wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
wolfcrypt/src/fe_low_mem.c
- Committer:
- wolfSSL
- Date:
- 2016-04-28
- Revision:
- 4:1b0d80432c79
File content as of revision 4:1b0d80432c79:
/* fe_low_mem.c * * Copyright (C) 2006-2016 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /* Based from Daniel Beer's public domain word. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfssl/wolfcrypt/settings.h> #if defined(CURVED25519_SMALL) /* use slower code that takes less memory */ #if defined(HAVE_ED25519) || defined(HAVE_CURVE25519) #include <wolfssl/wolfcrypt/fe_operations.h> #ifdef NO_INLINE #include <wolfssl/wolfcrypt/misc.h> #else #include <wolfcrypt/src/misc.c> #endif void fprime_copy(byte *x, const byte *a) { int i; for (i = 0; i < F25519_SIZE; i++) x[i] = a[i]; } void fe_copy(fe x, const fe a) { int i; for (i = 0; i < F25519_SIZE; i++) x[i] = a[i]; } /* Double an X-coordinate */ static void xc_double(byte *x3, byte *z3, const byte *x1, const byte *z1) { /* Explicit formulas database: dbl-1987-m * * source 1987 Montgomery "Speeding the Pollard and elliptic * curve methods of factorization", page 261, fourth display * compute X3 = (X1^2-Z1^2)^2 * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2) */ byte x1sq[F25519_SIZE]; byte z1sq[F25519_SIZE]; byte x1z1[F25519_SIZE]; byte a[F25519_SIZE]; fe_mul__distinct(x1sq, x1, x1); fe_mul__distinct(z1sq, z1, z1); fe_mul__distinct(x1z1, x1, z1); fe_sub(a, x1sq, z1sq); fe_mul__distinct(x3, a, a); fe_mul_c(a, x1z1, 486662); fe_add(a, x1sq, a); fe_add(a, z1sq, a); fe_mul__distinct(x1sq, x1z1, a); fe_mul_c(z3, x1sq, 4); } /* Differential addition */ static void xc_diffadd(byte *x5, byte *z5, const byte *x1, const byte *z1, const byte *x2, const byte *z2, const byte *x3, const byte *z3) { /* Explicit formulas database: dbl-1987-m3 * * source 1987 Montgomery "Speeding the Pollard and elliptic curve * methods of factorization", page 261, fifth display, plus * common-subexpression elimination * compute A = X2+Z2 * compute B = X2-Z2 * compute C = X3+Z3 * compute D = X3-Z3 * compute DA = D A * compute CB = C B * compute X5 = Z1(DA+CB)^2 * compute Z5 = X1(DA-CB)^2 */ byte da[F25519_SIZE]; byte cb[F25519_SIZE]; byte a[F25519_SIZE]; byte b[F25519_SIZE]; fe_add(a, x2, z2); fe_sub(b, x3, z3); /* D */ fe_mul__distinct(da, a, b); fe_sub(b, x2, z2); fe_add(a, x3, z3); /* C */ fe_mul__distinct(cb, a, b); fe_add(a, da, cb); fe_mul__distinct(b, a, a); fe_mul__distinct(x5, z1, b); fe_sub(a, da, cb); fe_mul__distinct(b, a, a); fe_mul__distinct(z5, x1, b); } int curve25519(byte *result, byte *e, byte *q) { /* Current point: P_m */ byte xm[F25519_SIZE]; byte zm[F25519_SIZE] = {1}; /* Predecessor: P_(m-1) */ byte xm1[F25519_SIZE] = {1}; byte zm1[F25519_SIZE] = {0}; int i; /* Note: bit 254 is assumed to be 1 */ fe_copy(xm, q); for (i = 253; i >= 0; i--) { const int bit = (e[i >> 3] >> (i & 7)) & 1; byte xms[F25519_SIZE]; byte zms[F25519_SIZE]; /* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */ xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1); xc_double(xm, zm, xm, zm); /* Compute P_(2m+1) */ xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one); /* Select: * bit = 1 --> (P_(2m+1), P_(2m)) * bit = 0 --> (P_(2m), P_(2m-1)) */ fe_select(xm1, xm1, xm, bit); fe_select(zm1, zm1, zm, bit); fe_select(xm, xm, xms, bit); fe_select(zm, zm, zms, bit); } /* Freeze out of projective coordinates */ fe_inv__distinct(zm1, zm); fe_mul__distinct(result, zm1, xm); fe_normalize(result); return 0; } static void raw_add(byte *x, const byte *p) { word16 c = 0; int i; for (i = 0; i < F25519_SIZE; i++) { c += ((word16)x[i]) + ((word16)p[i]); x[i] = c; c >>= 8; } } static void raw_try_sub(byte *x, const byte *p) { byte minusp[F25519_SIZE]; word16 c = 0; int i; for (i = 0; i < F25519_SIZE; i++) { c = ((word16)x[i]) - ((word16)p[i]) - c; minusp[i] = c; c = (c >> 8) & 1; } fprime_select(x, minusp, x, c); } static int prime_msb(const byte *p) { int i; byte x; int shift = 1; int z = F25519_SIZE - 1; /* Test for any hot bits. As soon as one instance is encountered set shift to 0. */ for (i = F25519_SIZE - 1; i >= 0; i--) { shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1); z -= shift; } x = p[z]; z <<= 3; shift = 1; for (i = 0; i < 8; i++) { shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1); z += shift; } return z - 1; } void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition) { const byte mask = -condition; int i; for (i = 0; i < F25519_SIZE; i++) dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); } void fprime_add(byte *r, const byte *a, const byte *modulus) { raw_add(r, a); raw_try_sub(r, modulus); } void fprime_sub(byte *r, const byte *a, const byte *modulus) { raw_add(r, modulus); raw_try_sub(r, a); raw_try_sub(r, modulus); } void fprime_mul(byte *r, const byte *a, const byte *b, const byte *modulus) { word16 c = 0; int i,j; XMEMSET(r, 0, F25519_SIZE); for (i = prime_msb(modulus); i >= 0; i--) { const byte bit = (b[i >> 3] >> (i & 7)) & 1; byte plusa[F25519_SIZE]; for (j = 0; j < F25519_SIZE; j++) { c |= ((word16)r[j]) << 1; r[j] = c; c >>= 8; } raw_try_sub(r, modulus); fprime_copy(plusa, r); fprime_add(plusa, a, modulus); fprime_select(r, r, plusa, bit); } } void fe_load(byte *x, word32 c) { word32 i; for (i = 0; i < sizeof(c); i++) { x[i] = c; c >>= 8; } for (; i < F25519_SIZE; i++) x[i] = 0; } void fe_normalize(byte *x) { byte minusp[F25519_SIZE]; word16 c; int i; /* Reduce using 2^255 = 19 mod p */ c = (x[31] >> 7) * 19; x[31] &= 127; for (i = 0; i < F25519_SIZE; i++) { c += x[i]; x[i] = c; c >>= 8; } /* The number is now less than 2^255 + 18, and therefore less than * 2p. Try subtracting p, and conditionally load the subtracted * value if underflow did not occur. */ c = 19; for (i = 0; i + 1 < F25519_SIZE; i++) { c += x[i]; minusp[i] = c; c >>= 8; } c += ((word16)x[i]) - 128; minusp[31] = c; /* Load x-p if no underflow */ fe_select(x, minusp, x, (c >> 15) & 1); } void fe_select(byte *dst, const byte *zero, const byte *one, byte condition) { const byte mask = -condition; int i; for (i = 0; i < F25519_SIZE; i++) dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); } void fe_add(fe r, const fe a, const fe b) { word16 c = 0; int i; /* Add */ for (i = 0; i < F25519_SIZE; i++) { c >>= 8; c += ((word16)a[i]) + ((word16)b[i]); r[i] = c; } /* Reduce with 2^255 = 19 mod p */ r[31] &= 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void fe_sub(fe