIZE; word32 partial = sz % AES_BLOCK_SIZE; byte *a; int i; byte initialCounter[AES_BLOCK_SIZE]; byte ctr[AES_BLOCK_SIZE]; byte k[AES_BLOCK_SIZE*2]; dummy = XMALLOC((sz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); if(dummy == NULL)goto err_exit; a = XMALLOC((authInSz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); if(a == NULL)goto err_exit; XMEMSET(a, 0, (authInSz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE); XMEMCPY(a, authIn, authInSz); XMEMSET(dummy, 0, (sz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE); XMEMSET(initialCounter, 0, AES_BLOCK_SIZE); if (ivSz == NONCE_SZ) { XMEMCPY(initialCounter, iv, ivSz); initialCounter[AES_BLOCK_SIZE - 1] = 1; } else goto err_exit; IncrementGcmCounter(initialCounter); XMEMCPY(ctr, initialCounter, AES_BLOCK_SIZE); ByteReverseWords((word32 *)k, (word32 *)key, keySize); /* CRYPT_AES_GCM requirs partial block padding of encrypted message for deriving correct Auth Tag value */ /* For the reasone, AES-GCM here is broken down into AES-CTR(Block Encrypt, partial block with padding), and AES-GCM(Decrypt) for generating AuthTag */ /* Block AES-CTR Encryption */ status = CRYP_AES_CTR(MODE_ENCRYPT, (uint8_t *)initialCounter, (uint8_t *)k, keySize*8, (uint8_t *)in, blocks*AES_BLOCK_SIZE, out); if(status != SUCCESS)goto err_exit; for(i=0; i<blocks; i++) { IncrementGcmCounter(ctr); } /* Tail partial block encryption and padding zero */ if (partial != 0) { status = CRYP_AES_CTR(MODE_ENCRYPT, (uint8_t *)ctr, (uint8_t *)k, keySize*8, (uint8_t *)in+AES_BLOCK_SIZE*blocks, AES_BLOCK_SIZE, scratch); if(status != SUCCESS)goto err_exit; XMEMCPY(out+AES_BLOCK_SIZE*blocks, scratch, partial); } /* Derive auth tag, with dummy decrytion */ //printf("=== Check Before CRYP_AES_GCM(MODE_DECRYP)\n"); XMEMCPY(dummy, out, sz); XMEMSET(tag, 0, 16); status = CRYP_AES_GCM(MODE_DECRYPT, (uint8_t *)initialCounter, (uint8_t *)k, keySize*8, (uint8_t *)dummy, sz, (uint8_t *)a, authInSz, dummy, tag); if(status != SUCCESS)goto err_exit; XMEMCPY(authTag, tag, authTagSz); XFREE(dummy, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(a, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); return 0; err_exit: if(dummy != NULL)XFREE(dummy, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); if(a != NULL)XFREE(a, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); return AES_GCM_AUTH_E; } #endif #else /* FREESCALE_LTC_AES_GCM */ word32 blocks = sz / AES_BLOCK_SIZE; word32 partial = sz % AES_BLOCK_SIZE; const byte* p = in; byte* c = out; byte counter[AES_BLOCK_SIZE]; byte initialCounter[AES_BLOCK_SIZE]; byte *ctr ; byte scratch[AES_BLOCK_SIZE]; /* Sanity check for XMEMCPY in GHASH function and local xorbuf call */ if (authTagSz > AES_BLOCK_SIZE) return BAD_FUNC_ARG; #ifdef WOLFSSL_AESNI if (haveAESNI) { AES_GCM_encrypt(in, out, authIn, iv, authTag, sz, authInSz, ivSz, (const byte*)aes->key, aes->rounds); return 0; } #endif #ifdef WOLFSSL_PIC32MZ_CRYPT ctr = (char *)aes->iv_ce ; #else ctr = counter ; #endif XMEMSET(initialCounter, 0, AES_BLOCK_SIZE); if (ivSz == NONCE_SZ) { XMEMCPY(initialCounter, iv, ivSz); initialCounter[AES_BLOCK_SIZE - 1] = 1; } else { GHASH(aes, NULL, 0, iv, ivSz, initialCounter, AES_BLOCK_SIZE); } XMEMCPY(ctr, initialCounter, AES_BLOCK_SIZE); #ifdef WOLFSSL_PIC32MZ_CRYPT if(blocks) wc_AesCrypt(aes, out, in, blocks*AES_BLOCK_SIZE, PIC32_ENCRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_AES_GCM ); #endif while (blocks--) { IncrementGcmCounter(ctr); #ifndef WOLFSSL_PIC32MZ_CRYPT wc_AesEncrypt(aes, ctr, scratch); xorbuf(scratch, p, AES_BLOCK_SIZE); XMEMCPY(c, scratch, AES_BLOCK_SIZE); #endif p += AES_BLOCK_SIZE; c += AES_BLOCK_SIZE; } if (partial != 0) { IncrementGcmCounter(ctr); wc_AesEncrypt(aes, ctr, scratch); xorbuf(scratch, p, partial); XMEMCPY(c, scratch, partial); } GHASH(aes, authIn, authInSz, out, sz, authTag, authTagSz); wc_AesEncrypt(aes, initialCounter, scratch); xorbuf(authTag, scratch, authTagSz); return 0; #endif /* FREESCALE_LTC_AES_GCM */ } #if (defined(HAVE_AES_DECRYPT) || defined(HAVE_AESGCM_DECRYPT)) int wc_AesGcmDecrypt(Aes* aes, byte* out, const byte* in, word32 sz, const byte* iv, word32 ivSz, const byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { #if defined(FREESCALE_LTC_AES_GCM) ||((defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)) && !defined(WOLFSSL_STM32_CUBEMX)) byte *key; uint32_t keySize; int status; key = (byte*)aes->key; status = wc_AesGetKeySize(aes, &keySize); if (status != 0) { return status; } #if defined(FREESCALE_LTC_AES_GCM) status = LTC_AES_DecryptTagGcm(LTC_BASE, in, out, sz, iv, ivSz, authIn, authInSz, key, keySize, authTag, authTagSz); return (status == kStatus_Success) ? 0 : AES_GCM_AUTH_E; #elif ((defined(STM32F2_CRYPTO) || defined(STM32F4_CRYPTO)) && !defined(WOLFSSL_STM32_CUBEMX)) { byte tag[STM32_TAGSZ]; byte scratch[AES_BLOCK_SIZE]; byte *c; /* multiple of Block size cipher buffer */ word32 blocks = sz / AES_BLOCK_SIZE; byte *a; int i; byte initialCounter[AES_BLOCK_SIZE]; byte k[AES_BLOCK_SIZE*2]; c = XMALLOC((sz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); if(c == NULL)goto err_exit; XMEMSET(c, 0, (sz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE); a = XMALLOC((authInSz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); if(a == NULL)goto err_exit; XMEMSET(a, 0, (authInSz/AES_BLOCK_SIZE+1)*AES_BLOCK_SIZE); XMEMCPY(a, authIn, authInSz); XMEMSET(initialCounter, 0, AES_BLOCK_SIZE); if (ivSz == NONCE_SZ) { XMEMCPY(initialCounter, iv, ivSz); initialCounter[AES_BLOCK_SIZE - 1] = 