wolfSSL 3.11.1 for TLS1.3 beta
Fork of wolfSSL by
Diff: wolfcrypt/src/rabbit.c
- Revision:
- 13:80fb167dafdf
- Parent:
- 11:cee25a834751
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/wolfcrypt/src/rabbit.c Tue May 30 06:16:19 2017 +0000 @@ -0,0 +1,335 @@ +/* rabbit.c + * + * Copyright (C) 2006-2016 wolfSSL Inc. + * + * This file is part of wolfSSL. + * + * wolfSSL is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * wolfSSL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA + */