wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
src/tls13.c
- Committer:
- wolfSSL
- Date:
- 2017-05-30
- Revision:
- 12:0217a9463bc3
File content as of revision 12:0217a9463bc3:
/* tls13.c * * Copyright (C) 2006-2016 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfssl/wolfcrypt/settings.h> #ifdef WOLFSSL_TLS13 #if defined(HAVE_SESSION_TICKET) #include <sys/time.h> #endif #include <wolfssl/wolfcrypt/settings.h> #ifndef WOLFCRYPT_ONLY #ifdef HAVE_ERRNO_H #include <errno.h> #endif #include <wolfssl/internal.h> #include <wolfssl/error-ssl.h> #include <wolfssl/wolfcrypt/asn.h> #include <wolfssl/wolfcrypt/dh.h> #ifdef NO_INLINE #include <wolfssl/wolfcrypt/misc.h> #else #define WOLFSSL_MISC_INCLUDED #include <wolfcrypt/src/misc.c> #endif #ifdef HAVE_NTRU #include "libntruencrypt/ntru_crypto.h" #endif #if defined(DEBUG_WOLFSSL) || defined(WOLFSSL_DEBUG) || \ defined(CHACHA_AEAD_TEST) || defined(WOLFSSL_SESSION_EXPORT_DEBUG) #if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX) #if MQX_USE_IO_OLD #include <fio.h> #else #include <nio.h> #endif #else #include <stdio.h> #endif #endif #ifdef __sun #include <sys/filio.h> #endif #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif /* Set ret to error value and jump to label. * * err The error value to set. * eLabel The label to jump to. */ #define ERROR_OUT(err, eLabel) { ret = (err); goto eLabel; } #ifndef WOLFSSL_HAVE_MIN #define WOLFSSL_HAVE_MIN /* Return the minimum of the two values. * * a First value. * b Second value. * returns the minimum of a and b. */ static INLINE word32 min(word32 a, word32 b) { return a > b ? b : a; } #endif /* WOLFSSL_HAVE_MIN */ /* Convert 16-bit integer to opaque data. * * u16 Unsigned 16-bit value. * c The buffer to write to. */ static INLINE void c16toa(word16 u16, byte* c) { c[0] = (u16 >> 8) & 0xff; c[1] = u16 & 0xff; } /* Convert 32-bit integer to opaque data. * * u32 Unsigned 32-bit value. * c The buffer to write to. */ static INLINE void c32toa(word32 u32, byte* c) { c[0] = (u32 >> 24) & 0xff; c[1] = (u32 >> 16) & 0xff; c[2] = (u32 >> 8) & 0xff; c[3] = u32 & 0xff; } /* Convert 24-bit opaque data into a 32-bit value. * * u24 The opaque data holding a 24-bit integer. * u32 Unsigned 32-bit value. */ static INLINE void c24to32(const word24 u24, word32* u32) { *u32 = (u24[0] << 16) | (u24[1] << 8) | u24[2]; } /* Convert opaque data into a 16-bit value. * * c The opaque data. * u16 Unsigned 16-bit value. */ static INLINE void ato16(const byte* c, word16* u16) { *u16 = (word16) ((c[0] << 8) | (c[1])); } #ifndef NO_WOLFSSL_CLIENT #ifdef HAVE_SESSION_TICKET /* Convert opaque data into a 32-bit value. * * c The opaque data. * u32 Unsigned 32-bit value. */ static INLINE void ato32(const byte* c, word32* u32) { *u32 = (c[0] << 24) | (c[1] << 16) | (c[2] << 8) | c[3]; } #endif #endif /* Extract data using HMAC, salt and input. * RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF) * * prk The generated pseudorandom key. * salt The salt. * saltLen The length of the salt. * ikm The input keying material. * ikmLen The length of the input keying material. * mac The type of digest to use. * returns 0 on success, otherwise failure. */ static int Tls13_HKDF_Extract(byte* prk, const byte* salt, int saltLen, byte* ikm, int ikmLen, int mac) { int ret; int hash; int len; switch (mac) { #ifndef NO_SHA256 case sha256_mac: hash = SHA256; len = SHA256_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA384 case sha384_mac: hash = SHA384; len = SHA384_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA512 case sha512_mac: hash = SHA512; len = SHA512_DIGEST_SIZE; break; #endif default: return BAD_FUNC_ARG; } /* When length is 0 then use zeroed data of digest length. */ if (ikmLen == 0) { ikmLen = len; XMEMSET(ikm, 0, len); } #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("Salt"); WOLFSSL_BUFFER(salt, saltLen); WOLFSSL_MSG("IKM"); WOLFSSL_BUFFER(ikm, ikmLen); #endif ret = wc_HKDF_Extract(hash, salt, saltLen, ikm, ikmLen, prk); #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("PRK"); WOLFSSL_BUFFER(prk, len); #endif return ret; } /* Expand data using HMAC, salt and label and info. * TLS v1.3 defines this function. * * okm The generated pseudorandom key - output key material. * prk The salt - pseudo-random key. * prkLen The length of the salt - pseudo-random key. * protocol The TLS protocol label. * protocolLen The length of the TLS protocol label. * info The information to expand. * infoLen The length of the information. * digest The type of digest to use. * returns 0 on success, otherwise failure. */ static int HKDF_Expand_Label(byte* okm, word32 okmLen, const byte* prk, word32 prkLen, const byte* protocol, word32 protocolLen, const byte* label, word32 labelLen, const byte* info, word32 infoLen, int digest) { int ret = 0; int idx = 0; byte data[MAX_HKDF_LABEL_SZ]; /* Output length. */ data[idx++] = okmLen >> 8; data[idx++] = okmLen; /* Length of protocol | label. */ data[idx++] = protocolLen + labelLen; /* Protocol */ XMEMCPY(&data[idx], protocol, protocolLen); idx += protocolLen; /* Label */ XMEMCPY(&data[idx], label, labelLen); idx += labelLen; /* Length of hash of messages */ data[idx++] = infoLen; /* Hash of messages */ XMEMCPY(&data[idx], info, infoLen); idx += infoLen; #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("PRK"); WOLFSSL_BUFFER(prk, prkLen); WOLFSSL_MSG("Info"); WOLFSSL_BUFFER(data, idx); #endif ret = wc_HKDF_Expand(digest, prk, prkLen, data, idx, okm, okmLen); #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("OKM"); WOLFSSL_BUFFER(okm, okmLen); #endif ForceZero(data, idx); return ret; } /* Size of the TLS v1.3 label use when deriving keys. */ #define TLS13_PROTOCOL_LABEL_SZ 9 /* The protocol label for TLS v1.3. */ static const byte tls13ProtocolLabel[TLS13_PROTOCOL_LABEL_SZ + 1] = "TLS 1.3, "; /* Derive a key from a message. * * ssl The SSL/TLS object. * output The buffer to hold the derived key. * outputLen The length of the derived key. * secret The secret used to derive the key (HMAC secret). * label The label used to distinguish the context. * labelLen The length of the label. * msg The message data to derive key from. * msgLen The length of the message data to derive key from. * hashAlgo The hash algorithm to use in the HMAC. * returns 0 on success, otherwise failure. */ static int DeriveKeyMsg(WOLFSSL* ssl, byte* output, int outputLen, const byte* secret, const byte* label, word32 labelLen, byte* msg, int msgLen, int hashAlgo) { byte hash[MAX_DIGEST_SIZE]; Digest digest; word32 hashSz = 0; const byte* protocol; word32 protocolLen; int digestAlg; switch (hashAlgo) { #ifndef NO_WOLFSSL_SHA256 case sha256_mac: wc_InitSha256(&digest.sha256); wc_Sha256Update(&digest.sha256, msg, msgLen); wc_Sha256Final(&digest.sha256, hash); wc_Sha256Free(&digest.sha256); hashSz = SHA256_DIGEST_SIZE; digestAlg = SHA256; break; #endif #ifdef WOLFSSL_SHA384 case sha384_mac: wc_InitSha384(&digest.sha384); wc_Sha384Update(&digest.sha384, msg, msgLen); wc_Sha384Final(&digest.sha384, hash); wc_Sha384Free(&digest.sha384); hashSz = SHA384_DIGEST_SIZE; digestAlg = SHA384; break; #endif #ifdef WOLFSSL_SHA512 case sha512_mac: wc_InitSha512(&digest.sha512); wc_Sha512Update(&digest.sha512, msg, msgLen); wc_Sha512Final(&digest.sha512, hash); wc_Sha512Free(&digest.sha512); hashSz = SHA512_DIGEST_SIZE; digestAlg = SHA512; break; #endif default: return BAD_FUNC_ARG; } switch (ssl->version.minor) { case TLSv1_3_MINOR: protocol = tls13ProtocolLabel; protocolLen = TLS13_PROTOCOL_LABEL_SZ; break; default: return VERSION_ERROR; } if (outputLen == -1) outputLen = hashSz; return HKDF_Expand_Label(output, outputLen, secret, hashSz, protocol, protocolLen, label, labelLen, hash, hashSz, digestAlg); } /* Derive a key. * * ssl The SSL/TLS object. * output The buffer to hold the derived key. * outputLen The length of the derived key. * secret The secret used to derive the key (HMAC secret). * label The label used to distinguish the context. * labelLen The length of the label. * hashAlgo The hash algorithm to use in the HMAC. * includeMsgs Whether to include a hash of the handshake messages so far. * returns 0 on success, otherwise failure. */ static int DeriveKey(WOLFSSL* ssl, byte* output, int outputLen, const byte* secret, const byte* label, word32 labelLen, int hashAlgo, int includeMsgs) { int ret = 0; byte hash[MAX_DIGEST_SIZE]; word32 hashSz = 0; word32 hashOutSz = 0; const byte* protocol; word32 protocolLen; int digestAlg; switch (hashAlgo) { #ifndef NO_SHA256 case sha256_mac: hashSz = SHA256_DIGEST_SIZE; digestAlg = SHA256; if (includeMsgs) ret = wc_Sha256GetHash(&ssl->hsHashes->hashSha256, hash); break; #endif #ifdef WOLFSSL_SHA384 case sha384_mac: hashSz = SHA384_DIGEST_SIZE; digestAlg = SHA384; if (includeMsgs) ret = wc_Sha384GetHash(&ssl->hsHashes->hashSha384, hash); break; #endif #ifdef WOLFSSL_SHA512 case sha512_mac: hashSz = SHA512_DIGEST_SIZE; digestAlg = SHA512; if (includeMsgs) ret = wc_Sha512GetHash(&ssl->hsHashes->hashSha512, hash); break; #endif default: ret = BAD_FUNC_ARG; break; } if (ret != 0) return ret; /* Only one protocol version defined at this time. */ protocol = tls13ProtocolLabel; protocolLen = TLS13_PROTOCOL_LABEL_SZ; if (outputLen == -1) outputLen = hashSz; if (includeMsgs) hashOutSz = hashSz; return HKDF_Expand_Label(output, outputLen, secret, hashSz, protocol, protocolLen, label, labelLen, hash, hashOutSz, digestAlg); } #if defined(HAVE_SESSION_TICKET) && !defined(NO_PSK) /* The length of the binder key label. */ #define BINDER_KEY_LABEL_SZ 23 /* The binder key label. */ static const byte binderKeyLabel[BINDER_KEY_LABEL_SZ + 1] = "external psk binder key"; /* Derive the binder key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveBinderKey(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Binder Key"); return DeriveKeyMsg(ssl, key, -1, ssl->arrays->secret, binderKeyLabel, BINDER_KEY_LABEL_SZ, NULL, 0, ssl->specs.mac_algorithm); } /* The length of the binder key resume label. */ #define BINDER_KEY_RESUME_LABEL_SZ 25 /* The binder key resume label. */ static const byte binderKeyResumeLabel[BINDER_KEY_RESUME_LABEL_SZ + 1] = "resumption psk binder key"; /* Derive the binder resumption key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveBinderKeyResume(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Binder Key - Resumption"); return DeriveKeyMsg(ssl, key, -1, ssl->arrays->secret, binderKeyResumeLabel, BINDER_KEY_RESUME_LABEL_SZ, NULL, 0, ssl->specs.mac_algorithm); } #endif #ifdef TLS13_SUPPORTS_0RTT /* The length of the early traffic label. */ #define EARLY_TRAFFIC_LABEL_SZ 27 /* The early traffic label. */ static const byte earlyTrafficLabel[EARLY_TRAFFIC_LABEL_SZ + 1] = "client early traffic secret"; /* Derive the early traffic key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveEarlyTrafficSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Early Traffic Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->secret, earlyTrafficLabel, EARLY_TRAFFIC_LABEL_SZ, ssl->specs.mac_algorithm, 1); } #ifdef TLS13_SUPPORTS_EXPORTERS /* The length of the early exporter label. */ #define EARLY_EXPORTER_LABEL_SZ 28 /* The early exporter label. */ static const byte earlyExporterLabel[EARLY_EXPORTER_LABEL_SZ + 1] = "early exporter master secret"; /* Derive the early exporter key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveEarlyExporterSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Early Exporter Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->secret, earlyExporterLabel, EARLY_EXPORTER_LABEL_SZ, ssl->specs.mac_algorithm, 1); } #endif #endif /* The length of the client hanshake label. */ #define CLIENT_HANDSHAKE_LABEL_SZ 31 /* The client hanshake label. */ static const byte clientHandshakeLabel[CLIENT_HANDSHAKE_LABEL_SZ + 1] = "client handshake traffic secret"; /* Derive the client handshake key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveClientHandshakeSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Client Handshake Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->preMasterSecret, clientHandshakeLabel, CLIENT_HANDSHAKE_LABEL_SZ, ssl->specs.mac_algorithm, 1); } /* The length of the server handshake label. */ #define SERVER_HANDSHAKE_LABEL_SZ 31 /* The server handshake label. */ static const byte serverHandshakeLabel[SERVER_HANDSHAKE_LABEL_SZ + 1] = "server handshake traffic secret"; /* Derive the server handshake key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveServerHandshakeSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Server Handshake Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->preMasterSecret, serverHandshakeLabel, SERVER_HANDSHAKE_LABEL_SZ, ssl->specs.mac_algorithm, 1); } /* The length of the client application traffic label. */ #define CLIENT_APP_LABEL_SZ 33 /* The client application traffic label. */ static const byte clientAppLabel[CLIENT_APP_LABEL_SZ + 1] = "client application traffic secret"; /* Derive the client application traffic key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveClientTrafficSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Client Traffic Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->masterSecret, clientAppLabel, CLIENT_APP_LABEL_SZ, ssl->specs.mac_algorithm, 1); } /* The length of the server application traffic label. */ #define SERVER_APP_LABEL_SZ 33 /* The server application traffic label. */ static const byte serverAppLabel[SERVER_APP_LABEL_SZ + 1] = "server application traffic secret"; /* Derive the server application traffic key. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveServerTrafficSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Server Traffic Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->masterSecret, serverAppLabel, SERVER_APP_LABEL_SZ, ssl->specs.mac_algorithm, 1); } #ifdef TLS13_SUPPORTS_EXPORTERS /* The length of the exporter master secret label. */ #define EXPORTER_MASTER_LABEL_SZ 22 /* The exporter master secret label. */ static const byte exporterMasterLabel[EXPORTER_MASTER_LABEL_SZ + 1] = "exporter master secret"; /* Derive the exporter secret. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveExporterSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Exporter Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->masterSecret, exporterMasterLabel, EXPORTER_MASTER_LABEL_SZ, ssl->specs.mac_algorithm, 1); } #endif #ifndef NO_PSK /* The length of the resumption master secret label. */ #define RESUME_MASTER_LABEL_SZ 24 /* The resumption master secret label. */ static const byte resumeMasterLabel[RESUME_MASTER_LABEL_SZ + 1] = "resumption master secret"; /* Derive the resumption secret. * * ssl The SSL/TLS object. * key The derived key. * returns 0 on success, otherwise failure. */ static int DeriveResumptionSecret(WOLFSSL* ssl, byte* key) { WOLFSSL_MSG("Derive Resumption Secret"); return DeriveKey(ssl, key, -1, ssl->arrays->masterSecret, resumeMasterLabel, RESUME_MASTER_LABEL_SZ, ssl->specs.mac_algorithm, 1); } #endif /* Length of the finished label. */ #define FINISHED_LABEL_SZ 8 /* Finished label for generating finished key. */ static const byte finishedLabel[FINISHED_LABEL_SZ+1] = "finished"; /* Derive the finished secret. * * ssl The SSL/TLS object. * key The key to use with the HMAC. * secret The derived secret. * returns 0 on success, otherwise failure. */ static int DeriveFinishedSecret(WOLFSSL* ssl, byte* key, byte* secret) { WOLFSSL_MSG("Derive Finished Secret"); return DeriveKey(ssl, secret, -1, key, finishedLabel, FINISHED_LABEL_SZ, ssl->specs.mac_algorithm, 0); } /* The length of the application traffic label. */ #define APP_TRAFFIC_LABEL_SZ 26 /* The application traffic label. */ static const byte appTrafficLabel[APP_TRAFFIC_LABEL_SZ + 1] = "application traffic secret"; /* Update the traffic secret. * * ssl The SSL/TLS object. * secret The previous secret and derived secret. * returns 0 on success, otherwise failure. */ static int DeriveTrafficSecret(WOLFSSL* ssl, byte* secret) { WOLFSSL_MSG("Derive New Application Traffic Secret"); return DeriveKeyMsg(ssl, secret, -1, secret, appTrafficLabel, APP_TRAFFIC_LABEL_SZ, NULL, 0, ssl->specs.mac_algorithm); } /* Derive the early secret using HKDF Extract. * * ssl The SSL/TLS object. */ static int DeriveEarlySecret(WOLFSSL* ssl) { WOLFSSL_MSG("Derive Early Secret"); #ifndef NO_PSK return Tls13_HKDF_Extract(ssl->arrays->secret, NULL, 0, ssl->arrays->psk_key, ssl->arrays->psk_keySz, ssl->specs.mac_algorithm); #else return Tls13_HKDF_Extract(ssl->arrays->secret, NULL, 0, ssl->arrays->masterSecret, 0, ssl->specs.mac_algorithm); #endif } /* Derive the handshake secret using HKDF Extract. * * ssl The SSL/TLS object. */ static int DeriveHandshakeSecret(WOLFSSL* ssl) { WOLFSSL_MSG("Derive Handshake Secret"); return Tls13_HKDF_Extract(ssl->arrays->preMasterSecret, ssl->arrays->secret, ssl->specs.hash_size, ssl->arrays->preMasterSecret, ssl->arrays->preMasterSz, ssl->specs.mac_algorithm); } /* Derive the master secret using HKDF Extract. * * ssl The SSL/TLS object. */ static int DeriveMasterSecret(WOLFSSL* ssl) { WOLFSSL_MSG("Derive Master Secret"); return Tls13_HKDF_Extract(ssl->arrays->masterSecret, ssl->arrays->preMasterSecret, ssl->specs.hash_size, ssl->arrays->masterSecret, 0, ssl->specs.mac_algorithm); } /* Calculate the HMAC of message data to this point. * * ssl The SSL/TLS object. * key The HMAC key. * hash The hash result - verify data. * returns length of verify data generated. */ static int BuildTls13HandshakeHmac(WOLFSSL* ssl, byte* key, byte* hash) { Hmac verifyHmac; int hashType = SHA256; int hashSz = SHA256_DIGEST_SIZE; /* Get the hash of the previous handshake messages. */ switch (ssl->specs.mac_algorithm) { #ifndef NO_SHA256 case sha256_mac: hashType = SHA256; hashSz = SHA256_DIGEST_SIZE; wc_Sha256GetHash(&ssl->hsHashes->hashSha256, hash); break; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case sha384_mac: hashType = SHA384; hashSz = SHA384_DIGEST_SIZE; wc_Sha384GetHash(&ssl->hsHashes->hashSha384, hash); break; #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 case sha512_mac: hashType = SHA512; hashSz = SHA512_DIGEST_SIZE; wc_Sha512GetHash(&ssl->hsHashes->hashSha512, hash); break; #endif /* WOLFSSL_SHA512 */ } /* Calculate the verify data. */ wc_HmacSetKey(&verifyHmac, hashType, key, ssl->specs.hash_size); wc_HmacUpdate(&verifyHmac, hash, hashSz); wc_HmacFinal(&verifyHmac, hash); return hashSz; } /* The length of the label to use when deriving keys. */ #define WRITE_KEY_LABEL_SZ 3 /* The length of the label to use when deriving IVs. */ #define WRITE_IV_LABEL_SZ 2 /* The label to use when deriving keys. */ static const byte writeKeyLabel[WRITE_KEY_LABEL_SZ+1] = "key"; /* The label to use when deriving IVs. */ static const byte writeIVLabel[WRITE_IV_LABEL_SZ+1] = "iv"; /* Derive the keys and IVs for TLS v1.3. * * ssl The SSL/TLS object. * sercret handshake_key when deriving keys and IVs for encrypting handshake * messages. * traffic_key when deriving first keys and IVs for encrypting * traffic messages. * update_traffic_key when deriving next keys and IVs for encrypting * traffic messages. * side ENCRYPT_SIDE_ONLY when only encryption secret needs to be derived. * DECRYPT_SIDE_ONLY when only decryption secret needs to be derived. * ENCRYPT_AND_DECRYPT_SIDE when both secret needs to be derived. * returns 0 on success, otherwise failure. */ static int DeriveTls13Keys(WOLFSSL* ssl, int secret, int side) { int ret; int i = 0; #ifdef WOLFSSL_SMALL_STACK byte* key_data; #else byte key_data[MAX_PRF_DIG]; #endif int deriveClient = 0; int deriveServer = 0; #ifdef WOLFSSL_SMALL_STACK key_data = (byte*)XMALLOC(MAX_PRF_DIG, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (key_data == NULL) return MEMORY_E; #endif if (side == ENCRYPT_AND_DECRYPT_SIDE) { deriveClient = 1; deriveServer = 1; } else { deriveClient = (ssl->options.side != WOLFSSL_CLIENT_END) ^ (side == ENCRYPT_SIDE_ONLY); deriveServer = !deriveClient; } /* Derive the appropriate secret to use in the HKDF. */ switch (secret) { case handshake_key: if (deriveClient) { ret = DeriveClientHandshakeSecret(ssl, ssl->arrays->clientSecret); if (ret != 0) goto end; } if (deriveServer) { ret = DeriveServerHandshakeSecret(ssl, ssl->arrays->serverSecret); if (ret != 0) goto end; } break; case traffic_key: if (deriveClient) { ret = DeriveClientTrafficSecret(ssl, ssl->arrays->clientSecret); if (ret != 0) goto end; } if (deriveServer) { ret = DeriveServerTrafficSecret(ssl, ssl->arrays->serverSecret); if (ret != 0) goto end; } break; case update_traffic_key: if (deriveClient) { ret = DeriveTrafficSecret(ssl, ssl->arrays->clientSecret); if (ret != 0) goto end; } if (deriveServer) { ret = DeriveTrafficSecret(ssl, ssl->arrays->serverSecret); if (ret != 0) goto end; } break; } /* Key data = client key | server key | client IV | server IV */ /* Derive the client key. */ WOLFSSL_MSG("Derive Client Key"); ret = DeriveKey(ssl, &key_data[i], ssl->specs.key_size, ssl->arrays->clientSecret, writeKeyLabel, WRITE_KEY_LABEL_SZ, ssl->specs.mac_algorithm, 0); if (ret != 0) goto end; i += ssl->specs.key_size; /* Derive the server key. */ WOLFSSL_MSG("Derive Server Key"); ret = DeriveKey(ssl, &key_data[i], ssl->specs.key_size, ssl->arrays->serverSecret, writeKeyLabel, WRITE_KEY_LABEL_SZ, ssl->specs.mac_algorithm, 0); if (ret != 0) goto end; i += ssl->specs.key_size; /* Derive the client IV. */ WOLFSSL_MSG("Derive Client IV"); ret = DeriveKey(ssl, &key_data[i], ssl->specs.iv_size, ssl->arrays->clientSecret, writeIVLabel, WRITE_IV_LABEL_SZ, ssl->specs.mac_algorithm, 0); if (ret != 0) goto end; i += ssl->specs.iv_size; /* Derive the server IV. */ WOLFSSL_MSG("Derive Server IV"); ret = DeriveKey(ssl, &key_data[i], ssl->specs.iv_size, ssl->arrays->serverSecret, writeIVLabel, WRITE_IV_LABEL_SZ, ssl->specs.mac_algorithm, 0); if (ret != 0) goto end; /* Store keys and IVs but don't activate them. */ ret = StoreKeys(ssl, key_data); end: #ifdef WOLFSSL_SMALL_STACK XFREE(key_data, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } #if defined(HAVE_SESSION_TICKET) #if defined(USER_TICKS) #if 0 word32 TimeNowInMilliseconds(void) { /* write your own clock tick function if don't want gettimeofday() needs millisecond accuracy but doesn't have to correlated to EPOCH */ } #endif #elif defined(TIME_OVERRIDES) #ifndef HAVE_TIME_T_TYPE typedef long time_t; #endif extern time_t XTIME(time_t * timer); /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (word32) XTIME(0) * 1000; } #elif defined(USE_WINDOWS_API) /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { static int init = 0; static LARGE_INTEGER freq; LARGE_INTEGER count; if (!init) { QueryPerformanceFrequency(&freq); init = 1; } QueryPerformanceCounter(&count); return (word32)(count.QuadPart / (freq.QuadPart / 1000)); } #elif defined(HAVE_RTP_SYS) #include "rtptime.h" /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (word32)rtp_get_system_sec() * 1000; } #elif defined(MICRIUM) /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { NET_SECURE_OS_TICK clk = 0; #if (NET_SECURE_MGR_CFG_EN == DEF_ENABLED) clk = NetSecure_OS_TimeGet(); #endif return (word32)clk * 1000; } #elif defined(MICROCHIP_TCPIP_V5) /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (word32) (TickGet() / (TICKS_PER_SECOND / 1000)); } #elif defined(MICROCHIP_TCPIP) #if defined(MICROCHIP_MPLAB_HARMONY) #include <system/tmr/sys_tmr.h> /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (word32) (SYS_TMR_TickCountGet() / (SYS_TMR_TickCounterFrequencyGet() / 1000)); } #else /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (word32) (SYS_TICK_Get() / (SYS_TICK_TicksPerSecondGet() / 1000)); } #endif #elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX) /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { TIME_STRUCT mqxTime; _time_get_elapsed(&mqxTime); return (word32) mqxTime.SECONDS * 1000; } #elif defined(FREESCALE_FREE_RTOS) || defined(FREESCALE_KSDK_FREERTOS) #include "include/task.h" /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (unsigned int)(((float)xTaskGetTickCount()) / (configTICK_RATE_HZ / 1000)); } #elif defined(FREESCALE_KSDK_BM) #include "lwip/sys.h" /* lwIP */ /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return sys_now(); } #elif defined(WOLFSSL_TIRTOS) /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (word32) Seconds_get() * 1000; } #elif defined(WOLFSSL_UTASKER) /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { return (word32)(uTaskerSystemTick / (TICK_RESOLUTION / 1000)); } #else /* The time in milliseconds. * Used for tickets to represent difference between when first seen and when * sending. * * returns the time in milliseconds as a 32-bit value. */ word32 TimeNowInMilliseconds(void) { struct timeval now; if (gettimeofday(&now, 0) < 0) return GETTIME_ERROR; /* Convert to milliseconds number. */ return (word32)(now.tv_sec * 1000 + now.tv_usec / 1000); } #endif #endif /* HAVE_SESSION_TICKET */ #if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_SESSION_TICKET) && \ !defined(NO_PSK)) /* Add input to all handshake hashes. * * ssl The SSL/TLS object. * input The data to hash. * sz The size of the data to hash. * returns 0 on success, otherwise failure. */ static int HashInputRaw(WOLFSSL* ssl, const byte* input, int sz) { int ret = 0; #ifndef NO_OLD_TLS #ifndef NO_SHA wc_ShaUpdate(&ssl->hsHashes->hashSha, input, sz); #endif #ifndef NO_MD5 wc_Md5Update(&ssl->hsHashes->hashMd5, input, sz); #endif #endif #ifndef NO_SHA256 ret = wc_Sha256Update(&ssl->hsHashes->hashSha256, input, sz); if (ret != 0) return ret; #endif #ifdef WOLFSSL_SHA384 ret = wc_Sha384Update(&ssl->hsHashes->hashSha384, input, sz); if (ret != 0) return ret; #endif #ifdef WOLFSSL_SHA512 ret = wc_Sha512Update(&ssl->hsHashes->hashSha512, input, sz); if (ret != 0) return ret; #endif return ret; } #endif /* Extract the handshake header information. * * ssl The SSL/TLS object. * input The buffer holding the message data. * inOutIdx On entry, the index into the buffer of the handshake data. * On exit, the start of the hanshake data. * type Type of handshake message. * size The length of the handshake message data. * totalSz The total size of data in the buffer. * returns BUFFER_E if there is not enough input data and 0 on success. */ static int GetHandshakeHeader(WOLFSSL* ssl, const byte* input, word32* inOutIdx, byte *type, word32 *size, word32 totalSz) { const byte *ptr = input + *inOutIdx; (void)ssl; *inOutIdx += HANDSHAKE_HEADER_SZ; if (*inOutIdx > totalSz) return BUFFER_E; *type = ptr[0]; c24to32(&ptr[1], size); return 0; } /* Add record layer header to message. * * output The buffer to write the record layer header into. * length The length of the record data. * type The type of record message. * ssl The SSL/TLS object. */ static void AddTls13RecordHeader(byte* output, word32 length, byte type, WOLFSSL* ssl) { RecordLayerHeader* rl; rl = (RecordLayerHeader*)output; rl->type = type; rl->pvMajor = ssl->version.major; rl->pvMinor = TLSv1_MINOR; c16toa((word16)length, rl->length); } /* Add handshake header to message. * * output The buffer to write the hanshake header into. * length The length of the handshake data. * fragOffset The offset of the fragment data. (DTLS) * fragLength The length of the fragment data. (DTLS) * type The type of handshake message. * ssl The SSL/TLS object. (DTLS) */ static void AddTls13HandShakeHeader(byte* output, word32 length, word32 fragOffset, word32 fragLength, byte type, WOLFSSL* ssl) { HandShakeHeader* hs; (void)fragOffset; (void)fragLength; (void)ssl; /* handshake header */ hs = (HandShakeHeader*)output; hs->type = type; c32to24(length, hs->length); } /* Add both record layer and handshake header to message. * * output The buffer to write the headers into. * length The length of the handshake data. * type The type of record layer message. * ssl The SSL/TLS object. (DTLS) */ static void AddTls13Headers(byte* output, word32 length, byte type, WOLFSSL* ssl) { word32 lengthAdj = HANDSHAKE_HEADER_SZ; word32 outputAdj = RECORD_HEADER_SZ; AddTls13RecordHeader(output, length + lengthAdj, handshake, ssl); AddTls13HandShakeHeader(output + outputAdj, length, 0, length, type, ssl); } #ifndef NO_CERTS /* Add both record layer and fragement handshake header to message. * * output The buffer to write the headers into. * fragOffset The offset of the fragment data. (DTLS) * fragLength The length of the fragment data. (DTLS) * length The length of the handshake data. * type The type of record layer message. * ssl The SSL/TLS object. (DTLS) */ static void AddTls13FragHeaders(byte* output, word32 fragSz, word32 fragOffset, word32 length, byte type, WOLFSSL* ssl) { word32 lengthAdj = HANDSHAKE_HEADER_SZ; word32 outputAdj = RECORD_HEADER_SZ; (void)fragSz; AddTls13RecordHeader(output, fragSz + lengthAdj, handshake, ssl); AddTls13HandShakeHeader(output + outputAdj, length, fragOffset, fragSz, type, ssl); } #endif /* NO_CERTS */ /* Write the sequence number into the buffer. * No DTLS v1.3 support. * * ssl The SSL/TLS object. * verifyOrder Which set of sequence numbers to use. * out The buffer to write into. */ static INLINE void WriteSEQ(WOLFSSL* ssl, int verifyOrder, byte* out) { word32 seq[2] = {0, 0}; if (verifyOrder) { seq[0] = ssl->keys.peer_sequence_number_hi; seq[1] = ssl->keys.peer_sequence_number_lo++; /* handle rollover */ if (seq[1] > ssl->keys.peer_sequence_number_lo) ssl->keys.peer_sequence_number_hi++; } else { seq[0] = ssl->keys.sequence_number_hi; seq[1] = ssl->keys.sequence_number_lo++; /* handle rollover */ if (seq[1] > ssl->keys.sequence_number_lo) ssl->keys.sequence_number_hi++; } c32toa(seq[0], out); c32toa(seq[1], out + OPAQUE32_LEN); } /* Build the nonce for TLS v1.3 encryption and decryption. * * ssl The SSL/TLS object. * nonce The nonce data to use when encrypting or decrypting. * iv The derived IV. * order The side on which the message is to be or was sent. */ static INLINE void BuildTls13Nonce(WOLFSSL* ssl, byte *nonce, const byte* iv, int order) { int i; /* The nonce is the IV with the sequence XORed into the last bytes. */ WriteSEQ(ssl, order, nonce + AEAD_NONCE_SZ - SEQ_SZ); for (i = 0; i < AEAD_NONCE_SZ - SEQ_SZ; i++) nonce[i] = iv[i]; for (; i < AEAD_NONCE_SZ; i++) nonce[i] ^= iv[i]; } /* Encrypt with ChaCha20 and create authenication tag with Poly1305. * * ssl The SSL/TLS object. * output The buffer to write encrypted data and authentication tag into. * May be the same pointer as input. * input The data to encrypt. * sz The number of bytes to encrypt. * nonce The nonce to use with ChaCha20. * tag The authentication tag buffer. * returns 0 on success, otherwise failure. */ static int ChaCha20Poly1305_Encrypt(WOLFSSL* ssl, byte* output, const byte* input, word16 sz, byte* nonce, byte* tag) { int ret = 0; byte poly[CHACHA20_256_KEY_SIZE]; /* Poly1305 key is 256 bits of zero encrypted with ChaCha20. */ XMEMSET(poly, 0, sizeof(poly)); /* Set the nonce for ChaCha and get Poly1305 key. */ ret = wc_Chacha_SetIV(ssl->encrypt.chacha, nonce, 0); if (ret != 0) return ret; /* Create Poly1305 key using ChaCha20 keystream. */ ret = wc_Chacha_Process(ssl->encrypt.chacha, poly, poly, sizeof(poly)); if (ret != 0) return ret; /* Encrypt the plain text. */ ret = wc_Chacha_Process(ssl->encrypt.chacha, output, input, sz); if (ret != 0) { ForceZero(poly, sizeof(poly)); return ret; } /* Set key for Poly1305. */ ret = wc_Poly1305SetKey(ssl->auth.poly1305, poly, sizeof(poly)); ForceZero(poly, sizeof(poly)); /* done with poly1305 key, clear it */ if (ret != 0) return ret; /* Add authentication code of encrypted data to end. */ ret = wc_Poly1305_MAC(ssl->auth.poly1305, NULL, 0, output, sz, tag, POLY1305_AUTH_SZ); return ret; } /* Encrypt data for TLS v1.3. * * ssl The SSL/TLS object. * output The buffer to write encrypted data and authentication tag into. * May be the same pointer as input. * input The data to encrypt. * sz The number of bytes to encrypt. * returns 0 on success, otherwise failure. */ static int EncryptTls13(WOLFSSL* ssl, byte* output, const byte* input, word16 sz) { int ret = 0; word16 dataSz = sz - ssl->specs.aead_mac_size; word16 macSz = ssl->specs.aead_mac_size; byte nonce[AEAD_NONCE_SZ]; (void)output; (void)input; (void)sz; (void)dataSz; (void)macSz; #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("Data to encrypt"); WOLFSSL_BUFFER(input, dataSz); #endif BuildTls13Nonce(ssl, nonce, ssl->keys.aead_enc_imp_IV, CUR_ORDER); switch (ssl->specs.bulk_cipher_algorithm) { #ifdef BUILD_AESGCM case wolfssl_aes_gcm: ret = wc_AesGcmEncrypt(ssl->encrypt.aes, output, input, dataSz, nonce, AESGCM_NONCE_SZ, output + dataSz, macSz, NULL, 0); break; #endif #ifdef HAVE_AESCCM case wolfssl_aes_ccm: ret = wc_AesCcmEncrypt(ssl->encrypt.aes, output, input, dataSz, nonce, AESCCM_NONCE_SZ, output + dataSz, macSz, NULL, 0); break; #endif #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) case wolfssl_chacha: ret = ChaCha20Poly1305_Encrypt(ssl, output, input, dataSz, nonce, output + dataSz); break; #endif default: WOLFSSL_MSG("wolfSSL Encrypt programming error"); return