1; } else goto err_exit; IncrementGcmCounter(initialCounter); ByteReverseWords((word32 *)k, (word32 *)key, keySize); XMEMCPY(c, in, sz); status = CRYP_AES_GCM(MODE_DECRYPT, (uint8_t *)initialCounter, (uint8_t *)k, keySize*8, (uint8_t *)c, sz, (uint8_t *)a, authInSz, c, tag); if(status != SUCCESS)goto err_exit; XMEMCPY(out, c, sz) ; if(XMEMCMP(authTag, tag, authTagSz) == 0){ XFREE(c, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(a, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); return 0; } err_exit: if(c != NULL)XFREE(c, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); if(a != NULL)XFREE(a, aes->heap, DYNAMIC_TYPE_TMP_BUFFER); return AES_GCM_AUTH_E; } #endif #else /* FREESCALE_LTC_AES_GCM */ word32 blocks = sz / AES_BLOCK_SIZE; word32 partial = sz % AES_BLOCK_SIZE; const byte* c = in; byte* p = out; byte counter[AES_BLOCK_SIZE]; byte initialCounter[AES_BLOCK_SIZE]; byte *ctr ; byte scratch[AES_BLOCK_SIZE]; /* Sanity check for local ConstantCompare call */ if (authTagSz > AES_BLOCK_SIZE) return BAD_FUNC_ARG; #ifdef WOLFSSL_AESNI if (haveAESNI) { if (AES_GCM_decrypt(in, out, authIn, iv, authTag, sz, authInSz, ivSz, (byte*)aes->key, aes->rounds) == 0) return AES_GCM_AUTH_E; return 0; } #endif #ifdef WOLFSSL_PIC32MZ_CRYPT ctr = (char *)aes->iv_ce ; #else ctr = counter ; #endif XMEMSET(initialCounter, 0, AES_BLOCK_SIZE); if (ivSz == NONCE_SZ) { XMEMCPY(initialCounter, iv, ivSz); initialCounter[AES_BLOCK_SIZE - 1] = 1; } else { GHASH(aes, NULL, 0, iv, ivSz, initialCounter, AES_BLOCK_SIZE); } XMEMCPY(ctr, initialCounter, AES_BLOCK_SIZE); /* Calculate the authTag again using the received auth data and the * cipher text. */ { byte Tprime[AES_BLOCK_SIZE]; byte EKY0[AES_BLOCK_SIZE]; GHASH(aes, authIn, authInSz, in, sz, Tprime, sizeof(Tprime)); wc_AesEncrypt(aes, ctr, EKY0); xorbuf(Tprime, EKY0, sizeof(Tprime)); if (ConstantCompare(authTag, Tprime, authTagSz) != 0) { return AES_GCM_AUTH_E; } } #ifdef WOLFSSL_PIC32MZ_CRYPT if(blocks) wc_AesCrypt(aes, out, in, blocks*AES_BLOCK_SIZE, PIC32_DECRYPTION, PIC32_ALGO_AES, PIC32_CRYPTOALGO_AES_GCM ); #endif while (blocks--) { IncrementGcmCounter(ctr); #ifndef WOLFSSL_PIC32MZ_CRYPT wc_AesEncrypt(aes, ctr, scratch); xorbuf(scratch, c, AES_BLOCK_SIZE); XMEMCPY(p, scratch, AES_BLOCK_SIZE); #endif p += AES_BLOCK_SIZE; c += AES_BLOCK_SIZE; } if (partial != 0) { IncrementGcmCounter(ctr); wc_AesEncrypt(aes, ctr, scratch); xorbuf(scratch, c, partial); XMEMCPY(p, scratch, partial); } return 0; #endif /* FREESCALE_LTC_AES_GCM */ } #endif /* HAVE_AES_DECRYPT || HAVE_AESGCM_DECRYPT */ WOLFSSL_API int wc_GmacSetKey(Gmac* gmac, const byte* key, word32 len) { return wc_AesGcmSetKey(&gmac->aes, key, len); } WOLFSSL_API int wc_GmacUpdate(Gmac* gmac, const byte* iv, word32 ivSz, const byte* authIn, word32 authInSz, byte* authTag, word32 authTagSz) { return wc_AesGcmEncrypt(&gmac->aes, NULL, NULL, 0, iv, ivSz, authTag, authTagSz, authIn, authInSz); } #endif /* HAVE_AESGCM */ #ifdef HAVE_AESCCM #if defined(HAVE_COLDFIRE_SEC) #error "Coldfire SEC doesn't currently support AES-CCM mode" #elif defined(WOLFSSL_PIC32MZ_CRYPT) #error "PIC32MZ doesn't currently support AES-CCM mode" #endif int wc_AesCcmSetKey(Aes* aes, const byte* key, word32 keySz) { byte nonce[AES_BLOCK_SIZE]; if (!((keySz == 16) || (keySz == 24) || (keySz == 32))) return BAD_FUNC_ARG; XMEMSET(nonce, 0, sizeof(nonce)); return wc_AesSetKey(aes, key, keySz, nonce, AES_ENCRYPTION); } #ifndef FREESCALE_LTC static void roll_x(Aes* aes, const byte* in, word32 inSz, byte* out) { /* process the bulk of the data */ while (inSz >= AES_BLOCK_SIZE) { xorbuf(out, in, AES_BLOCK_SIZE); in += AES_BLOCK_SIZE; inSz -= AES_BLOCK_SIZE; wc_AesEncrypt(aes, out, out); } /* process remainder of the data */ if (inSz > 0) { xorbuf(out, in, inSz); wc_AesEncrypt(aes, out, out); } } static void roll_auth(Aes* aes, const byte* in, word32 inSz, byte* out) { word32 authLenSz; word32 remainder; /* encode the length in */ if (inSz <= 0xFEFF) { authLenSz = 2; out[0] ^= ((inSz & 0xFF00) >> 8); out[1] ^= (inSz & 0x00FF); } else if (inSz <= 0xFFFFFFFF) { authLenSz = 6; out[0] ^= 0xFF; out[1] ^= 0xFE; out[2] ^= ((inSz & 0xFF000000) >> 24); out[3] ^= ((inSz & 0x00FF0000) >> 16); out[4] ^= ((inSz & 0x0000FF00) >> 8); out[5] ^= (inSz & 0x000000FF); } /* Note, the protocol handles auth data up to 2^64, but we are * using 32-bit sizes right now, so the bigger data isn't handled * else if (inSz <= 0xFFFFFFFFFFFFFFFF) {} */ else return; /* start fill out the rest of the first block */ remainder = AES_BLOCK_SIZE - authLenSz; if (inSz >= remainder) { /* plenty of bulk data to fill the remainder of this block */ xorbuf(out + authLenSz, in, remainder); inSz -= remainder; in += remainder; } else { /* not enough bulk data, copy what is available, and pad zero */ xorbuf(out + authLenSz, in, inSz); inSz = 0; } wc_AesEncrypt(aes, out, out); if (inSz > 0) roll_x(aes, in, inSz, out); } static INLINE void AesCcmCtrInc(byte* B, word32 lenSz) { word32 i; for (i = 0; i < lenSz; i++) { if (++B[AES_BLOCK_SIZE - 1 - i] != 0) return; } } #endif /* !FREESCALE_LTC */ /* return 0 on success */ int wc_AesCcmEncrypt(Aes* aes, byte* out, const byte* in, word32 inSz, const byte* nonce, word32 nonceSz, byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { #ifdef FREESCALE_LTC byte *key; uint32_t keySize; status_t status; key = (byte*)aes->key; status = wc_AesGetKeySize(aes, &keySize); if (status != 0) { return status; } status = LTC_AES_EncryptTagCcm(LTC_BASE, in, out, inSz, nonce, nonceSz, authIn, authInSz, key, keySize, authTag, authTagSz); return (kStatus_Success == status) ? 0 : BAD_FUNC_ARG; #else byte A[AES_BLOCK_SIZE]; byte B[AES_BLOCK_SIZE]; byte lenSz; word32 i; byte mask = 0xFF; word32 wordSz = (word32)sizeof(word32); /* sanity check on arguments */ if (aes == NULL || out == NULL || in == NULL || nonce == NULL || authTag == NULL || nonceSz < 7 || nonceSz > 13) return BAD_FUNC_ARG; XMEMCPY(B+1, nonce, nonceSz); lenSz = AES_BLOCK_SIZE - 1 - (byte)nonceSz; B[0] = (authInSz > 0 ? 64 : 0) + (8 * (((byte)authTagSz - 2) / 2)) + (lenSz - 1); for (i = 0; i < lenSz; i++) { if (mask && i >= wordSz) mask = 0x00; B[AES_BLOCK_SIZE - 1 - i] = (inSz >> ((8 * i) & mask)) & mask; } wc_AesEncrypt(aes, B, A); if (authInSz > 0) roll_auth(aes, authIn, authInSz, A); if (inSz > 0) roll_x(aes, in, inSz, A); XMEMCPY(authTag, A, authTagSz); B[0] = lenSz - 1; for (i = 0; i < lenSz; i++) B[AES_BLOCK_SIZE - 1 - i] = 0; wc_AesEncrypt(aes, B, A); xorbuf(authTag, A, authTagSz); B[15] = 1; while (inSz >= AES_BLOCK_SIZE) { wc_AesEncrypt(aes, B, A); xorbuf(A, in, AES_BLOCK_SIZE); XMEMCPY(out, A, AES_BLOCK_SIZE); AesCcmCtrInc(B, lenSz); inSz -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } if (inSz > 0) { wc_AesEncrypt(aes, B, A); xorbuf(A, in, inSz); XMEMCPY(out, A, inSz); } ForceZero(A, AES_BLOCK_SIZE); ForceZero(B, AES_BLOCK_SIZE); return 0; #endif /* FREESCALE_LTC */ } #ifdef HAVE_AES_DECRYPT int wc_AesCcmDecrypt(Aes* aes, byte* out, const byte* in, word32 inSz, const byte* nonce, word32 nonceSz, const byte* authTag, word32 authTagSz, const byte* authIn, word32 authInSz) { #ifdef FREESCALE_LTC byte *key; uint32_t keySize; status_t status; key = (byte*)aes->key; status = wc_AesGetKeySize(aes, &keySize); if (status != 0) { return status; } status = LTC_AES_DecryptTagCcm(LTC_BASE, in, out, inSz, nonce, nonceSz, authIn, authInSz, key, keySize, authTag, authTagSz); if (status == kStatus_Success) { return 0; } else { XMEMSET(out, 0, inSz); return AES_CCM_AUTH_E; } #else /* FREESCALE_LTC */ byte A[AES_BLOCK_SIZE]; byte B[AES_BLOCK_SIZE]; byte* o; byte lenSz; word32 i, oSz; int result = 0; byte mask = 0xFF; word32 wordSz = (word32)sizeof(word32); /* sanity check on arguments */ if (aes == NULL || out == NULL || in == NULL || nonce == NULL || authTag == NULL || nonceSz < 7 || nonceSz > 13) return BAD_FUNC_ARG; o = out; oSz = inSz; XMEMCPY(B+1, nonce, nonceSz); lenSz = AES_BLOCK_SIZE - 1 - (byte)nonceSz; B[0] = lenSz - 1; for (i = 0; i < lenSz; i++) B[AES_BLOCK_SIZE - 1 - i] = 0; B[15] = 1; while (oSz >= AES_BLOCK_SIZE) { wc_AesEncrypt(aes, B, A); xorbuf(A, in, AES_BLOCK_SIZE); XMEMCPY(o, A, AES_BLOCK_SIZE); AesCcmCtrInc(B, lenSz); oSz -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; o += AES_BLOCK_SIZE; } if (inSz > 0) { wc_AesEncrypt(aes, B, A); xorbuf(A, in, oSz); XMEMCPY(o, A, oSz); } for (i = 0; i < lenSz; i++) B[AES_BLOCK_SIZE - 1 - i] = 0; wc_AesEncrypt(aes, B, A); o = out; oSz = inSz; B[0] = (authInSz > 0 ? 