r, const fe a, const fe b) { word32 c = 0; int i; /* Calculate a + 2p - b, to avoid underflow */ c = 218; for (i = 0; i + 1 < F25519_SIZE; i++) { c += 65280 + ((word32)a[i]) - ((word32)b[i]); r[i] = c; c >>= 8; } c += ((word32)a[31]) - ((word32)b[31]); r[31] = c & 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void fe_neg(fe r, const fe a) { word32 c = 0; int i; /* Calculate 2p - a, to avoid underflow */ c = 218; for (i = 0; i + 1 < F25519_SIZE; i++) { c += 65280 - ((word32)a[i]); r[i] = c; c >>= 8; } c -= ((word32)a[31]); r[31] = c & 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void fe_mul__distinct(byte *r, const byte *a, const byte *b) { word32 c = 0; int i; for (i = 0; i < F25519_SIZE; i++) { int j; c >>= 8; for (j = 0; j <= i; j++) c += ((word32)a[j]) * ((word32)b[i - j]); for (; j < F25519_SIZE; j++) c += ((word32)a[j]) * ((word32)b[i + F25519_SIZE - j]) * 38; r[i] = c; } r[31] &= 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void fe_mul(fe r, const fe a, const fe b) { byte tmp[F25519_SIZE]; fe_mul__distinct(tmp, a, b); fe_copy(r, tmp); } void fe_mul_c(byte *r, const byte *a, word32 b) { word32 c = 0; int i; for (i = 0; i < F25519_SIZE; i++) { c >>= 8; c += b * ((word32)a[i]); r[i] = c; } r[31] &= 127; c >>= 7; c *= 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void fe_inv__distinct(byte *r, const byte *x) { byte s[F25519_SIZE]; int i; /* This is a prime field, so by Fermat's little theorem: * * x^(p-1) = 1 mod p * * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative * inverse. * * This is a 255-bit binary number with the digits: * * 11111111... 01011 * * We compute the result by the usual binary chain, but * alternate between keeping the accumulator in r and s, so as * to avoid copying temporaries. */ /* 1 1 */ fe_mul__distinct(s, x, x); fe_mul__distinct(r, s, x); /* 1 x 248 */ for (i = 0; i < 248; i++) { fe_mul__distinct(s, r, r); fe_mul__distinct(r, s, x); } /* 0 */ fe_mul__distinct(s, r, r); /* 1 */ fe_mul__distinct(r, s, s); fe_mul__distinct(s, r, x); /* 0 */ fe_mul__distinct(r, s, s); /* 1 */ fe_mul__distinct(s, r, r); fe_mul__distinct(r, s, x); /* 1 */ fe_mul__distinct(s, r, r); fe_mul__distinct(r, s, x); } void fe_invert(fe r, const fe x) { byte tmp[F25519_SIZE]; fe_inv__distinct(tmp, x); fe_copy(r, tmp); } /* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary * storage. */ static void exp2523(byte *r, const byte *x, byte *s) { int i; /* This number is a 252-bit number with the binary expansion: * * 111111... 01 */ /* 1 1 */ fe_mul__distinct(r, x, x); fe_mul__distinct(s, r, x); /* 1 x 248 */ for (i = 0; i < 248; i++) { fe_mul__distinct(r, s, s); fe_mul__distinct(s, r, x); } /* 0 */ fe_mul__distinct(r, s, s); /* 1 */ fe_mul__distinct(s, r, r); fe_mul__distinct(r, s, x); } void fe_sqrt(byte *r, const byte *a) { byte v[F25519_SIZE]; byte i[F25519_SIZE]; byte x[F25519_SIZE]; byte y[F25519_SIZE]; /* v = (2a)^((p-5)/8) [x = 2a] */ fe_mul_c(x, a, 2); exp2523(v, x, y); /* i = 2av^2 - 1 */ fe_mul__distinct(y, v, v); fe_mul__distinct(i, x, y); fe_load(y, 1); fe_sub(i, i, y); /* r = avi */ fe_mul__distinct(x, v, a); fe_mul__distinct(r, x, i); } #endif /* HAVE_CURVE25519 or HAVE_ED25519 */ #endif /* CURVED25519_SMALL */