ENCRYPT_ERROR; } ForceZero(nonce, AEAD_NONCE_SZ); #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("Encrypted data"); WOLFSSL_BUFFER(output, dataSz); WOLFSSL_MSG("Authentication Tag"); WOLFSSL_BUFFER(output + dataSz, macSz); #endif return ret; } /* Decrypt with ChaCha20 and check authenication tag with Poly1305. * * ssl The SSL/TLS object. * output The buffer to write decrypted data into. * May be the same pointer as input. * input The data to decrypt. * sz The number of bytes to decrypt. * nonce The nonce to use with ChaCha20. * tagIn The authentication tag data from packet. * returns 0 on success, otherwise failure. */ static int ChaCha20Poly1305_Decrypt(WOLFSSL *ssl, byte* output, const byte* input, word16 sz, byte* nonce, const byte* tagIn) { int ret; byte tag[POLY1305_AUTH_SZ]; byte poly[CHACHA20_256_KEY_SIZE]; /* generated key for mac */ /* Poly1305 key is 256 bits of zero encrypted with ChaCha20. */ XMEMSET(poly, 0, sizeof(poly)); /* Set nonce and get Poly1305 key. */ ret = wc_Chacha_SetIV(ssl->decrypt.chacha, nonce, 0); if (ret != 0) return ret; /* Use ChaCha20 keystream to get Poly1305 key for tag. */ ret = wc_Chacha_Process(ssl->decrypt.chacha, poly, poly, sizeof(poly)); if (ret != 0) return ret; /* Set key for Poly1305. */ ret = wc_Poly1305SetKey(ssl->auth.poly1305, poly, sizeof(poly)); ForceZero(poly, sizeof(poly)); /* done with poly1305 key, clear it */ if (ret != 0) return ret; /* Generate authentication tag for encrypted data. */ if ((ret = wc_Poly1305_MAC(ssl->auth.poly1305, NULL, 0, (byte*)input, sz, tag, sizeof(tag))) != 0) { return ret; } /* Check tag sent along with packet. */ if (ConstantCompare(tagIn, tag, POLY1305_AUTH_SZ) != 0) { WOLFSSL_MSG("MAC did not match"); return VERIFY_MAC_ERROR; } /* If the tag was good decrypt message. */ ret = wc_Chacha_Process(ssl->decrypt.chacha, output, input, sz); return ret; } /* Decrypt data for TLS v1.3. * * ssl The SSL/TLS object. * output The buffer to write decrypted data into. * May be the same pointer as input. * input The data to encrypt and authentication tag. * sz The length of the encrypted data plus authentication tag. * returns 0 on success, otherwise failure. */ int DecryptTls13(WOLFSSL* ssl, byte* output, const byte* input, word16 sz) { int ret = 0; word16 dataSz = sz - ssl->specs.aead_mac_size; word16 macSz = ssl->specs.aead_mac_size; byte nonce[AEAD_NONCE_SZ]; (void)output; (void)input; (void)sz; (void)dataSz; (void)macSz; #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("Data to decrypt"); WOLFSSL_BUFFER(input, dataSz); WOLFSSL_MSG("Authentication tag"); WOLFSSL_BUFFER(input + dataSz, macSz); #endif BuildTls13Nonce(ssl, nonce, ssl->keys.aead_dec_imp_IV, PEER_ORDER); switch (ssl->specs.bulk_cipher_algorithm) { #ifdef BUILD_AESGCM case wolfssl_aes_gcm: ret = wc_AesGcmDecrypt(ssl->decrypt.aes, output, input, dataSz, nonce, AESGCM_NONCE_SZ, input + dataSz, macSz, NULL, 0); break; #endif #ifdef HAVE_AESCCM case wolfssl_aes_ccm: ret = wc_AesCcmDecrypt(ssl->decrypt.aes, output, input, dataSz, nonce, AESCCM_NONCE_SZ, input + dataSz, macSz, NULL, 0); break; #endif #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) case wolfssl_chacha: ret = ChaCha20Poly1305_Decrypt(ssl, output, input, dataSz, nonce, input + dataSz); break; #endif default: WOLFSSL_MSG("wolfSSL Decrypt programming error"); return DECRYPT_ERROR; } ForceZero(nonce, AEAD_NONCE_SZ); if (ret < 0 && !ssl->options.dtls) { SendAlert(ssl, alert_fatal, bad_record_mac); ret = VERIFY_MAC_ERROR; } #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("Decrypted data"); WOLFSSL_BUFFER(output, dataSz); #endif return ret; } /* Build SSL Message, encrypted. * TLS v1.3 encryption is AEAD only. * * ssl The SSL/TLS object. * output The buffer to write record message to. * outSz Size of the buffer being written into. * input The record data to encrypt (excluding record header). * inSz The size of the record data. * type The recorder header content type. * hashOutput Whether to hash the unencrypted record data. * sizeOnly Only want the size of the record message. * returns the size of the encrypted record message or negative value on error. */ int BuildTls13Message(WOLFSSL* ssl, byte* output, int outSz, const byte* input, int inSz, int type, int hashOutput, int sizeOnly) { word32 sz = RECORD_HEADER_SZ + inSz; word32 idx = RECORD_HEADER_SZ; word32 headerSz = RECORD_HEADER_SZ; word16 size; int ret = 0; int atomicUser = 0; if (ssl == NULL) return BAD_FUNC_ARG; if (!sizeOnly && (output == NULL || input == NULL)) return BAD_FUNC_ARG; /* catch mistaken sizeOnly parameter */ if (sizeOnly && (output || input)) { WOLFSSL_MSG("BuildMessage with sizeOnly doesn't need input or output"); return BAD_FUNC_ARG; } /* Record layer content type at the end of record data. */ sz++; /* Authentication data at the end. */ sz += ssl->specs.aead_mac_size; if (sizeOnly) return sz; if (sz > (word32)outSz) { WOLFSSL_MSG("Oops, want to write past output buffer size"); return BUFFER_E; } /* Record data length. */ size = (word16)(sz - headerSz); /* Write/update the record header with the new size. * Always have the content type as application data for encrypted * messages in TLS v1.3. */ AddTls13RecordHeader(output, size, application_data, ssl); /* TLS v1.3 can do in place encryption. */ if (input != output + idx) XMEMCPY(output + idx, input, inSz); idx += inSz; if (hashOutput) { ret = HashOutput(ssl, output, headerSz + inSz, 0); if (ret != 0) return ret; } /* The real record content type goes at the end of the data. */ output[idx++] = type; #ifdef ATOMIC_USER if (ssl->ctx->MacEncryptCb) atomicUser = 1; #endif if (atomicUser) { /* User Record Layer Callback handling */ #ifdef ATOMIC_USER byte* mac = output + idx; output += headerSz; if ((ret = ssl->ctx->MacEncryptCb(ssl, mac, output, inSz, type, 0, output, output, size, ssl->MacEncryptCtx)) != 0) { return ret; } #endif } else { output += headerSz; if ((ret = EncryptTls13(ssl, output, output, size)) != 0) return ret; } return sz; } #ifndef NO_WOLFSSL_CLIENT #if defined(HAVE_SESSION_TICKET) && !defined(NO_PSK) /* Get the size of the message hash. * * ssl The SSL/TLS object. * returns the length of the hash. */ static int GetMsgHashSize(WOLFSSL *ssl) { switch (ssl->specs.mac_algorithm) { #ifndef NO_SHA256 case sha256_mac: return SHA256_DIGEST_SIZE; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case sha384_mac: return SHA384_DIGEST_SIZE; #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 case sha512_mac: return SHA512_DIGEST_SIZE; #endif /* WOLFSSL_SHA512 */ } return 0; } /* Derive and write the binders into the ClientHello in space left when * writing the Pre-Shared Key extension. * * ssl The SSL/TLS object. * output The buffer containing the ClientHello. * idx The index at the end of the completed ClientHello. * returns 0 on success and otherwise failure. */ static int WritePSKBinders(WOLFSSL* ssl, byte* output, word32 idx) { int ret; TLSX* ext; PreSharedKey* current; byte binderKey[MAX_DIGEST_SIZE]; word16 len; ext = TLSX_Find(ssl->extensions, TLSX_PRE_SHARED_KEY); if (ext == NULL) return SANITY_MSG_E; /* Get the size of the binders to determine where to write binders. */ idx -= TLSX_PreSharedKey_GetSizeBinders(ext->data, client_hello); /* Hash truncated ClientHello - up to binders. */ ret = HashOutput(ssl, output, idx, 0); if (ret != 0) return ret; current = ext->data; /* Calculate the binder for each identity based on previous handshake data. */ while (current != NULL) { if (current->resumption) { /* Set the HMAC to use based on the one for the session (set into * the extension data at the start of this function based on the * cipher suite in the session information. */ ssl->specs.mac_algorithm = current->hmac; /* Resumption PSK is master secret. */ ssl->arrays->psk_keySz = GetMsgHashSize(ssl); XMEMCPY(ssl->arrays->psk_key, ssl->session.masterSecret, ssl->arrays->psk_keySz); /* Derive the early secret using the PSK. */ DeriveEarlySecret(ssl); /* Derive the binder key to use to with HMAC. */ DeriveBinderKeyResume(ssl, binderKey); } else { /* TODO: [TLS13] Support non-ticket PSK. */ /* Get the pre-shared key. */ ssl->arrays->psk_keySz = ssl->options.client_psk_cb(ssl, (char *)current->identity, ssl->arrays->client_identity, MAX_PSK_ID_LEN, ssl->arrays->psk_key, MAX_PSK_KEY_LEN); /* Derive the early secret using the PSK. */ DeriveEarlySecret(ssl); /* Derive the binder key to use to with HMAC. */ DeriveBinderKey(ssl, binderKey); } /* Derive the Finished message secret. */ DeriveFinishedSecret(ssl, binderKey, ssl->keys.client_write_MAC_secret); /* Build the HMAC of the handshake message data = binder. */ current->binderLen = BuildTls13HandshakeHmac(ssl, ssl->keys.client_write_MAC_secret, current->binder); current = current->next; } /* Data entered into extension, now write to message. */ len = TLSX_PreSharedKey_WriteBinders(ext->data, output + idx, client_hello); /* Hash binders to complete the hash of the ClientHello. */ return HashOutputRaw(ssl, output + idx, len); } #endif /* Send a ClientHello message to the server. * Include the information required to start a handshake with servers using * protocol versions less than TLS v1.3. * Only a client will send this message. * * ssl The SSL/TLS object. * returns 0 on success and otherwise failure. */ int SendTls13ClientHello(WOLFSSL* ssl) { byte* output; word32 length; word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; int sendSz; int ret; #if defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET) && !defined(NO_PSK) if (ssl->options.resuming && (ssl->session.version.major != ssl->version.major || ssl->session.version.minor != ssl->version.minor)) { ssl->version.major = ssl->session.version.major; ssl->version.minor = ssl->session.version.minor; return SendClientHello(ssl); } #endif if (ssl->suites == NULL) { WOLFSSL_MSG("Bad suites pointer in SendTls13ClientHello"); return SUITES_ERROR; } /* Version | Random | Session Id | Cipher Suites | Compression | Ext */ length = VERSION_SZ + RAN_LEN + ENUM_LEN + ssl->suites->suiteSz + SUITE_LEN + COMP_LEN + ENUM_LEN; /* Auto populate extensions supported unless user defined. */ if ((ret = TLSX_PopulateExtensions(ssl, 0)) != 0) return ret; #ifdef HAVE_QSH if (QSH_Init(ssl) != 0) return MEMORY_E; #endif /* Include length of TLS extensions. */ length += TLSX_GetRequestSize(ssl); /* Total message size. */ sendSz = length + HANDSHAKE_HEADER_SZ + RECORD_HEADER_SZ; /* Check buffers are big enough and grow if needed. */ if ((ret = CheckAvailableSize(ssl, sendSz)) != 0) return ret; /* Get position in output buffer to write new message to. */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; /* Put the record and handshake headers on. */ AddTls13Headers(output, length, client_hello, ssl); /* Protocol version. */ output[idx++] = SSLv3_MAJOR; output[idx++] = TLSv1_2_MINOR; ssl->chVersion = ssl->version; /* Client Random */ if (ssl->options.connectState == CONNECT_BEGIN) { ret = wc_RNG_GenerateBlock(ssl->rng, output + idx, RAN_LEN); if (ret != 0) return ret; /* Store random for possible second ClientHello. */ XMEMCPY(ssl->arrays->clientRandom, output + idx, RAN_LEN); } else XMEMCPY(output + idx, ssl->arrays->clientRandom, RAN_LEN); idx += RAN_LEN; /* TLS v1.3 does not use session id - 0 length. */ output[idx++] = 0; /* Cipher suites */ c16toa(ssl->suites->suiteSz, output + idx); idx += OPAQUE16_LEN; XMEMCPY(output + idx, &ssl->suites->suites, ssl->suites->suiteSz); idx += ssl->suites->suiteSz; /* Compression not supported in TLS v1.3. */ output[idx++] = COMP_LEN; output[idx++] = NO_COMPRESSION; /* Write out extensions for a request. */ idx += TLSX_WriteRequest(ssl, output + idx); #if defined(HAVE_SESSION_TICKET) && !defined(NO_PSK) /* Resumption has a specific set of extensions and binder is calculated * for each identity. */ if (ssl->options.resuming) ret = WritePSKBinders(ssl, output, idx); else #endif ret = HashOutput(ssl, output, idx, 0); if (ret != 0) return ret; ssl->options.clientState = CLIENT_HELLO_COMPLETE; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("ClientHello", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("ClientHello", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif ssl->buffers.outputBuffer.length += sendSz; return SendBuffered(ssl); } /* Parse and handle a HelloRetryRequest message. * Only a client will receive this message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of * HelloRetryRequest. * On exit, the index of byte after the HelloRetryRequest message. * totalSz The length of the current handshake message. * returns 0 on success and otherwise failure. */ static int DoTls13HelloRetryRequest(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 totalSz) { int ret; word32 begin = *inOutIdx; word32 i = begin; word16 totalExtSz; ProtocolVersion pv; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("HelloRetryRequest", &ssl->handShakeInfo); if (ssl->toInfoOn) AddLateName("HelloRetryRequest", &ssl->timeoutInfo); #endif /* Version info and length field of extension data. */ if (totalSz < i - begin + OPAQUE16_LEN + OPAQUE16_LEN) return BUFFER_ERROR; /* Protocol version. */ XMEMCPY(&pv, input + i, OPAQUE16_LEN); i += OPAQUE16_LEN; ret = CheckVersion(ssl, pv); if (ret != 0) return ret; /* Length of extension data. */ ato16(&input[i], &totalExtSz); i += OPAQUE16_LEN; if (totalExtSz == 0) { WOLFSSL_MSG("HelloRetryRequest must contain extensions"); return MISSING_HANDSHAKE_DATA; } /* Extension data. */ if (i - begin + totalExtSz > totalSz) return BUFFER_ERROR; if ((ret = TLSX_Parse(ssl, (byte *)(input + i), totalExtSz, hello_retry_request, NULL))) return ret; /* The KeyShare extension parsing fails when not valid. */ /* Move index to byte after message. */ *inOutIdx = i + totalExtSz; ssl->options.tls1_3 = 1; ssl->options.serverState = SERVER_HELLO_RETRY_REQUEST; return 0; } /* Handle the ServerHello message from the server. * Only a client will receive this message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of ServerHello. * On exit, the index of byte after the ServerHello message. * helloSz The length of the current handshake message. * returns 0 on success and otherwise failure. */ int DoTls13ServerHello(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 helloSz) { ProtocolVersion pv; word32 i = *inOutIdx; word32 begin = i; int ret; word16 totalExtSz; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("ServerHello", &ssl->handShakeInfo); if (ssl->toInfoOn) AddLateName("ServerHello", &ssl->timeoutInfo); #endif /* Protocol version length check. */ if (OPAQUE16_LEN > helloSz) return BUFFER_ERROR; /* Protocol version */ XMEMCPY(&pv, input + i, OPAQUE16_LEN); i += OPAQUE16_LEN; ret = CheckVersion(ssl, pv); if (ret != 0) return ret; if (!IsAtLeastTLSv1_3(pv) && pv.major != TLS_DRAFT_MAJOR) { ssl->version = pv; return DoServerHello(ssl, input, inOutIdx, helloSz); } /* Random, cipher suite and extensions length check. */ if ((i - begin) + RAN_LEN + OPAQUE16_LEN + OPAQUE16_LEN > helloSz) return BUFFER_ERROR; /* Server random - keep for debugging. */ XMEMCPY(ssl->arrays->serverRandom, input + i, RAN_LEN); i += RAN_LEN; /* TODO: [TLS13] Check last 8 bytes. */ /* Set the cipher suite from the message. */ ssl->options.cipherSuite0 = input[i++]; ssl->options.cipherSuite = input[i++]; /* Get extension length and length check. */ ato16(&input[i], &totalExtSz); i += OPAQUE16_LEN; if ((i - begin) + totalExtSz > helloSz) return BUFFER_ERROR; /* Parse and handle extensions. */ ret = TLSX_Parse(ssl, (byte *) input + i, totalExtSz, server_hello, NULL); if (ret != 0) return ret; i += totalExtSz; *inOutIdx = i; ssl->options.serverState = SERVER_HELLO_COMPLETE; #ifdef HAVE_SECRET_CALLBACK if (ssl->sessionSecretCb != NULL) { int secretSz = SECRET_LEN, ret; ret = ssl->sessionSecretCb(ssl, ssl->session.masterSecret, &secretSz, ssl->sessionSecretCtx); if (ret != 0 || secretSz != SECRET_LEN) return SESSION_SECRET_CB_E; } #endif /* HAVE_SECRET_CALLBACK */ ret = SetCipherSpecs(ssl); if (ret != 0) return ret; #ifndef NO_PSK if (ssl->options.resuming) { PreSharedKey *psk = NULL; TLSX* ext = TLSX_Find(ssl->extensions, TLSX_PRE_SHARED_KEY); if (ext != NULL) psk = (PreSharedKey*)ext->data; while (psk != NULL && !psk->chosen) psk = psk->next; if (psk == NULL) { ssl->options.resuming = 0; ssl->arrays->psk_keySz = ssl->specs.hash_size; XMEMSET(ssl->arrays->psk_key, 0, ssl->arrays->psk_keySz); } } #endif ssl->keys.encryptionOn = 1; return ret; } /* Parse and handle an EncryptedExtensions message. * Only a client will receive this message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of * EncryptedExtensions. * On exit, the index of byte after the EncryptedExtensions * message. * totalSz The length of the current handshake message. * returns 0 on success and otherwise failure. */ static int DoTls13EncryptedExtensions(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 totalSz) { int ret; word32 begin = *inOutIdx; word32 i = begin; word16 totalExtSz; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("EncryptedExtensions", &ssl->handShakeInfo); if (ssl->toInfoOn) AddLateName("EncryptedExtensions", &ssl->timeoutInfo); #endif /* Length field of extension data. */ if (totalSz < i - begin + OPAQUE16_LEN) return BUFFER_ERROR; ato16(&input[i], &totalExtSz); i += OPAQUE16_LEN; /* Extension data. */ if (i - begin + totalExtSz > totalSz) return BUFFER_ERROR; if ((ret = TLSX_Parse(ssl, (byte *)(input + i), totalExtSz, encrypted_extensions, NULL))) return ret; /* Move index to byte after message. */ *inOutIdx = i + totalExtSz; /* Always encrypted. */ *inOutIdx += ssl->keys.padSz; return 0; } /* Handle a TLS v1.3 CertificateRequest message. * This message is always encrypted. * Only a client will receive this message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of CertificateRequest. * On exit, the index of byte after the CertificateRequest message. * size The length of the current handshake message. * returns 0 on success and otherwise failure. */ static int DoTls13CertificateRequest(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 size) { word16 len; word32 begin = *inOutIdx; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("CertificateRequest", &ssl->handShakeInfo); if (ssl->toInfoOn) AddLateName("CertificateRequest", &ssl->timeoutInfo); #endif if ((*inOutIdx - begin) + OPAQUE8_LEN > size) return BUFFER_ERROR; /* Length of the request context. */ len = input[(*inOutIdx)++]; if ((*inOutIdx - begin) + len > size) return BUFFER_ERROR; if (ssl->options.connectState < FINISHED_DONE && len > 0) return BUFFER_ERROR; /* Request context parsed here. */ /* TODO: [TLS13] Request context for post-handshake auth. * Store the value and return it in Certificate message. * Must be unique in the scope of the connection. */ *inOutIdx += len; /* Signature and hash algorithms. */ if ((*inOutIdx - begin) + OPAQUE16_LEN > size) return BUFFER_ERROR; ato16(input + *inOutIdx, &len); *inOutIdx += OPAQUE16_LEN; if ((*inOutIdx - begin) + len > size) return BUFFER_ERROR; PickHashSigAlgo(ssl, input + *inOutIdx, len); *inOutIdx += len; /* Length of certificate authority data. */ if ((*inOutIdx - begin) + OPAQUE16_LEN > size) return BUFFER_ERROR; ato16(input + *inOutIdx, &len); *inOutIdx += OPAQUE16_LEN; if ((*inOutIdx - begin) + len > size) return BUFFER_ERROR; /* Certificate authorities. */ while (len) { word16 dnSz; if ((*inOutIdx - begin) + OPAQUE16_LEN > size) return BUFFER_ERROR; ato16(input + *inOutIdx, &dnSz); *inOutIdx += OPAQUE16_LEN; if ((*inOutIdx - begin) + dnSz > size) return BUFFER_ERROR; *inOutIdx += dnSz; len -= OPAQUE16_LEN + dnSz; } /* TODO: [TLS13] Add extension handling. */ /* Certificate extensions */ if ((*inOutIdx - begin) + OPAQUE16_LEN > size) return BUFFER_ERROR; ato16(input + *inOutIdx, &len); *inOutIdx += OPAQUE16_LEN; if ((*inOutIdx - begin) + len > size) return BUFFER_ERROR; /* Skip over extensions for now. */ *inOutIdx += len; ssl->options.sendVerify = SEND_CERT; /* This message is always encrypted so add encryption padding. */ *inOutIdx += ssl->keys.padSz; return 0; } #endif /* !NO_WOLFSSL_CLIENT */ #ifndef NO_WOLFSSL_SERVER #if defined(HAVE_SESSION_TICKET) && !defined(NO_PSK) /* Handle any Pre-Shared Key (PSK) extension. * Must do this in ClientHello as it requires a hash of the truncated message. * Don't know size of binders until Pre-Shared Key extension has been parsed. * * ssl The SSL/TLS object. * input The ClientHello message. * helloSz The size of the ClientHello message (including binders if present). * usingPSK Indicates handshake is using Pre-Shared Keys. * returns 0 on success and otherwise failure. */ static int DoPreSharedKeys(WOLFSSL *ssl, const byte* input, word32 helloSz, int* usingPSK) { int ret; TLSX* ext; word16 bindersLen; PreSharedKey* current; byte binderKey[MAX_DIGEST_SIZE]; byte binder[MAX_DIGEST_SIZE]; word16 binderLen; word16 modes; ext = TLSX_Find(ssl->extensions, TLSX_PRE_SHARED_KEY); if (ext == NULL) return 0; /* Extensions pushed on stack/list and PSK must be last. */ if (ssl->extensions != ext) return PSK_KEY_ERROR; /* Assume we are going to resume with a pre-shared key. */ ssl->options.resuming = 1; /* Find the pre-shared key extension and calculate hash of truncated * ClientHello for binders. */ bindersLen = TLSX_PreSharedKey_GetSizeBinders(ext->data, client_hello); /* Hash data up to binders for deriving binders in PSK extension. */ ret = HashInput(ssl, input, helloSz - bindersLen); if (ret != 0) return ret; /* Look through all client's pre-shared keys for a match. */ current = (PreSharedKey*)ext->data; while (current != NULL) { /* TODO: [TLS13] Support non-ticket PSK. */ /* Decode the identity. */ ret = DoClientTicket(ssl, current->identity, current->identityLen); if (ret != WOLFSSL_TICKET_RET_OK) continue; if (current->resumption) { /* Check the ticket isn't too old or new. */ int diff = TimeNowInMilliseconds() - ssl->session.ticketSeen; diff -= current->ticketAge - ssl->session.ticketAdd; /* TODO: [TLS13] What should the value be? Configurable? */ if (diff < -1000 || diff > 1000) { /* Invalid difference, fallback to full handshake. */ ssl->options.resuming = 0; break; } /* Use the same cipher suite as before and set up for use. */ ssl->options.cipherSuite0 = ssl->session.cipherSuite0; ssl->options.cipherSuite = ssl->session.cipherSuite; ret = SetCipherSpecs(ssl); if (ret != 0) return ret; /* Resumption PSK is resumption master secret. */ ssl->arrays->psk_keySz = ssl->specs.hash_size; XMEMCPY(ssl->arrays->psk_key, ssl->session.masterSecret, ssl->specs.hash_size); /* Derive the early secret using the PSK. */ DeriveEarlySecret(ssl); /* Derive the binder key to use to with HMAC. */ DeriveBinderKeyResume(ssl, binderKey); } else { /* PSK age is always zero. */ if (current->ticketAge != ssl->session.ticketAdd) return PSK_KEY_ERROR; /* Get the pre-shared key. */ ssl->arrays->psk_keySz = ssl->options.client_psk_cb(ssl, (char*)current->identity, ssl->arrays->client_identity, MAX_PSK_ID_LEN, ssl->arrays->psk_key, MAX_PSK_KEY_LEN); /* Derive the early secret using the PSK. */ DeriveEarlySecret(ssl); /* Derive the binder key to use to with HMAC. */ DeriveBinderKey(ssl, binderKey); } /* Derive the Finished message secret. */ DeriveFinishedSecret(ssl, binderKey, ssl->keys.client_write_MAC_secret); /* Derive the binder and compare with the one in the extension. */ binderLen = BuildTls13HandshakeHmac(ssl, ssl->keys.client_write_MAC_secret, binder); if (binderLen != current->binderLen || XMEMCMP(binder, current->binder, binderLen) != 0) { return BAD_BINDER; } /* This PSK works, no need to try any more. */ current->chosen = 1; ext->resp = 1; break; } /* Hash the rest of the ClientHello. */ ret = HashInputRaw(ssl, input + helloSz - bindersLen, bindersLen); if (ret != 0) return ret; /* Get the PSK key exchange modes the client wants to negotiate. */ ext = TLSX_Find(ssl->extensions, TLSX_PSK_KEY_EXCHANGE_MODES); if (ext == NULL) return MISSING_HANDSHAKE_DATA; modes = ext->val; ext = TLSX_Find(ssl->extensions, TLSX_KEY_SHARE); /* Use (EC)DHE for forward-security if possible. */ if (ext != NULL && (modes & (1 << PSK_DHE_KE)) != 0 && !ssl->options.noPskDheKe) { /* Only use named group used in last session. */ ssl->namedGroup = ssl->session.namedGroup; /* Try to establish a new secret. */ ret = TLSX_KeyShare_Establish(ssl); if (ret == KEY_SHARE_ERROR) return PSK_KEY_ERROR; else if (ret > 0) ret = 0; /* Send new public key to client. */ ext->resp = 1; } else if ((modes & (1 << PSK_KE)) != 0) { /* Don't send a key share extension back. */ if (ext != NULL) ext->resp = 0; } else return PSK_KEY_ERROR; *usingPSK = 1; return ret; } #endif /* Handle a ClientHello handshake message. * If the protocol version in the message is not TLS v1.3 or higher, use * DoClientHello() * Only a server will receive this message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of ClientHello. * On exit, the index of byte after the ClientHello message and * padding. * helloSz The length of the current handshake message. * returns 0 on success and otherwise failure. */ static int DoTls13ClientHello(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 helloSz) { int ret; byte b; ProtocolVersion pv; Suites clSuites; word32 i = *inOutIdx; word32 begin = i; word16 totalExtSz; int usingPSK = 0; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("ClientHello", &ssl->handShakeInfo); if (ssl->toInfoOn) AddLateName("ClientHello", &ssl->timeoutInfo); #endif /* protocol version, random and session id length check */ if ((i - begin) + OPAQUE16_LEN + RAN_LEN + OPAQUE8_LEN > helloSz) return BUFFER_ERROR; /* Protocol version */ XMEMCPY(&pv, input + i, OPAQUE16_LEN); ssl->chVersion = pv; /* store */ i += OPAQUE16_LEN; if ((ssl->version.major == SSLv3_MAJOR && ssl->version.minor < TLSv1_3_MINOR) || ssl->options.dtls) { return DoClientHello(ssl, input, inOutIdx, helloSz); } /* Client random */ XMEMCPY(ssl->arrays->clientRandom, input + i, RAN_LEN); i += RAN_LEN; #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("client random"); WOLFSSL_BUFFER(ssl->arrays->clientRandom, RAN_LEN); #endif /* Session id - empty in TLS v1.3 */ b = input[i++]; if (b != 0) { WOLFSSL_MSG("Client sent session id - not supported"); return BUFFER_ERROR; } /* Cipher suites */ if ((i - begin) + OPAQUE16_LEN > helloSz) return BUFFER_ERROR; ato16(&input[i], &clSuites.suiteSz); i += OPAQUE16_LEN; /* suites and compression length check */ if ((i - begin) + clSuites.suiteSz + OPAQUE8_LEN > helloSz) return BUFFER_ERROR; if (clSuites.suiteSz > WOLFSSL_MAX_SUITE_SZ) return BUFFER_ERROR; XMEMCPY(clSuites.suites, input + i, clSuites.suiteSz); i += clSuites.suiteSz; clSuites.hashSigAlgoSz = 0; /* Compression */ b = input[i++]; if ((i - begin) + b > helloSz) return BUFFER_ERROR; if (b != COMP_LEN) { WOLFSSL_MSG("Must be one compression type in list"); return INVALID_PARAMETER; } b = input[i++]; if (b != NO_COMPRESSION) { WOLFSSL_MSG("Must be no compression type in list"); return INVALID_PARAMETER; } /* TLS v1.3 ClientHello messages will have extensions. */ if ((i - begin) >= helloSz) { WOLFSSL_MSG("ClientHello must have extensions in TLS v1.3"); return BUFFER_ERROR; } if ((i - begin) + OPAQUE16_LEN > helloSz) return BUFFER_ERROR; ato16(&input[i], &totalExtSz); i += OPAQUE16_LEN; if ((i - begin) + totalExtSz > helloSz) return BUFFER_ERROR; #ifdef HAVE_QSH QSH_Init(ssl); #endif /* Auto populate extensions supported unless user defined. */ if ((ret = TLSX_PopulateExtensions(ssl, 1)) != 0) return ret; /* Parse extensions */ if ((ret = TLSX_Parse(ssl, (byte*)input + i, totalExtSz, client_hello, &clSuites))) { return ret; } #ifdef HAVE_STUNNEL if ((ret = SNI_Callback(ssl)) != 0) return ret; #endif /*HAVE_STUNNEL*/ if (TLSX_Find(ssl->extensions, TLSX_SUPPORTED_VERSIONS) == NULL) ssl->version.minor = pv.minor; #if defined(HAVE_SESSION_TICKET) && !defined(NO_PSK) /* Process the Pre-Shared Key extension if present. */ ret = DoPreSharedKeys(ssl, input + begin, helloSz, &usingPSK); if (ret != 0) return ret; #endif if (!usingPSK) { ret = MatchSuite(ssl, &clSuites); if (ret < 0) { WOLFSSL_MSG("Unsupported cipher suite, ClientHello"); return ret; } #ifndef NO_PSK if (ssl->options.resuming) { ssl->options.resuming = 0; XMEMSET(ssl->arrays->psk_key, 0, ssl->specs.hash_size); /* May or may not have done any hashing. */ ret = InitHandshakeHashes(ssl); if (ret != 0) return ret; } #endif ret = HashInput(ssl, input + begin, helloSz); if (ret != 0) return ret; } i += totalExtSz; *inOutIdx = i; ssl->options.clientState = CLIENT_HELLO_COMPLETE; return 0; } /* Send the HelloRetryRequest message to indicate the negotiated protocol * version and security parameters the server is willing to use. * Only a server will send this message. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int SendTls13HelloRetryRequest(WOLFSSL *ssl) { int ret; byte* output; word32 length; word32 len; word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; int sendSz; /* Get the length of the extensions that will be written. */ len = TLSX_GetResponseSize(ssl, hello_retry_request); /* There must be extensions sent to indicate what client needs to do. */ if (len == 0) return MISSING_HANDSHAKE_DATA; /* Protocol version + Extensions */ length = OPAQUE16_LEN + len; sendSz = idx + length; /* Check buffers are big enough and grow if needed. */ ret = CheckAvailableSize(ssl, sendSz); if (ret != 0) return ret; /* Get position in output buffer to write new message to. */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; /* Add record and hanshake headers. */ AddTls13Headers(output, length, hello_retry_request, ssl); /* TODO: [TLS13] Replace existing code with code in comment. * Use the TLS v1.3 draft version for now. * * Change to: * output[idx++] = ssl->version.major; * output[idx++] = ssl->version.minor; */ /* The negotiated protocol version. */ output[idx++] = TLS_DRAFT_MAJOR; output[idx++] = TLS_DRAFT_MINOR; /* Add TLS extensions. */ TLSX_WriteResponse(ssl, output + idx, hello_retry_request); idx += len; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("HelloRetryRequest", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("HelloRetryRequest", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif ret = HashOutput(ssl, output, idx, 0); if (ret != 0) return ret; ssl->buffers.outputBuffer.length += sendSz; if (ssl->options.groupMessages) return 0; else return SendBuffered(ssl); } /* Send TLS v1.3 ServerHello message to client. * Only a server will send this message. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int SendTls13ServerHello(WOLFSSL* ssl) { byte* output; word32 length; word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; int sendSz; int ret; /* Protocol version, server random, cipher suite and extensions. */ length = VERSION_SZ + RAN_LEN + SUITE_LEN + TLSX_GetResponseSize(ssl, server_hello); sendSz = idx + length; /* Check buffers are big enough and grow if needed. */ if ((ret = CheckAvailableSize(ssl, sendSz)) != 0) return ret; /* Get position in output buffer to write new message to. */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; /* Put the record and handshake headers on. */ AddTls13Headers(output, length, server_hello, ssl); /* TODO: [TLS13] Replace existing code with code in comment. * Use the TLS v1.3 draft version for now. * * Change to: * output[idx++] = ssl->version.major; * output[idx++] = ssl->version.minor; */ /* The negotiated protocol version. */ output[idx++] = TLS_DRAFT_MAJOR; output[idx++] = TLS_DRAFT_MINOR; /* TODO: [TLS13] Last 8 bytes have special meaning. */ /* Generate server random. */ ret = wc_RNG_GenerateBlock(ssl->rng, output + idx, RAN_LEN); if (ret != 0) return ret; /* Store in SSL for debugging. */ XMEMCPY(ssl->arrays->serverRandom, output + idx, RAN_LEN); idx += RAN_LEN; #ifdef WOLFSSL_DEBUG_TLS WOLFSSL_MSG("Server random"); WOLFSSL_BUFFER(ssl->arrays->serverRandom, RAN_LEN); #endif /* Chosen cipher suite */ output[idx++] = ssl->options.cipherSuite0; output[idx++] = ssl->options.cipherSuite; /* Extensions */ TLSX_WriteResponse(ssl, output + idx, server_hello); ssl->buffers.outputBuffer.length += sendSz; ret = HashOutput(ssl, output, sendSz, 0); if (ret != 0) return ret; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("ServerHello", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("ServerHello", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif ssl->options.serverState = SERVER_HELLO_COMPLETE; if (ssl->options.groupMessages) return 0; else return SendBuffered(ssl); } /* Send the rest of the extensions encrypted under the handshake key. * This message is always encrypted in TLS v1.3. * Only a server will send this message. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int SendTls13EncryptedExtensions(WOLFSSL *ssl) { int ret; byte* output; word32 length; word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; int sendSz; ssl->keys.encryptionOn = 1; /* Derive early secret for handshake secret. */ if ((ret = DeriveEarlySecret(ssl)) != 0) return ret; /* Derive the handshake secret now that we are at first message to be * encrypted under the keys. */ if ((ret = DeriveHandshakeSecret(ssl)) != 0) return ret; if ((ret = DeriveTls13Keys(ssl, handshake_key, ENCRYPT_AND_DECRYPT_SIDE)) != 0) return ret; /* Setup encrypt/decrypt keys for following messages. */ if ((ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE)) != 0) return ret; length = TLSX_GetResponseSize(ssl, encrypted_extensions); sendSz = idx + length; /* Encryption always on. */ sendSz += MAX_MSG_EXTRA; /* Check buffers are big enough and grow if needed. */ ret = CheckAvailableSize(ssl, sendSz); if (ret != 0) return ret; /* Get position in output buffer to write new message to. */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; /* Put the record and handshake headers on. */ AddTls13Headers(output, length, encrypted_extensions, ssl); TLSX_WriteResponse(ssl, output + idx, encrypted_extensions); idx += length; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("EncryptedExtensions", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("EncryptedExtensions", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif /* This handshake message is always encrypted. */ sendSz = BuildTls13Message(ssl, output, sendSz, output + RECORD_HEADER_SZ, idx - RECORD_HEADER_SZ, handshake, 1, 0); if (sendSz < 0) return sendSz; ssl->buffers.outputBuffer.length += sendSz; ssl->options.serverState = SERVER_ENCRYPTED_EXTENSIONS_COMPLETE; if (ssl->options.groupMessages) return 0; else return SendBuffered(ssl); } #ifndef NO_CERTS /* Send the TLS v1.3 CertificateRequest message. * This message is always encrypted in TLS v1.3. * Only a server will send this message. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int SendTls13CertificateRequest(WOLFSSL* ssl) { byte *output; int ret; int sendSz; int reqCtxLen = 0; word32 i = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; int reqSz = OPAQUE8_LEN + reqCtxLen + REQ_HEADER_SZ + REQ_HEADER_SZ; reqSz += LENGTH_SZ + ssl->suites->hashSigAlgoSz; if (ssl->options.usingPSK_cipher || ssl->options.usingAnon_cipher) return 0; /* not needed */ sendSz = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ + reqSz; /* Always encrypted and make room for padding. */ sendSz += MAX_MSG_EXTRA; /* Check buffers are big enough and grow if needed. */ if ((ret = CheckAvailableSize(ssl, sendSz)) != 0) return ret; /* Get position in output buffer to write new message to. */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; /* Put the record and handshake headers on. */ AddTls13Headers(output, reqSz, certificate_request, ssl); /* Certificate request context. */ /* TODO: [TLS13] Request context for post-handshake auth. * Must be unique in the scope of the connection. */ output[i++] = reqCtxLen; /* supported hash/sig */ c16toa(ssl->suites->hashSigAlgoSz, &output[i]); i += LENGTH_SZ; XMEMCPY(&output[i], ssl->suites->hashSigAlgo, ssl->suites->hashSigAlgoSz); i += ssl->suites->hashSigAlgoSz; /* Certificate authorities not supported yet - empty buffer. */ c16toa(0, &output[i]); i += REQ_HEADER_SZ; /* Certificate extensions. */ /* TODO: [TLS13] Add extension handling. */ c16toa(0, &output[i]); /* auth's */ i += REQ_HEADER_SZ; /* Always encrypted. */ sendSz = BuildTls13Message(ssl, output, sendSz, output + RECORD_HEADER_SZ, i - RECORD_HEADER_SZ, handshake, 1, 0); if (sendSz < 0) return sendSz; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("CertificateRequest", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("CertificateRequest", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif ssl->buffers.outputBuffer.length += sendSz; if (!ssl->options.groupMessages) return SendBuffered(ssl); return 0; } #endif /* NO_CERTS */ #endif /* NO_WOLFSSL_SERVER */ #ifndef NO_CERTS #if !defined(NO_RSA) || defined(HAVE_ECC) /* Encode the signature algorithm into buffer. * * hashalgo The hash algorithm. * hsType The signature type. * output The buffer to encode into. */ static INLINE void EncodeSigAlg(byte hashAlgo, byte hsType, byte* output) { switch (hsType) { #ifdef HAVE_ECC case DYNAMIC_TYPE_ECC: output[0] = hashAlgo; output[1] = ecc_dsa_sa_algo; break; #endif #ifndef NO_RSA case DYNAMIC_TYPE_RSA: output[0] = hashAlgo; output[1] = rsa_sa_algo; break; #endif /* PSS signatures: 0x080[4-6] */ /* ED25519: 0x0807 */ /* ED448: 0x0808 */ } } /* Decode the signature algorithm. * * input The encoded signature algorithm. * hashalgo The hash algorithm. * hsType The signature type. */ static INLINE void DecodeSigAlg(byte* input, byte* hashAlgo, byte* hsType) { switch (input[0]) { case 0x08: /* PSS signatures: 0x080[4-6] */ if (input[1] <= 0x06) { *hsType = input[0]; *hashAlgo = input[1]; } break; /* ED25519: 0x0807 */ /* ED448: 0x0808 */ default: *hashAlgo = input[0]; *hsType = input[1]; break; } } /* Get the hash of the messages so far. * * ssl The SSL/TLS object. * hash The buffer to write the hash to. * returns the length of the hash. */ static INLINE int GetMsgHash(WOLFSSL *ssl, byte* hash) { switch (ssl->specs.mac_algorithm) { #ifndef NO_SHA256 case sha256_mac: wc_Sha256GetHash(&ssl->hsHashes->hashSha256, hash); return SHA256_DIGEST_SIZE; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case sha384_mac: wc_Sha384GetHash(&ssl->hsHashes->hashSha384, hash); return SHA384_DIGEST_SIZE; #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 case sha512_mac: wc_Sha512GetHash(&ssl->hsHashes->hashSha512, hash); return SHA512_DIGEST_SIZE; #endif /* WOLFSSL_SHA512 */ } return 0; } /* The length of the certificate verification label - client and server. */ #define CERT_VFY_LABEL_SZ 34 /* The server certificate verification label. */ static const byte serverCertVfyLabel[CERT_VFY_LABEL_SZ] = "TLS 1.3, server CertificateVerify"; /* The client certificate verification label. */ static const byte clientCertVfyLabel[CERT_VFY_LABEL_SZ] = "TLS 1.3, client CertificateVerify"; /* The number of prefix bytes for signature data. */ #define SIGNING_DATA_PREFIX_SZ 64 /* The prefix byte in the signature data. */ #define SIGNING_DATA_PREFIX_BYTE 0x20 /* Maximum length of the signature data. */ #define MAX_SIG_DATA_SZ (SIGNING_DATA_PREFIX_SZ + \ CERT_VFY_LABEL_SZ + \ MAX_DIGEST_SIZE) /* Create the signature data for TLS v1.3 certificate verification. * * ssl The SSL/TLS object. * sigData The signature data. * sigDataSz The length of the signature data. * check Indicates this is a check not create. */ static void CreateSigData(WOLFSSL* ssl, byte* sigData, word16* sigDataSz, int check) { word16 idx; int side = ssl->options.side; /* Signature Data = Prefix | Label | Handshake Hash */ XMEMSET(sigData, SIGNING_DATA_PREFIX_BYTE, SIGNING_DATA_PREFIX_SZ); idx = SIGNING_DATA_PREFIX_SZ; #ifndef NO_WOLFSSL_SERVER if ((side == WOLFSSL_SERVER_END && check) || (side == WOLFSSL_CLIENT_END && !check)) { XMEMCPY(&sigData[idx], clientCertVfyLabel, CERT_VFY_LABEL_SZ); } #endif #ifndef NO_WOLFSSL_CLIENT if ((side == WOLFSSL_CLIENT_END && check) || (side == WOLFSSL_SERVER_END && !check)) { XMEMCPY(&sigData[idx], serverCertVfyLabel, CERT_VFY_LABEL_SZ); } #endif idx += CERT_VFY_LABEL_SZ; *sigDataSz = idx + GetMsgHash(ssl, &sigData[idx]); } #ifndef NO_RSA /* Encode the PKCS #1.5 RSA signature. * * sig The buffer to place the encoded signature into. * sigData The data to be signed. * sigDataSz The size of the data to be signed. * hashAlgo The hash algorithm to use when signing. * returns the length of the encoded signature or negative on error. */ static int CreateRSAEncodedSig(byte* sig, byte* sigData, int sigDataSz, int hashAlgo) { Digest digest; int hashSz = 0; int hashOid = 0; /* Digest the signature data. */ switch (hashAlgo) { #ifndef NO_WOLFSSL_SHA256 case sha256_mac: wc_InitSha256(&digest.sha256); wc_Sha256Update(&digest.sha256, sigData, sigDataSz); wc_Sha256Final(&digest.sha256, sigData); wc_Sha256Free(&digest.sha256); hashSz = SHA256_DIGEST_SIZE; hashOid = SHA256h; break; #endif #ifdef WOLFSSL_SHA384 case sha384_mac: wc_InitSha384(&digest.sha384); wc_Sha384Update(&digest.sha384, sigData, sigDataSz); wc_Sha384Final(&digest.sha384, sigData); wc_Sha384Free(&digest.sha384); hashSz = SHA384_DIGEST_SIZE; hashOid = SHA384h; break; #endif #ifdef WOLFSSL_SHA512 case sha512_mac: wc_InitSha512(&digest.sha512); wc_Sha512Update(&digest.sha512, sigData, sigDataSz); wc_Sha512Final(&digest.sha512, sigData); wc_Sha512Free(&digest.sha512); hashSz = SHA512_DIGEST_SIZE; hashOid = SHA512h; break; #endif } /* Encode the signature data as per PKCS #1.5 */ return wc_EncodeSignature(sig, sigData, hashSz, hashOid); } #ifdef HAVE_ECC /* Encode the ECC signature. * * sigData The data to be signed. * sigDataSz The size of the data to be signed. * hashAlgo The hash algorithm to use when signing. * returns the length of the encoded signature or negative on error. */ static int CreateECCEncodedSig(byte* sigData, int sigDataSz, int hashAlgo) { Digest digest; int hashSz = 0; /* Digest the signature data. */ switch (hashAlgo) { #ifndef NO_WOLFSSL_SHA256 case sha256_mac: wc_InitSha256(&digest.sha256); wc_Sha256Update(&digest.sha256, sigData, sigDataSz); wc_Sha256Final(&digest.sha256, sigData); wc_Sha256Free(&digest.sha256); hashSz = SHA256_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA384 case sha384_mac: wc_InitSha384(&digest.sha384); wc_Sha384Update(&digest.sha384, sigData, sigDataSz); wc_Sha384Final(&digest.sha384, sigData); wc_Sha384Free(&digest.sha384); hashSz = SHA384_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA512 case sha512_mac: wc_InitSha512(&digest.sha512); wc_Sha512Update(&digest.sha512, sigData, sigDataSz); wc_Sha512Final(&digest.sha512, sigData); wc_Sha512Free(&digest.sha512); hashSz = SHA512_DIGEST_SIZE; break; #endif } return hashSz; } #endif /* Check that the decrypted signature matches the encoded signature * based on the digest of the signature data. * * ssl The SSL/TLS object. * hashAlgo The signature algorithm used to generate signature. * hashAlgo The hash algorithm used to generate signature. * decSig The decrypted signature. * decSigSz The size of the decrypted signature. * returns 0 on success, otherwise failure. */ static int CheckRSASignature(WOLFSSL* ssl, int sigAlgo, int hashAlgo, byte* decSig, word32 decSigSz) { int ret = 0; byte sigData[MAX_SIG_DATA_SZ]; word16 sigDataSz; #ifdef WOLFSSL_SMALL_STACK byte* encodedSig = NULL; #else byte encodedSig[MAX_ENCODED_SIG_SZ]; #endif word32 sigSz; if (sigAlgo == rsa_sa_algo) { #ifdef WOLFSSL_SMALL_STACK encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (encodedSig == NULL) { ret = MEMORY_E; goto end; } #endif CreateSigData(ssl, sigData, &sigDataSz, 1); sigSz = CreateRSAEncodedSig(encodedSig, sigData, sigDataSz, hashAlgo); /* Check the encoded and decrypted signature data match. */ if (decSigSz != sigSz || decSig == NULL || XMEMCMP(decSig, encodedSig, sigSz) != 0) { ret = VERIFY_CERT_ERROR; } } else { CreateSigData(ssl, sigData, &sigDataSz, 1); sigSz = CreateECCEncodedSig(sigData, sigDataSz, hashAlgo); if (decSigSz != sigSz || decSig == NULL) ret = VERIFY_CERT_ERROR; else { decSig -= 2 * decSigSz; XMEMCPY(decSig, sigData, decSigSz); decSig -= 8; XMEMSET(decSig, 0, 8); CreateECCEncodedSig(decSig, 8 + decSigSz * 2, hashAlgo); if (XMEMCMP(decSig, decSig + 8 + decSigSz * 2, decSigSz) != 0) ret = VERIFY_CERT_ERROR; } } #ifdef WOLFSSL_SMALL_STACK end: if (encodedSig != NULL) XFREE(encodedSig, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } #endif /* !NO_RSA */ #endif /* !NO_RSA || HAVE_ECC */ /* Get the next certificate from the list for writing into the TLS v1.3 * Certificate message. * * data The certificate list. * length The length of the certificate data in the list. * idx The index of the next certificate. * returns the length of the certificate data. 0 indicates no more certificates * in the list. */ static word32 NextCert(byte* data, word32 length, word32* idx) { word32 len; /* Is index at end of list. */ if (*idx == length) return 0; /* Length of the current ASN.1 encoded certificate. */ c24to32(data + *idx, &len); /* Include the length field. */ len += 3; /* Move index to next certificate and return the current certificate's * length. */ *idx += len; return len; } /* Add certificate data and empty extension to output up to the fragment size. * * cert The certificate data to write out. * len The length of the certificate data. * idx The start of the certificate data to write out. * fragSz The maximum size of this fragment. * output The buffer to write to. * returns the number of bytes written. */ static word32 AddCertExt(byte* cert, word32 len, word32 idx, word32 fragSz, byte* output) { word32 i = 0; word32 copySz = min(len - idx, fragSz); if (idx < len) { XMEMCPY(output, cert + idx, copySz); i = copySz; } if (copySz + OPAQUE16_LEN <= fragSz) { /* Empty extension */ output[i++] = 0; output[i++] = 0; } return i; } /* Send the certificate for this end and any CAs that help with validation. * This message is always encrypted in TLS v1.3. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int SendTls13Certificate(WOLFSSL* ssl) { int ret = 0; word32 certSz, certChainSz, headerSz, listSz, payloadSz; word32 length, maxFragment; word32 len = 0; word32 idx = 0; word32 offset = OPAQUE16_LEN; byte* p = NULL; /* TODO: [TLS13] Request context for post-handshake auth. * Taken from request if post-handshake. */ if (ssl->options.sendVerify == SEND_BLANK_CERT) { certSz = 0; certChainSz = 0; headerSz = CERT_HEADER_SZ; length = CERT_HEADER_SZ; listSz = 0; } else { if (!ssl->buffers.certificate) { WOLFSSL_MSG("Send Cert missing certificate buffer"); return BUFFER_ERROR; } /* Certificate Data */ certSz = ssl->buffers.certificate->length; /* Cert Req Ctx Len | Cert List Len | Cert Data Len */ headerSz = OPAQUE8_LEN + CERT_HEADER_SZ + CERT_HEADER_SZ; /* Length of message data with one certificate and empty extensions. */ length = headerSz + certSz + OPAQUE16_LEN; /* Length of list data with one certificate and empty extensions. */ listSz = CERT_HEADER_SZ + certSz + OPAQUE16_LEN; /* Send rest of chain if sending cert (chain has leading size/s). */ if (certSz > 0 && ssl->buffers.certChainCnt > 0) { /* The pointer to the current spot in the cert chain buffer. */ p = ssl->buffers.certChain->buffer; /* Chain length including extensions. */ certChainSz = ssl->buffers.certChain->length + OPAQUE16_LEN * ssl->buffers.certChainCnt; length += certChainSz; listSz += certChainSz; } else certChainSz = 0; } payloadSz = length; if (ssl->fragOffset != 0) length -= (ssl->fragOffset + headerSz); maxFragment = MAX_RECORD_SIZE; #ifdef HAVE_MAX_FRAGMENT if (ssl->max_fragment != 0 && maxFragment >= ssl->max_fragment) maxFragment = ssl->max_fragment; #endif /* HAVE_MAX_FRAGMENT */ while (length > 0 && ret == 0) { byte* output = NULL; word32 fragSz = 0; word32 i = RECORD_HEADER_SZ; int sendSz = RECORD_HEADER_SZ; if (ssl->fragOffset == 0) { if (headerSz + certSz + OPAQUE16_LEN + certChainSz <= maxFragment - HANDSHAKE_HEADER_SZ) { fragSz = headerSz + certSz + OPAQUE16_LEN + certChainSz; } else { fragSz = maxFragment - HANDSHAKE_HEADER_SZ; } sendSz += fragSz + HANDSHAKE_HEADER_SZ; i += HANDSHAKE_HEADER_SZ; } else { fragSz = min(length, maxFragment); sendSz += fragSz; } sendSz += MAX_MSG_EXTRA; /* Check buffers are big enough and grow if needed. */ if ((ret = CheckAvailableSize(ssl, sendSz)) != 0) return ret; /* Get position in output buffer to write new message to. */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; if (ssl->fragOffset == 0) { AddTls13FragHeaders(output, fragSz, 0, payloadSz, certificate, ssl); /* Request context. */ output[i++] = 0; length -= 1; fragSz -= 1; /* Certificate list length. */ c32to24(listSz, output + i); i += CERT_HEADER_SZ; length -= CERT_HEADER_SZ; fragSz -= CERT_HEADER_SZ; /* Leaf certificate data length. */ if (certSz > 0) { c32to24(certSz, output + i); i += CERT_HEADER_SZ; length -= CERT_HEADER_SZ; fragSz -= CERT_HEADER_SZ; } } else AddTls13RecordHeader(output, fragSz, handshake, ssl); /* TODO: [TLS13] Test with fragments and multiple CA certs */ if (certSz > 0 && ssl->fragOffset < certSz + OPAQUE16_LEN) { /* Put in the leaf certificate and empty extension. */ word32 copySz = AddCertExt(ssl->buffers.certificate->buffer, certSz, ssl->fragOffset, fragSz, output + i); i += copySz; ssl->fragOffset += copySz; length -= copySz; fragSz -= copySz; } if (certChainSz > 0 && fragSz > 0) { /* Put in the CA certificates with empty extensions. */ while (fragSz > 0) { word32 l; if (offset == len + OPAQUE16_LEN) { /* Find next CA certificate to write out. */ offset = 0; len = NextCert(ssl->buffers.certChain->buffer, ssl->buffers.certChain->length, &idx); if (len == 0) break; } /* Write out certificate and empty extension. */ l = AddCertExt(p, len, offset, fragSz, output + i); i += l; ssl->fragOffset += l; length -= l; fragSz -= l; offset += l; } } if ((int)i - RECORD_HEADER_SZ < 0) { WOLFSSL_MSG("Send Cert bad inputSz"); return BUFFER_E; } /* This message is always encrypted. */ sendSz = BuildTls13Message(ssl, output, sendSz, output + RECORD_HEADER_SZ, i - RECORD_HEADER_SZ, handshake, 1, 0); if (sendSz < 0) return sendSz; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("Certificate", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("Certificate", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif ssl->buffers.outputBuffer.length += sendSz; if (!ssl->options.groupMessages) ret = SendBuffered(ssl); } if (ret != WANT_WRITE) { /* Clean up the fragment offset. */ ssl->fragOffset = 0; if (ssl->options.side == WOLFSSL_SERVER_END) ssl->options.serverState = SERVER_CERT_COMPLETE; } return ret; } typedef struct Scv13Args { byte* output; /* not allocated */ #ifndef NO_RSA byte* verifySig; #endif byte* verify; /* not allocated */ byte* input; word32 idx; word32 sigLen; int sendSz; word16 length; byte* sigData; word16 sigDataSz; } Scv13Args; static void FreeScv13Args(WOLFSSL* ssl, void* pArgs) { Scv13Args* args = (Scv13Args*)pArgs; (void)ssl; #ifndef NO_RSA if (args->verifySig) { XFREE(args->verifySig, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); args->verifySig = NULL; } #endif if (args->sigData) { XFREE(args->sigData, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); args->sigData = NULL; } if (args->input) { XFREE(args->input, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); args->input = NULL; } } /* Send the TLS v1.3 CertificateVerify message. * A hash of all the message so far is used. * The signed data is: * 0x20 * 64 | context string | 0x00 | hash of messages * This message is always encrypted in TLS v1.3. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int SendTls13CertificateVerify(WOLFSSL* ssl) { int ret = 0; buffer* sig = &ssl->buffers.sig; #ifdef WOLFSSL_ASYNC_CRYPT Scv13Args* args = (Scv13Args*)ssl->async.args; typedef char args_test[sizeof(ssl->async.args) >= sizeof(*args) ? 1 : -1]; (void)sizeof(args_test); #else Scv13Args args[1]; #endif WOLFSSL_ENTER("SendTls13CertificateVerify"); #ifdef WOLFSSL_ASYNC_CRYPT ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState); if (ret != WC_NOT_PENDING_E) { /* Check for error */ if (ret < 0) goto exit_scv; } else #endif { /* Reset state */ ret = 0; ssl->options.asyncState = TLS_ASYNC_BEGIN; XMEMSET(args, 0, sizeof(Scv13Args)); #ifdef WOLFSSL_ASYNC_CRYPT ssl->async.freeArgs = FreeScv13Args; #endif } switch(ssl->options.asyncState) { case TLS_ASYNC_BEGIN: { if (ssl->options.sendVerify == SEND_BLANK_CERT) { return 0; /* sent blank cert, can't verify */ } args->sendSz = MAX_CERT_VERIFY_SZ; /* Always encrypted. */ args->sendSz += MAX_MSG_EXTRA; /* check for available size */ if ((ret = CheckAvailableSize(ssl, args->sendSz)) != 0) { goto exit_scv; } /* get output buffer */ args->output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_BUILD; } /* case TLS_ASYNC_BEGIN */ case TLS_ASYNC_BUILD: { /* idx is used to track verify pointer offset to output */ args->idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; args->verify = &args->output[RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ]; ret = DecodePrivateKey(ssl, &args->length); if (ret != 0) goto exit_scv; /* Add signature algorithm. */ EncodeSigAlg(ssl->suites->hashAlgo, ssl->hsType, args->verify); /* Create the data to be signed. */ args->sigData = (byte*)XMALLOC(MAX_SIG_DATA_SZ, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (args->sigData == NULL) { ERROR_OUT(MEMORY_E, exit_scv); } CreateSigData(ssl, args->sigData, &args->sigDataSz, 0); #ifndef NO_RSA if (ssl->hsType == DYNAMIC_TYPE_RSA) { /* build encoded signature buffer */ sig->length = MAX_ENCODED_SIG_SZ; sig->buffer = (byte*)XMALLOC(sig->length, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (sig->buffer == NULL) return MEMORY_E; /* Digest the signature data and encode. Used in verify too. */ sig->length = CreateRSAEncodedSig(sig->buffer, args->sigData, args->sigDataSz, ssl->suites->hashAlgo); if (ret != 0) goto exit_scv; /* Maximum size of RSA Signature. */ args->sigLen = args->length; } #endif /* !NO_RSA */ #ifdef HAVE_ECC if (ssl->hsType == DYNAMIC_TYPE_ECC) { sig->length = args->sendSz - args->idx - HASH_SIG_SIZE - VERIFY_HEADER; args->sigDataSz = CreateECCEncodedSig(args->sigData, args->sigDataSz, ssl->suites->hashAlgo); } #endif /* HAVE_ECC */ /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_DO; } /* case TLS_ASYNC_BUILD */ case TLS_ASYNC_DO: { #ifdef HAVE_ECC if (ssl->hsType == DYNAMIC_TYPE_ECC) { ret = EccSign(ssl, args->sigData, args->sigDataSz, args->verify + HASH_SIG_SIZE + VERIFY_HEADER, &sig->length, (ecc_key*)ssl->hsKey, #if defined(HAVE_PK_CALLBACKS) ssl->buffers.key->buffer, ssl->buffers.key->length, ssl->EccSignCtx #else NULL, 0, NULL #endif ); args->length = sig->length; } #endif /* HAVE_ECC */ #ifndef NO_RSA if (ssl->hsType == DYNAMIC_TYPE_RSA) { /* restore verify pointer */ args->verify = &args->output[args->idx]; ret = RsaSign(ssl, sig->buffer, sig->length, args->verify + HASH_SIG_SIZE + VERIFY_HEADER, &args->sigLen, (RsaKey*)ssl->hsKey, ssl->buffers.key->buffer, ssl->buffers.key->length, #ifdef HAVE_PK_CALLBACKS ssl->RsaSignCtx #else NULL #endif ); args->length = args->sigLen; } #endif /* !NO_RSA */ /* Check for error */ if (ret != 0) { goto exit_scv; } /* Add signature length. */ c16toa(args->length, args->verify + HASH_SIG_SIZE); /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_VERIFY; } /* case TLS_ASYNC_DO */ case TLS_ASYNC_VERIFY: { /* restore verify pointer */ args->verify = &args->output[args->idx]; #ifndef NO_RSA if (ssl->hsType == DYNAMIC_TYPE_RSA) { if (args->verifySig == NULL) { args->verifySig = (byte*)XMALLOC(args->sigLen, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (args->verifySig == NULL) { ERROR_OUT(MEMORY_E, exit_scv); } XMEMCPY(args->verifySig, args->verify + HASH_SIG_SIZE + VERIFY_HEADER, args->sigLen); } /* check for signature faults */ ret = VerifyRsaSign(ssl, args->verifySig, args->sigLen, sig->buffer, sig->length, (RsaKey*)ssl->hsKey); } #endif /* !NO_RSA */ /* Check for error */ if (ret != 0) { goto exit_scv; } /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_FINALIZE; } /* case TLS_ASYNC_VERIFY */ case TLS_ASYNC_FINALIZE: { /* Put the record and handshake headers on. */ AddTls13Headers(args->output, args->length + HASH_SIG_SIZE + VERIFY_HEADER, certificate_verify, ssl); args->sendSz = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ + args->length + HASH_SIG_SIZE + VERIFY_HEADER; /* This message is always encrypted. */ args->sendSz = BuildTls13Message(ssl, args->output, MAX_CERT_VERIFY_SZ + MAX_MSG_EXTRA, args->output + RECORD_HEADER_SZ, args->sendSz - RECORD_HEADER_SZ, handshake, 1, 0); if (args->sendSz < 0) { ret = args->sendSz; goto exit_scv; } /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_END; } /* case TLS_ASYNC_FINALIZE */ case TLS_ASYNC_END: { #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("CertificateVerify", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("CertificateVerify", &ssl->timeoutInfo, args->output, args->sendSz, ssl->heap); #endif ssl->buffers.outputBuffer.length += args->sendSz; if (!ssl->options.groupMessages) ret = SendBuffered(ssl); break; } default: ret = INPUT_CASE_ERROR; } /* switch(ssl->options.asyncState) */ exit_scv: WOLFSSL_LEAVE("SendTls13CertificateVerify", ret); #ifdef WOLFSSL_ASYNC_CRYPT /* Handle async operation */ if (ret == WC_PENDING_E) { return ret; } #endif /* WOLFSSL_ASYNC_CRYPT */ /* Final cleanup */ FreeScv13Args(ssl, args); FreeKeyExchange(ssl); return ret; } /* Parse and handle a TLS v1.3 Certificate message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of Certificate. * On exit, the index of byte after the Certificate message. * totalSz The length of the current handshake message. * returns 0 on success and otherwise failure. */ static int DoTls13Certificate(WOLFSSL* ssl, byte* input, word32* inOutIdx, word32 totalSz) { return ProcessPeerCerts(ssl, input, inOutIdx, totalSz); } #if !defined(NO_RSA) || defined(HAVE_ECC) typedef struct Dcv13Args { byte* output; /* not allocated */ word32 sendSz; word16 sz; word32 sigSz; word32 idx; word32 begin; byte hashAlgo; byte sigAlgo; byte* sigData; word16 sigDataSz; } Dcv13Args; static void FreeDcv13Args(WOLFSSL* ssl, void* pArgs) { Dcv13Args* args = (Dcv13Args*)pArgs; if (args->sigData) { XFREE(args->sigData, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); args->sigData = NULL; } (void)ssl; } /* Parse and handle a TLS v1.3 CertificateVerify message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of * CertificateVerify. * On exit, the index of byte after the CertificateVerify message. * totalSz The length of the current handshake message. * returns 0 on success and otherwise failure. */ static int DoTls13CertificateVerify(WOLFSSL* ssl, byte* input, word32* inOutIdx, word32 totalSz) { int ret = 0; buffer* sig = &ssl->buffers.sig; #ifdef WOLFSSL_ASYNC_CRYPT Dcv13Args* args = (Dcv13Args*)ssl->async.args; typedef char args_test[sizeof(ssl->async.args) >= sizeof(*args) ? 1 : -1]; (void)sizeof(args_test); #else Dcv13Args args[1]; #endif WOLFSSL_ENTER("DoTls13CertificateVerify"); #ifdef WOLFSSL_ASYNC_CRYPT ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState); if (ret != WC_NOT_PENDING_E) { /* Check for error */ if (ret < 0) goto exit_dcv; } else #endif { /* Reset state */ ret = 0; ssl->options.asyncState = TLS_ASYNC_BEGIN; XMEMSET(args, 0, sizeof(Dcv13Args)); args->hashAlgo = sha_mac; args->sigAlgo = anonymous_sa_algo; args->idx = *inOutIdx; args->begin = *inOutIdx; #ifdef WOLFSSL_ASYNC_CRYPT ssl->async.freeArgs = FreeDcv13Args; #endif } switch(ssl->options.asyncState) { case TLS_ASYNC_BEGIN: { #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("CertificateVerify", &ssl->handShakeInfo); if (ssl->toInfoOn) AddLateName("CertificateVerify", &ssl->timeoutInfo); #endif /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_BUILD; } /* case TLS_ASYNC_BEGIN */ case TLS_ASYNC_BUILD: { /* Signature algorithm. */ if ((args->idx - args->begin) + ENUM_LEN + ENUM_LEN > totalSz) { ERROR_OUT(BUFFER_ERROR, exit_dcv); } DecodeSigAlg(input + args->idx, &args->hashAlgo, &args->sigAlgo); args->idx += OPAQUE16_LEN; /* TODO: [TLS13] was it in SignatureAlgorithms extension? */ /* Signature length. */ if ((args->idx - args->begin) + OPAQUE16_LEN > totalSz) { ERROR_OUT(BUFFER_ERROR, exit_dcv); } ato16(input + args->idx, &args->sz); args->idx += OPAQUE16_LEN; /* Signature data. */ if ((args->idx - args->begin) + args->sz > totalSz || args->sz > ENCRYPT_LEN) { ERROR_OUT(BUFFER_ERROR, exit_dcv); } /* Check for public key of required type. */ if (args->sigAlgo == ecc_dsa_sa_algo && !ssl->peerEccDsaKeyPresent) { WOLFSSL_MSG("Oops, peer sent ECC key but not in verify"); } if ((args->sigAlgo == rsa_sa_algo || args->sigAlgo == rsa_pss_sa_algo) && (ssl->peerRsaKey == NULL || !ssl->peerRsaKeyPresent)) { WOLFSSL_MSG("Oops, peer sent RSA key but not in verify"); } sig->buffer = XMALLOC(args->sz, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (sig->buffer == NULL) { ERROR_OUT(MEMORY_E, exit_dcv); } sig->length = args->sz; XMEMCPY(sig->buffer, input + args->idx, args->sz); #ifdef HAVE_ECC if (ssl->peerEccDsaKeyPresent) { WOLFSSL_MSG("Doing ECC peer cert verify"); args->sigData = (byte*)XMALLOC(MAX_SIG_DATA_SZ, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (args->sigData == NULL) { ERROR_OUT(MEMORY_E, exit_dcv); } CreateSigData(ssl, args->sigData, &args->sigDataSz, 1); args->sigDataSz = CreateECCEncodedSig(args->sigData, args->sigDataSz, args->hashAlgo); } #endif /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_DO; } /* case TLS_ASYNC_BUILD */ case TLS_ASYNC_DO: { #ifndef NO_RSA if (args->sigAlgo == rsa_sa_algo || args->sigAlgo == rsa_pss_sa_algo) { WOLFSSL_MSG("Doing RSA peer cert verify"); ret = RsaVerify(ssl, sig->buffer, sig->length, &args->output, args->sigAlgo, args->hashAlgo, ssl->peerRsaKey, #ifdef HAVE_PK_CALLBACKS ssl->buffers.peerRsaKey.buffer, ssl->buffers.peerRsaKey.length, ssl->RsaVerifyCtx #else NULL, 0, NULL #endif ); if (ret >= 0) { args->sendSz = ret; ret = 0; } } #endif /* !NO_RSA */ #ifdef HAVE_ECC if (ssl->peerEccDsaKeyPresent) { WOLFSSL_MSG("Doing ECC peer cert verify"); ret = EccVerify(ssl, input + args->idx, args->sz, args->sigData, args->sigDataSz, ssl->peerEccDsaKey, #ifdef HAVE_PK_CALLBACKS ssl->buffers.peerEccDsaKey.buffer, ssl->buffers.peerEccDsaKey.length, ssl->EccVerifyCtx #else NULL, 0, NULL #endif ); } #endif /* HAVE_ECC */ /* Check for error */ if (ret != 0) { goto exit_dcv; } /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_VERIFY; } /* case TLS_ASYNC_DO */ case TLS_ASYNC_VERIFY: { #ifndef NO_RSA if (ssl->peerRsaKey != NULL && ssl->peerRsaKeyPresent != 0) { ret = CheckRSASignature(ssl, args->sigAlgo, args->hashAlgo, args->output, args->sendSz); if (ret != 0) goto exit_dcv; } #endif /* !NO_RSA */ /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_FINALIZE; } /* case TLS_ASYNC_VERIFY */ case TLS_ASYNC_FINALIZE: { ssl->options.havePeerVerify = 1; /* Set final index */ args->idx += args->sz; *inOutIdx = args->idx; /* Encryption is always on: add padding */ *inOutIdx += ssl->keys.padSz; /* Advance state and proceed */ ssl->options.asyncState = TLS_ASYNC_END; } /* case TLS_ASYNC_FINALIZE */ case TLS_ASYNC_END: { break; } default: ret = INPUT_CASE_ERROR; } /* switch(ssl->options.asyncState) */ exit_dcv: WOLFSSL_LEAVE("DoTls13CertificateVerify", ret); #ifdef WOLFSSL_ASYNC_CRYPT /* Handle async operation */ if (ret == WC_PENDING_E) { /* Mark message as not recevied so it can process again */ ssl->msgsReceived.got_certificate_verify = 0; return ret; } #endif /* WOLFSSL_ASYNC_CRYPT */ /* Final cleanup */ FreeDcv13Args(ssl, args); FreeKeyExchange(ssl); return ret; } #endif /* !NO_RSA || HAVE_ECC */ /* Parse and handle a TLS v1.3 Finished message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of Finished. * On exit, the index of byte after the Finished message and padding. * size Length of message data. * totalSz Length of remaining data in the message buffer. * sniff Indicates whether we are sniffing packets. * returns 0 on success and otherwise failure. */ static int DoTls13Finished(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 size, word32 totalSz, int sniff) { int ret; word32 finishedSz = 0; byte* secret; byte mac[MAX_DIGEST_SIZE]; /* check against totalSz */ if (*inOutIdx + size + ssl->keys.padSz > totalSz) return BUFFER_E; if (ssl->options.side == WOLFSSL_CLIENT_END) { /* All the handshake messages have been received to calculate * client and server finished keys. */ ret = DeriveFinishedSecret(ssl, ssl->arrays->clientSecret, ssl->keys.client_write_MAC_secret); if (ret != 0) return ret; ret = DeriveFinishedSecret(ssl, ssl->arrays->serverSecret, ssl->keys.server_write_MAC_secret); if (ret != 0) return ret; secret = ssl->keys.server_write_MAC_secret; } else secret = ssl->keys.client_write_MAC_secret; finishedSz = BuildTls13HandshakeHmac(ssl, secret, mac); if (size != finishedSz) return BUFFER_ERROR; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("Finished", &ssl->handShakeInfo); if (ssl->toInfoOn) AddLateName("Finished", &ssl->timeoutInfo); #endif if (sniff == NO_SNIFF) { /* Actually check verify data. */ if (XMEMCMP(input + *inOutIdx, mac, size) != 0){ WOLFSSL_MSG("Verify finished error on hashes"); return VERIFY_FINISHED_ERROR; } } /* Force input exhaustion at ProcessReply by consuming padSz. */ *inOutIdx += size + ssl->keys.padSz; if (ssl->options.side == WOLFSSL_SERVER_END) { /* Setup keys for application data messages from client. */ if ((ret = SetKeysSide(ssl, DECRYPT_SIDE_ONLY)) != 0) return ret; } #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_CLIENT_END) { ssl->options.serverState = SERVER_FINISHED_COMPLETE; if (!ssl->options.resuming) { ssl->options.handShakeState = HANDSHAKE_DONE; ssl->options.handShakeDone = 1; } } #endif #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_SERVER_END) { ssl->options.clientState = CLIENT_FINISHED_COMPLETE; ssl->options.handShakeState = HANDSHAKE_DONE; ssl->options.handShakeDone = 1; } #endif return 0; } #endif /* NO_CERTS */ /* Send the TLS v1.3 Finished message. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int SendTls13Finished(WOLFSSL* ssl) { int sendSz; int finishedSz = ssl->specs.hash_size; byte* input; byte* output; int ret; int headerSz = HANDSHAKE_HEADER_SZ; int outputSz; byte* secret; outputSz = MAX_DIGEST_SIZE + DTLS_HANDSHAKE_HEADER_SZ + MAX_MSG_EXTRA; /* Check buffers are big enough and grow if needed. */ if ((ret = CheckAvailableSize(ssl, outputSz)) != 0) return ret; /* get output buffer */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; input = output + RECORD_HEADER_SZ; AddTls13HandShakeHeader(input, finishedSz, 0, finishedSz, finished, ssl); /* make finished hashes */ if (ssl->options.side == WOLFSSL_CLIENT_END) secret = ssl->keys.client_write_MAC_secret; else { /* All the handshake messages have been done to calculate client and * server finished keys. */ ret = DeriveFinishedSecret(ssl, ssl->arrays->clientSecret, ssl->keys.client_write_MAC_secret); if (ret != 0) return ret; ret = DeriveFinishedSecret(ssl, ssl->arrays->serverSecret, ssl->keys.server_write_MAC_secret); if (ret != 0) return ret; secret = ssl->keys.server_write_MAC_secret; } BuildTls13HandshakeHmac(ssl, secret, &input[headerSz]); /* This message is always encrypted. */ sendSz = BuildTls13Message(ssl, output, outputSz, input, headerSz + finishedSz, handshake, 1, 0); if (sendSz < 0) return BUILD_MSG_ERROR; if (!ssl->options.resuming) { #ifndef NO_SESSION_CACHE AddSession(ssl); /* just try */ #endif } else { if (ssl->options.side == WOLFSSL_CLIENT_END) { ssl->options.handShakeState = HANDSHAKE_DONE; ssl->options.handShakeDone = 1; } } #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("Finished", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("Finished", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif ssl->buffers.outputBuffer.length += sendSz; ret = SendBuffered(ssl); if (ret != 0) return ret; if (ssl->options.side == WOLFSSL_SERVER_END) { /* Can send application data now. */ if ((ret = DeriveMasterSecret(ssl)) != 0) return ret; if ((ret = DeriveTls13Keys(ssl, traffic_key, ENCRYPT_AND_DECRYPT_SIDE)) != 0) return ret; if ((ret = SetKeysSide(ssl, ENCRYPT_SIDE_ONLY)) != 0) return ret; } if (ssl->options.side == WOLFSSL_CLIENT_END) { /* Setup keys for application data messages. */ if ((ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE)) != 0) return ret; #ifndef NO_PSK ret = DeriveResumptionSecret(ssl, ssl->session.masterSecret); #endif } return ret; } /* Send the TLS v1.3 KeyUpdate message. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ static int SendTls13KeyUpdate(WOLFSSL* ssl) { int sendSz; byte* input; byte* output; int ret; int headerSz = HANDSHAKE_HEADER_SZ; int outputSz; word32 i = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; outputSz = OPAQUE8_LEN + MAX_MSG_EXTRA; /* Check buffers are big enough and grow if needed. */ if ((ret = CheckAvailableSize(ssl, outputSz)) != 0) return ret; /* get output buffer */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; input = output + RECORD_HEADER_SZ; AddTls13Headers(output, OPAQUE8_LEN, key_update, ssl); /* If: * 1. I haven't sent a KeyUpdate requesting a response and * 2. This isn't responding to peer KeyUpdate requiring a response then, * I want a response. */ ssl->keys.updateResponseReq = output[i++] = !ssl->keys.updateResponseReq && !ssl->keys.keyUpdateRespond; /* Sent response, no longer need to respond. */ ssl->keys.keyUpdateRespond = 0; /* This message is always encrypted. */ sendSz = BuildTls13Message(ssl, output, outputSz, input, headerSz + OPAQUE8_LEN, handshake, 0, 0); if (sendSz < 0) return BUILD_MSG_ERROR; #ifdef WOLFSSL_CALLBACKS if (ssl->hsInfoOn) AddPacketName("KeyUpdate", &ssl->handShakeInfo); if (ssl->toInfoOn) AddPacketInfo("KeyUpdate", &ssl->timeoutInfo, output, sendSz, ssl->heap); #endif ssl->buffers.outputBuffer.length += sendSz; ret = SendBuffered(ssl); if (ret != 0 && ret != WANT_WRITE) return ret; /* Future traffic uses new encryption keys. */ if ((ret = DeriveTls13Keys(ssl, update_traffic_key, ENCRYPT_SIDE_ONLY)) != 0) return ret; if ((ret = SetKeysSide(ssl, ENCRYPT_SIDE_ONLY)) != 0) return ret; return ret; } /* Parse and handle a TLS v1.3 KeyUpdate message. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of Finished. * On exit, the index of byte after the Finished message and padding. * totalSz The length of the current handshake message. * returns 0 on success and otherwise failure. */ static int DoTls13KeyUpdate(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 totalSz) { int ret; word32 i = *inOutIdx; /* check against totalSz */ if (OPAQUE8_LEN != totalSz) return BUFFER_E; switch (input[i]) { case update_not_requested: /* This message in response to any oustanding request. */ ssl->keys.keyUpdateRespond = 0; ssl->keys.updateResponseReq = 0; break; case update_requested: /* New key update requiring a response. */ ssl->keys.keyUpdateRespond = 1; break; default: return INVALID_PARAMETER; break; } /* Move index to byte after message. */ *inOutIdx += totalSz; /* Always encrypted. */ *inOutIdx += ssl->keys.padSz; /* Future traffic uses new decryption keys. */ if ((ret = DeriveTls13Keys(ssl, update_traffic_key, DECRYPT_SIDE_ONLY)) != 0) return ret; if ((ret = SetKeysSide(ssl, DECRYPT_SIDE_ONLY)) != 0) return ret; if (ssl->keys.keyUpdateRespond) return SendTls13KeyUpdate(ssl); return 0; } #ifndef NO_WOLFSSL_CLIENT /* Handle a New Session Ticket handshake message. * Message contains the information required to perform resumption. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the message buffer of Finished. * On exit, the index of byte after the Finished message and padding. * size The length of the current handshake message. * retuns 0 on success, otherwise failure. */ static int DoTls13NewSessionTicket(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 size) { #ifdef HAVE_SESSION_TICKET word32 begin = *inOutIdx; word32 lifetime; word32 ageAdd; word16 length; /* Lifetime hint. */ if ((*inOutIdx - begin) + SESSION_HINT_SZ > size) return BUFFER_ERROR; ato32(input + *inOutIdx, &lifetime); *inOutIdx += SESSION_HINT_SZ; if (lifetime > MAX_LIFETIME) return SERVER_HINT_ERROR; /* Age add. */ if ((*inOutIdx - begin) + SESSION_ADD_SZ > size) return BUFFER_ERROR; ato32(input + *inOutIdx, &ageAdd); *inOutIdx += SESSION_ADD_SZ; /* Ticket length. */ if ((*inOutIdx - begin) + LENGTH_SZ > size) return BUFFER_ERROR; ato16(input + *inOutIdx, &length); *inOutIdx += LENGTH_SZ; if ((*inOutIdx - begin) + length > size) return BUFFER_ERROR; /* Free old dynamic ticket if we already had one. */ if (ssl->session.isDynamic) { XFREE(ssl->session.ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); /* Reset back to static by default. */ ssl->session.ticket = NULL; ssl->session.isDynamic = 0; ssl->session.ticket = ssl->session.staticTicket; } /* Use dynamic ticket if required.*/ if (length > sizeof(ssl->session.staticTicket)) { ssl->session.ticket = (byte*)XMALLOC(length, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); if (ssl->session.ticket == NULL) return MEMORY_E; ssl->session.isDynamic = 1; } /* Copy in ticket data (server identity). */ XMEMCPY(ssl->session.ticket, input + *inOutIdx, length); *inOutIdx += length; ssl->timeout = lifetime; ssl->session.ticketLen = length; ssl->session.timeout = lifetime; ssl->session.ticketAdd = ageAdd; ssl->session.ticketSeen = TimeNowInMilliseconds(); if (ssl->session_ticket_cb != NULL) { ssl->session_ticket_cb(ssl, ssl->session.ticket, ssl->session.ticketLen, ssl->session_ticket_ctx); } ssl->options.haveSessionId = 1; XMEMCPY(ssl->arrays->sessionID, ssl->session.ticket + length - ID_LEN, ID_LEN); ssl->session.cipherSuite0 = ssl->options.cipherSuite0; ssl->session.cipherSuite = ssl->options.cipherSuite; #ifndef NO_SESSION_CACHE AddSession(ssl); #endif /* No extension support - skip over extensions. */ if ((*inOutIdx - begin) + EXTS_SZ > size) return BUFFER_ERROR; ato16(input + *inOutIdx, &length); *inOutIdx += EXTS_SZ; if ((*inOutIdx - begin) + length != size) return BUFFER_ERROR; *inOutIdx += length; /* Always encrypted. */ *inOutIdx += ssl->keys.padSz; ssl->expect_session_ticket = 0; #else (void)ssl; (void)input; *inOutIdx += size + ssl->keys.padSz; #endif /* HAVE_SESSION_TICKET */ return 0; } #endif /* NO_WOLFSSL_CLIENT */ #ifndef NO_WOLFSSL_SERVER #ifdef HAVE_SESSION_TICKET /* Send New Session Ticket handshake message. * Message contains the information required to perform resumption. * * ssl The SSL/TLS object. * retuns 0 on success, otherwise failure. */ int SendTls13NewSessionTicket(WOLFSSL* ssl) { byte* output; int ret; int sendSz; word32 length; word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; if (!ssl->options.noTicketTls13) { ret = CreateTicket(ssl); if (ret != 0) return ret; } /* Lifetime | Age Add | Ticket | Extensions */ length = SESSION_HINT_SZ + SESSION_ADD_SZ + LENGTH_SZ + ssl->session.ticketLen + EXTS_SZ; sendSz = idx + length + MAX_MSG_EXTRA; /* Check buffers are big enough and grow if needed. */ if ((ret = CheckAvailableSize(ssl, sendSz)) != 0) return ret; /* Get position in output buffer to write new message to. */ output = ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.length; /* Put the record and handshake headers on. */ AddTls13Headers(output, length, session_ticket, ssl); /* Lifetime hint */ c32toa(ssl->ctx->ticketHint, output + idx); idx += SESSION_HINT_SZ; /* Age add - obfuscator */ c32toa(ssl->session.ticketAdd, output + idx); idx += SESSION_ADD_SZ; /* length */ c16toa(ssl->session.ticketLen, output + idx); idx += LENGTH_SZ; /* ticket */ XMEMCPY(output + idx, ssl->session.ticket, ssl->session.ticketLen); idx += ssl->session.ticketLen; /* No extension support - empty extensions. */ c16toa(0, output + idx); idx += EXTS_SZ; ssl->options.haveSessionId = 1; #ifndef NO_SESSION_CACHE AddSession(ssl); #endif /* This message is always encrypted. */ sendSz = BuildTls13Message(ssl, output, sendSz, output + RECORD_HEADER_SZ, idx - RECORD_HEADER_SZ, handshake, 0, 0); if (sendSz < 0) return sendSz; ssl->buffers.outputBuffer.length += sendSz; return SendBuffered(ssl); } #endif /* HAVE_SESSION_TICKET */ #endif /* NO_WOLFSSL_SERVER */ /* Make sure no duplicates, no fast forward, or other problems * * ssl The SSL/TLS object. * type Type of handshake message received. * returns 0 on success, otherwise failure. */ static int SanityCheckTls13MsgReceived(WOLFSSL* ssl, byte type) { /* verify not a duplicate, mark received, check state */ switch (type) { #ifndef NO_WOLFSSL_SERVER case client_hello: if (ssl->msgsReceived.got_client_hello == 2) { WOLFSSL_MSG("Too many ClientHello received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_client_hello++; break; #endif #ifndef NO_WOLFSSL_CLIENT case server_hello: if (ssl->msgsReceived.got_server_hello) { WOLFSSL_MSG("Duplicate ServerHello received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_server_hello = 1; break; #endif #ifndef NO_WOLFSSL_CLIENT case session_ticket: if (ssl->msgsReceived.got_session_ticket) { WOLFSSL_MSG("Duplicate SessionTicket received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_session_ticket = 1; break; #endif #ifndef NO_WOLFSSL_CLIENT case hello_retry_request: if (ssl->msgsReceived.got_hello_retry_request) { WOLFSSL_MSG("Duplicate HelloRetryRequest received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_hello_retry_request = 1; break; #endif #ifndef NO_WOLFSSL_CLIENT case encrypted_extensions: if (ssl->msgsReceived.got_encrypted_extensions) { WOLFSSL_MSG("Duplicate EncryptedExtensions received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_encrypted_extensions = 1; break; #endif case certificate: if (ssl->msgsReceived.got_certificate) { WOLFSSL_MSG("Duplicate Certificate received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_certificate = 1; #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_CLIENT_END) { if ( ssl->msgsReceived.got_server_hello == 0) { WOLFSSL_MSG("No ServerHello before Cert"); return OUT_OF_ORDER_E; } } #endif #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_SERVER_END) { if ( ssl->msgsReceived.got_client_hello == 0) { WOLFSSL_MSG("No ClientHello before Cert"); return OUT_OF_ORDER_E; } } #endif break; #ifndef NO_WOLFSSL_CLIENT case certificate_request: if (ssl->msgsReceived.got_certificate_request) { WOLFSSL_MSG("Duplicate CertificateRequest received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_certificate_request = 1; break; #endif case certificate_verify: if (ssl->msgsReceived.got_certificate_verify) { WOLFSSL_MSG("Duplicate CertificateVerify received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_certificate_verify = 1; if (ssl->msgsReceived.got_certificate == 0) { WOLFSSL_MSG("No Cert before CertVerify"); return OUT_OF_ORDER_E; } break; case finished: if (ssl->msgsReceived.got_finished) { WOLFSSL_MSG("Duplicate Finished received"); return DUPLICATE_MSG_E; } ssl->msgsReceived.got_finished = 1; break; case key_update: if (!ssl->msgsReceived.got_finished) { WOLFSSL_MSG("No KeyUpdate before Finished"); return OUT_OF_ORDER_E; } break; default: WOLFSSL_MSG("Unknown message type"); return SANITY_MSG_E; } return 0; } /* Handle a type of handshake message that has been received. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the buffer of the current message. * On exit, the index into the buffer of the next message. * size The length of the current handshake message. * totalSz Length of remaining data in the message buffer. * returns 0 on success and otherwise failure. */ int DoTls13HandShakeMsgType(WOLFSSL* ssl, byte* input, word32* inOutIdx, byte type, word32 size, word32 totalSz) { int ret = 0; (void)totalSz; word32 inIdx = *inOutIdx; WOLFSSL_ENTER("DoTls13HandShakeMsgType"); /* make sure can read the message */ if (*inOutIdx + size > totalSz) return INCOMPLETE_DATA; /* sanity check msg received */ if ( (ret = SanityCheckTls13MsgReceived(ssl, type)) != 0) { WOLFSSL_MSG("Sanity Check on handshake message type received failed"); return ret; } #ifdef WOLFSSL_CALLBACKS /* add name later, add on record and handshake header part back on */ if (ssl->toInfoOn) { int add = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ; AddPacketInfo(0, &ssl->timeoutInfo, input + *inOutIdx - add, size + add, ssl->heap); AddLateRecordHeader(&ssl->curRL, &ssl->timeoutInfo); } #endif if (ssl->options.handShakeState == HANDSHAKE_DONE && type != session_ticket && type != certificate_request && type != key_update) { WOLFSSL_MSG("HandShake message after handshake complete"); SendAlert(ssl, alert_fatal, unexpected_message); return OUT_OF_ORDER_E; } if (ssl->options.side == WOLFSSL_CLIENT_END && !ssl->options.dtls && ssl->options.serverState == NULL_STATE && type != server_hello && type != hello_retry_request) { WOLFSSL_MSG("First server message not server hello"); SendAlert(ssl, alert_fatal, unexpected_message); return OUT_OF_ORDER_E; } if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->options.dtls && type == server_hello_done && ssl->options.serverState < SERVER_HELLO_COMPLETE) { WOLFSSL_MSG("Server hello done received before server hello in DTLS"); SendAlert(ssl, alert_fatal, unexpected_message); return OUT_OF_ORDER_E; } if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.clientState == NULL_STATE && type != client_hello) { WOLFSSL_MSG("First client message not client hello"); SendAlert(ssl, alert_fatal, unexpected_message); return OUT_OF_ORDER_E; } /* above checks handshake state */ switch (type) { #ifndef NO_WOLFSSL_CLIENT case hello_retry_request: WOLFSSL_MSG("processing hello rety request"); ret = DoTls13HelloRetryRequest(ssl, input, inOutIdx, size); break; case server_hello: WOLFSSL_MSG("processing server hello"); ret = DoTls13ServerHello(ssl, input, inOutIdx, size); break; #ifndef NO_CERTS case certificate_request: WOLFSSL_MSG("processing certificate request"); ret = DoTls13CertificateRequest(ssl, input, inOutIdx, size); break; #endif case session_ticket: WOLFSSL_MSG("processing new session ticket"); ret = DoTls13NewSessionTicket(ssl, input, inOutIdx, size); break; case encrypted_extensions: WOLFSSL_MSG("processing encrypted extensions"); ret = DoTls13EncryptedExtensions(ssl, input, inOutIdx, size); break; #endif /* !NO_WOLFSSL_CLIENT */ #ifndef NO_CERTS case certificate: WOLFSSL_MSG("processing certificate"); ret = DoTls13Certificate(ssl, input, inOutIdx, size); break; #endif #if !defined(NO_RSA) || defined(HAVE_ECC) case certificate_verify: WOLFSSL_MSG("processing certificate verify"); ret = DoTls13CertificateVerify(ssl, input, inOutIdx, size); break; #endif /* !NO_RSA || HAVE_ECC */ case finished: WOLFSSL_MSG("processing finished"); ret = DoTls13Finished(ssl, input, inOutIdx, size, totalSz, NO_SNIFF); break; case key_update: WOLFSSL_MSG("processing finished"); ret = DoTls13KeyUpdate(ssl, input, inOutIdx, size); break; #ifndef NO_WOLFSSL_SERVER