64 : 0) + (8 * (((byte)authTagSz - 2) / 2)) + (lenSz - 1); for (i = 0; i < lenSz; i++) { if (mask && i >= wordSz) mask = 0x00; B[AES_BLOCK_SIZE - 1 - i] = (inSz >> ((8 * i) & mask)) & mask; } wc_AesEncrypt(aes, B, A); if (authInSz > 0) roll_auth(aes, authIn, authInSz, A); if (inSz > 0) roll_x(aes, o, oSz, A); B[0] = lenSz - 1; for (i = 0; i < lenSz; i++) B[AES_BLOCK_SIZE - 1 - i] = 0; wc_AesEncrypt(aes, B, B); xorbuf(A, B, authTagSz); if (ConstantCompare(A, authTag, authTagSz) != 0) { /* If the authTag check fails, don't keep the decrypted data. * Unfortunately, you need the decrypted data to calculate the * check value. */ XMEMSET(out, 0, inSz); result = AES_CCM_AUTH_E; } ForceZero(A, AES_BLOCK_SIZE); ForceZero(B, AES_BLOCK_SIZE); o = NULL; return result; #endif /* FREESCALE_LTC */ } #endif /* HAVE_AES_DECRYPT */ #endif /* HAVE_AESCCM */ #ifdef HAVE_AES_KEYWRAP /* Initialize key wrap counter with value */ static INLINE void InitKeyWrapCounter(byte* inOutCtr, word32 value) { int i; word32 bytes; bytes = sizeof(word32); for (i = 0; i < (int)sizeof(word32); i++) { inOutCtr[i+sizeof(word32)] = (value >> ((bytes - 1) * 8)) & 0xFF; bytes--; } } /* Increment key wrap counter */ static INLINE void IncrementKeyWrapCounter(byte* inOutCtr) { int i; /* in network byte order so start at end and work back */ for (i = KEYWRAP_BLOCK_SIZE - 1; i >= 0; i--) { if (++inOutCtr[i]) /* we're done unless we overflow */ return; } } /* Decrement key wrap counter */ static INLINE void DecrementKeyWrapCounter(byte* inOutCtr) { int i; for (i = KEYWRAP_BLOCK_SIZE - 1; i >= 0; i--) { if (--inOutCtr[i] != 0xFF) /* we're done unless we underflow */ return; } } /* perform AES key wrap (RFC3394), return out sz on success, negative on err */ int wc_AesKeyWrap(const byte* key, word32 keySz, const byte* in, word32 inSz, byte* out, word32 outSz, const byte* iv) { Aes aes; byte* r; word32 i; int ret, j; byte t[KEYWRAP_BLOCK_SIZE]; byte tmp[AES_BLOCK_SIZE]; /* n must be at least 2, output size is n + 8 bytes */ if (key == NULL || in == NULL || inSz < 2 || out == NULL || outSz < (inSz + KEYWRAP_BLOCK_SIZE)) return BAD_FUNC_ARG; /* input must be multiple of 64-bits */ if (inSz % KEYWRAP_BLOCK_SIZE != 0) return BAD_FUNC_ARG; /* user IV is optional */ if (iv == NULL) { XMEMSET(tmp, 0xA6, KEYWRAP_BLOCK_SIZE); } else { XMEMCPY(tmp, iv, KEYWRAP_BLOCK_SIZE); } r = out + 8; XMEMCPY(r, in, inSz); XMEMSET(t, 0, sizeof(t)); ret = wc_AesSetKey(&aes, key, keySz, NULL, AES_ENCRYPTION); if (ret != 0) return ret; for (j = 0; j <= 5; j++) { for (i = 1; i <= inSz / KEYWRAP_BLOCK_SIZE; i++) { /* load R[i] */ XMEMCPY(tmp + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE); wc_AesEncryptDirect(&aes, tmp, tmp); /* calculate new A */ IncrementKeyWrapCounter(t); xorbuf(tmp, t, KEYWRAP_BLOCK_SIZE); /* save R[i] */ XMEMCPY(r, tmp + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE); r += KEYWRAP_BLOCK_SIZE; } r = out + KEYWRAP_BLOCK_SIZE; } /* C[0] = A */ XMEMCPY(out, tmp, KEYWRAP_BLOCK_SIZE); return inSz + KEYWRAP_BLOCK_SIZE; } int wc_AesKeyUnWrap(const byte* key, word32 keySz, const byte* in, word32 inSz, byte* out, word32 outSz, const byte* iv) { (void)iv; Aes aes; byte* r; word32 i, n; int ret, j; byte t[KEYWRAP_BLOCK_SIZE]; byte tmp[AES_BLOCK_SIZE]; const byte* expIv; const byte defaultIV[] = { 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6 }; if (key == NULL || in == NULL || inSz < 3 || out == NULL || outSz < (inSz - KEYWRAP_BLOCK_SIZE)) return BAD_FUNC_ARG; /* input must be multiple of 64-bits */ if (inSz % KEYWRAP_BLOCK_SIZE != 0) return BAD_FUNC_ARG; /* user IV optional */ if (iv != NULL) { expIv = iv; } else { expIv = defaultIV; } /* A = C[0], R[i] = C[i] */ XMEMCPY(tmp, in, KEYWRAP_BLOCK_SIZE); XMEMCPY(out, in + KEYWRAP_BLOCK_SIZE, inSz - KEYWRAP_BLOCK_SIZE); XMEMSET(t, 0, sizeof(t)); ret = wc_AesSetKey(&aes, key, keySz, NULL, AES_DECRYPTION); if (ret != 0) return ret; /* initialize counter to 6n */ n = (inSz - 1) / KEYWRAP_BLOCK_SIZE; InitKeyWrapCounter(t, 6 * n); for (j = 5; j >= 0; j--) { for (i = n; i >= 1; i--) { /* calculate A */ xorbuf(tmp, t, KEYWRAP_BLOCK_SIZE); DecrementKeyWrapCounter(t); /* load R[i], starting at end of R */ r = out + ((i - 1) * KEYWRAP_BLOCK_SIZE); XMEMCPY(tmp + KEYWRAP_BLOCK_SIZE, r, KEYWRAP_BLOCK_SIZE); wc_AesDecryptDirect(&aes, tmp, tmp); /* save R[i] */ XMEMCPY(r, tmp + KEYWRAP_BLOCK_SIZE, KEYWRAP_BLOCK_SIZE); } } /* verify IV */ if (XMEMCMP(tmp, expIv, KEYWRAP_BLOCK_SIZE) != 0) return BAD_KEYWRAP_IV_E; return inSz - KEYWRAP_BLOCK_SIZE; } #endif /* HAVE_AES_KEYWRAP */ #ifdef WOLFSSL_ASYNC_CRYPT /* Initialize Aes for use with Nitrox device */ int wc_AesAsyncInit(Aes* aes, int devId) { if (aes == NULL) return BAD_FUNC_ARG; return wolfAsync_DevCtxInit(&aes->asyncDev, WOLFSSL_ASYNC_MARKER_AES, devId); } /* Free Aes from use with Nitrox device */ void wc_AesAsyncFree(Aes* aes) { if (aes == NULL) return; wolfAsync_DevCtxFree(&aes->asyncDev); } #endif /* WOLFSSL_ASYNC_CRYPT */ int wc_AesGetKeySize(Aes* aes, word32* keySize) { int ret = 0; if (aes == NULL || keySize == NULL) { return BAD_FUNC_ARG; } switch (aes->rounds) { case 10: *keySize = 16; break; case 12: *keySize = 24; break; case 14: *keySize = 32; break; default: *keySize = 0; ret = BAD_FUNC_ARG; } return ret; } #endif /* !WOLFSSL_TI_CRYPT */ #endif /* HAVE_FIPS */ #endif /* NO_AES */