case client_hello: WOLFSSL_MSG("processing client hello"); ret = DoTls13ClientHello(ssl, input, inOutIdx, size); break; #endif /* !NO_WOLFSSL_SERVER */ default: WOLFSSL_MSG("Unknown handshake message type"); ret = UNKNOWN_HANDSHAKE_TYPE; break; } if (ret == 0 && type != client_hello && type != session_ticket && type != key_update && ssl->error != WC_PENDING_E) { ret = HashInput(ssl, input + inIdx, size); } if (ret == BUFFER_ERROR || ret == MISSING_HANDSHAKE_DATA) SendAlert(ssl, alert_fatal, decode_error); if (ret == EXT_NOT_ALLOWED || ret == PEER_KEY_ERROR || ret == ECC_PEERKEY_ERROR || ret == BAD_KEY_SHARE_DATA || ret == PSK_KEY_ERROR || ret == INVALID_PARAMETER) { SendAlert(ssl, alert_fatal, illegal_parameter); } if (ssl->options.tls1_3) { if (type == server_hello && ssl->options.side == WOLFSSL_CLIENT_END) { if ((ret = DeriveEarlySecret(ssl)) != 0) return ret; if ((ret = DeriveHandshakeSecret(ssl)) != 0) return ret; if ((ret = DeriveTls13Keys(ssl, handshake_key, ENCRYPT_AND_DECRYPT_SIDE)) != 0) return ret; /* setup decrypt keys for following messages */ if ((ret = SetKeysSide(ssl, DECRYPT_SIDE_ONLY)) != 0) return ret; if ((ret = SetKeysSide(ssl, ENCRYPT_SIDE_ONLY)) != 0) return ret; } if (type == finished && ssl->options.side == WOLFSSL_CLIENT_END) { if ((ret = DeriveMasterSecret(ssl)) != 0) return ret; if ((ret = DeriveTls13Keys(ssl, traffic_key, ENCRYPT_AND_DECRYPT_SIDE)) != 0) return ret; } #ifndef NO_PSK if (type == finished && ssl->options.side == WOLFSSL_SERVER_END) DeriveResumptionSecret(ssl, ssl->session.masterSecret); #endif } #ifdef WOLFSSL_ASYNC_CRYPT /* if async, offset index so this msg will be processed again */ if (ret == WC_PENDING_E) { *inOutIdx -= HANDSHAKE_HEADER_SZ; } #endif WOLFSSL_LEAVE("DoTls13HandShakeMsgType()", ret); return ret; } /* Handle a handshake message that has been received. * * ssl The SSL/TLS object. * input The message buffer. * inOutIdx On entry, the index into the buffer of the current message. * On exit, the index into the buffer of the next message. * totalSz Length of remaining data in the message buffer. * returns 0 on success and otherwise failure. */ int DoTls13HandShakeMsg(WOLFSSL* ssl, byte* input, word32* inOutIdx, word32 totalSz) { int ret = 0; word32 inputLength; WOLFSSL_ENTER("DoTls13HandShakeMsg()"); if (ssl->arrays == NULL) { byte type; word32 size; if (GetHandshakeHeader(ssl,input,inOutIdx,&type, &size, totalSz) != 0) return PARSE_ERROR; return DoTls13HandShakeMsgType(ssl, input, inOutIdx, type, size, totalSz); } inputLength = ssl->buffers.inputBuffer.length - *inOutIdx; /* If there is a pending fragmented handshake message, * pending message size will be non-zero. */ if (ssl->arrays->pendingMsgSz == 0) { byte type; word32 size; if (GetHandshakeHeader(ssl,input, inOutIdx, &type, &size, totalSz) != 0) return PARSE_ERROR; /* Cap the maximum size of a handshake message to something reasonable. * By default is the maximum size of a certificate message assuming * nine 2048-bit RSA certificates in the chain. */ if (size > MAX_HANDSHAKE_SZ) { WOLFSSL_MSG("Handshake message too large"); return HANDSHAKE_SIZE_ERROR; } /* size is the size of the certificate message payload */ if (inputLength - HANDSHAKE_HEADER_SZ < size) { ssl->arrays->pendingMsgType = type; ssl->arrays->pendingMsgSz = size + HANDSHAKE_HEADER_SZ; ssl->arrays->pendingMsg = (byte*)XMALLOC(size + HANDSHAKE_HEADER_SZ, ssl->heap, DYNAMIC_TYPE_ARRAYS); if (ssl->arrays->pendingMsg == NULL) return MEMORY_E; XMEMCPY(ssl->arrays->pendingMsg, input + *inOutIdx - HANDSHAKE_HEADER_SZ, inputLength); ssl->arrays->pendingMsgOffset = inputLength; *inOutIdx += inputLength - HANDSHAKE_HEADER_SZ; return 0; } ret = DoTls13HandShakeMsgType(ssl, input, inOutIdx, type, size, totalSz); } else { if (inputLength + ssl->arrays->pendingMsgOffset > ssl->arrays->pendingMsgSz) { return BUFFER_ERROR; } XMEMCPY(ssl->arrays->pendingMsg + ssl->arrays->pendingMsgOffset, input + *inOutIdx, inputLength); ssl->arrays->pendingMsgOffset += inputLength; *inOutIdx += inputLength; if (ssl->arrays->pendingMsgOffset == ssl->arrays->pendingMsgSz) { word32 idx = 0; ret = DoTls13HandShakeMsgType(ssl, ssl->arrays->pendingMsg + HANDSHAKE_HEADER_SZ, &idx, ssl->arrays->pendingMsgType, ssl->arrays->pendingMsgSz - HANDSHAKE_HEADER_SZ, ssl->arrays->pendingMsgSz); XFREE(ssl->arrays->pendingMsg, ssl->heap, DYNAMIC_TYPE_ARRAYS); ssl->arrays->pendingMsg = NULL; ssl->arrays->pendingMsgSz = 0; } } WOLFSSL_LEAVE("DoTls13HandShakeMsg()", ret); return ret; } /* The client connecting to the server. * The protocol version is expecting to be TLS v1.3. * If the server downgrades, and older versions of the protocol are compiled * in, the client will fallback to wolfSSL_connect(). * Please see note at top of README if you get an error from connect. * * ssl The SSL/TLS object. * returns SSL_SUCCESS on successful handshake, SSL_FATAL_ERROR when * unrecoverable error occurs and 0 otherwise. * For more error information use wolfSSL_get_error(). */ int wolfSSL_connect_TLSv13(WOLFSSL* ssl) { int neededState; WOLFSSL_ENTER("wolfSSL_connect_TLSv13()"); #ifdef HAVE_ERRNO_H errno = 0; #endif if (ssl->options.side != WOLFSSL_CLIENT_END) { WOLFSSL_ERROR(ssl->error = SIDE_ERROR); return SSL_FATAL_ERROR; } if (ssl->buffers.outputBuffer.length > 0) { if ((ssl->error = SendBuffered(ssl)) == 0) { /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ if (ssl->fragOffset == 0) { ssl->options.connectState++; WOLFSSL_MSG("connect state: " "Advanced from last buffered fragment send"); } else { WOLFSSL_MSG("connect state: " "Not advanced, more fragments to send"); } } else { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } switch (ssl->options.connectState) { case CONNECT_BEGIN: /* Always send client hello first. */ if ((ssl->error = SendTls13ClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = CLIENT_HELLO_SENT; WOLFSSL_MSG("connect state: CLIENT_HELLO_SENT"); case CLIENT_HELLO_SENT: neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; /* Get the response/s from the server. */ while (ssl->options.serverState < neededState) { if ((ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } /* if resumption failed, reset needed state. */ if (neededState == SERVER_FINISHED_COMPLETE && !ssl->options.resuming) { neededState = SERVER_HELLODONE_COMPLETE; } } ssl->options.connectState = HELLO_AGAIN; WOLFSSL_MSG("connect state: HELLO_AGAIN"); case HELLO_AGAIN: if (ssl->options.certOnly) return SSL_SUCCESS; if (!ssl->options.tls1_3) return wolfSSL_connect(ssl); if (ssl->options.serverState == SERVER_HELLO_RETRY_REQUEST) { ssl->options.serverState = NULL_STATE; /* Try again with different security parameters. */ if ((ssl->error = SendTls13ClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } ssl->options.connectState = HELLO_AGAIN_REPLY; WOLFSSL_MSG("connect state: HELLO_AGAIN_REPLY"); case HELLO_AGAIN_REPLY: if (ssl->options.serverState == NULL_STATE) { neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; /* Get the response/s from the server. */ while (ssl->options.serverState < neededState) { if ((ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) { if (!ssl->options.resuming) neededState = SERVER_HELLODONE_COMPLETE; } } } ssl->options.connectState = FIRST_REPLY_DONE; WOLFSSL_MSG("connect state: FIRST_REPLY_DONE"); case FIRST_REPLY_DONE: #ifndef NO_CERTS if (!ssl->options.resuming && ssl->options.sendVerify) { ssl->error = SendTls13Certificate(ssl); if (ssl->error != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate"); } #endif ssl->options.connectState = FIRST_REPLY_FIRST; WOLFSSL_MSG("connect state: FIRST_REPLY_FIRST"); case FIRST_REPLY_FIRST: #ifndef NO_CERTS if (!ssl->options.resuming && ssl->options.sendVerify) { ssl->error = SendTls13CertificateVerify(ssl); if (ssl->error != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate verify"); } #endif ssl->options.connectState = FIRST_REPLY_SECOND; WOLFSSL_MSG("connect state: FIRST_REPLY_SECOND"); case FIRST_REPLY_SECOND: if ((ssl->error = SendTls13Finished(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } WOLFSSL_MSG("sent: finished"); ssl->options.connectState = FINISHED_DONE; WOLFSSL_MSG("connect state: FINISHED_DONE"); case FINISHED_DONE: #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb != NULL) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return SSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ WOLFSSL_LEAVE("SSL_connect()", SSL_SUCCESS); return SSL_SUCCESS; default: WOLFSSL_MSG("Unknown connect state ERROR"); return SSL_FATAL_ERROR; /* unknown connect state */ } } /* Create a key share entry from group. * Generates a key pair. * * ssl The SSL/TLS object. * group The named group. * returns 0 on success, otherwise failure. */ int wolfSSL_UseKeyShare(WOLFSSL* ssl, word16 group) { int ret = BAD_FUNC_ARG; if (ssl == NULL) return BAD_FUNC_ARG; ret = TLSX_KeyShare_Use(ssl, group, 0, NULL, NULL); if (ret != 0) return ret; return SSL_SUCCESS; } /* Send no key share entries - use HelloRetryRequest to negotiate shared group. * * ssl The SSL/TLS object. * returns 0 on success, otherwise failure. */ int wolfSSL_NoKeyShares(WOLFSSL* ssl) { int ret = BAD_FUNC_ARG; if (ssl == NULL) return BAD_FUNC_ARG; ret = TLSX_KeyShare_Empty(ssl); if (ret != 0) return ret; return SSL_SUCCESS; } /* Do not send a ticket after TLS v1.3 handshake for resumption. * * ctx The SSL/TLS CTX object. * returns BAD_FUNC_ARG when ctx is NULL and 0 on success. */ int wolfSSL_CTX_no_ticket_TLSv13(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; #ifdef HAVE_SESSION_TICKET ctx->noTicketTls13 = 1; #endif return 0; } /* Do not send a ticket after TLS v1.3 handshake for resumption. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL, not using TLS v1.3, or called on * a client and 0 on success. */ int wolfSSL_no_ticket_TLSv13(WOLFSSL* ssl) { if (ssl == NULL || !IsAtLeastTLSv1_3(ssl->version) || ssl->options.side == WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; #ifdef HAVE_SESSION_TICKET ssl->options.noTicketTls13 = 1; #endif return 0; } /* Disallow (EC)DHE key exchange when using pre-shared keys. * * ctx The SSL/TLS CTX object. * returns BAD_FUNC_ARG when ctx is NULL and 0 on success. */ int wolfSSL_CTX_no_dhe_psk(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->noPskDheKe = 1; return 0; } /* Disallow (EC)DHE key exchange when using pre-shared keys. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL, or not using TLS v1.3 and 0 on * success. */ int wolfSSL_no_dhe_psk(WOLFSSL* ssl) { if (ssl == NULL || !IsAtLeastTLSv1_3(ssl->version)) return BAD_FUNC_ARG; ssl->options.noPskDheKe = 1; return 0; } /* Update the keys for encryption and decryption. * If using non-blocking I/O and SSL_ERROR_WANT_WRITE is returned then * calling wolfSSL_write() will have the message sent when ready. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL, or not using TLS v1.3, * SSL_ERROR_WANT_WRITE when non-blocking I/O is not ready to write, * SSL_SUCCESS on success and otherwise failure. */ int wolfSSL_update_keys(WOLFSSL* ssl) { int ret; if (ssl == NULL || !IsAtLeastTLSv1_3(ssl->version)) return BAD_FUNC_ARG; ret = SendTls13KeyUpdate(ssl); if (ret == WANT_WRITE) ret = SSL_ERROR_WANT_WRITE; else if (ret == 0) ret = SSL_SUCCESS; return ret; } /* The server accepting a connection from a client. * The protocol version is expecting to be TLS v1.3. * If the client downgrades, and older versions of the protocol are compiled * in, the server will fallback to wolfSSL_accept(). * Please see note at top of README if you get an error from accept. * * ssl The SSL/TLS object. * returns SSL_SUCCESS on successful handshake, SSL_FATAL_ERROR when * unrecoverable error occurs and 0 otherwise. * For more error information use wolfSSL_get_error(). */ int wolfSSL_accept_TLSv13(WOLFSSL* ssl) { word16 havePSK = 0; word16 haveAnon = 0; WOLFSSL_ENTER("SSL_accept_TLSv13()"); #ifdef HAVE_ERRNO_H errno = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif (void)havePSK; #ifdef HAVE_ANON haveAnon = ssl->options.haveAnon; #endif (void)haveAnon; if (ssl->options.side != WOLFSSL_SERVER_END) { WOLFSSL_ERROR(ssl->error = SIDE_ERROR); return SSL_FATAL_ERROR; } #ifndef NO_CERTS /* in case used set_accept_state after init */ if (!havePSK && !haveAnon && (!ssl->buffers.certificate || !ssl->buffers.certificate->buffer || !ssl->buffers.key || !ssl->buffers.key->buffer)) { WOLFSSL_MSG("accept error: don't have server cert and key"); ssl->error = NO_PRIVATE_KEY; WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif #ifdef WOLFSSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; } #endif if (ssl->buffers.outputBuffer.length > 0) { if ((ssl->error = SendBuffered(ssl)) == 0) { /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ if (ssl->fragOffset == 0) { ssl->options.acceptState++; WOLFSSL_MSG("accept state: " "Advanced from last buffered fragment send"); } else { WOLFSSL_MSG("accept state: " "Not advanced, more fragments to send"); } } else { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } switch (ssl->options.acceptState) { case ACCEPT_BEGIN : /* get response */ while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ((ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE; WOLFSSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE"); case ACCEPT_CLIENT_HELLO_DONE : if (ssl->options.serverState == SERVER_HELLO_RETRY_REQUEST) { if ((ssl->error = SendTls13HelloRetryRequest(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } ssl->options.acceptState = ACCEPT_HELLO_RETRY_REQUEST_DONE; WOLFSSL_MSG("accept state ACCEPT_HELLO_RETRY_REQUEST_DONE"); case ACCEPT_HELLO_RETRY_REQUEST_DONE : if (ssl->options.serverState == SERVER_HELLO_RETRY_REQUEST) { if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE"); case ACCEPT_FIRST_REPLY_DONE : if ((ssl->error = SendTls13ServerHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_SENT; WOLFSSL_MSG("accept state SERVER_HELLO_SENT"); case SERVER_HELLO_SENT : if ((ssl->error = SendTls13EncryptedExtensions(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_EXTENSIONS_SENT; WOLFSSL_MSG("accept state SERVER_EXTENSIONS_SENT"); case SERVER_EXTENSIONS_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) if (ssl->options.verifyPeer) ssl->error = SendTls13CertificateRequest(ssl); if (ssl->error != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_REQ_SENT; WOLFSSL_MSG("accept state CERT_REQ_SENT"); case CERT_REQ_SENT : ssl->options.acceptState = KEY_EXCHANGE_SENT; #ifndef NO_CERTS if (!ssl->options.resuming) { if ((ssl->error = SendTls13Certificate(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif ssl->options.acceptState = CERT_SENT; WOLFSSL_MSG("accept state CERT_SENT"); case CERT_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) { if ((ssl->error = SendTls13CertificateVerify(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif ssl->options.acceptState = CERT_STATUS_SENT; WOLFSSL_MSG("accept state CERT_STATUS_SENT"); case CERT_VERIFY_SENT : if ((ssl->error = SendTls13Finished(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_FINISHED_DONE; WOLFSSL_MSG("accept state ACCEPT_FINISHED_DONE"); case ACCEPT_FINISHED_DONE : #ifdef HAVE_SESSION_TICKET /* TODO: [TLS13] Section 4.5.1 Note. */ if (!ssl->options.resuming && !ssl->options.verifyPeer && !ssl->options.noTicketTls13 && ssl->ctx->ticketEncCb != NULL) { if ((ssl->error = SendTls13NewSessionTicket(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif /* HAVE_SESSION_TICKET */ ssl->options.acceptState = TICKET_SENT; WOLFSSL_MSG("accept state TICKET_SENT"); case TICKET_SENT: while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE"); case ACCEPT_SECOND_REPLY_DONE : #ifdef HAVE_SESSION_TICKET if (!ssl->options.resuming && ssl->options.verifyPeer && !ssl->options.noTicketTls13 && ssl->ctx->ticketEncCb != NULL) { if ((ssl->error = SendTls13NewSessionTicket(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif /* HAVE_SESSION_TICKET */ ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE"); case ACCEPT_THIRD_REPLY_DONE: #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return SSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ #ifdef WOLFSSL_SESSION_EXPORT if (ssl->dtls_export) { if ((ssl->error = wolfSSL_send_session(ssl)) != 0) { WOLFSSL_MSG("Export DTLS session error"); WOLFSSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif WOLFSSL_LEAVE("SSL_accept()", SSL_SUCCESS); return SSL_SUCCESS; default : WOLFSSL_MSG("Unknown accept state ERROR"); return SSL_FATAL_ERROR; } } #undef ERROR_OUT #endif /* WOLFCRYPT_ONLY */ #endif /* WOLFSSL_TLS13 */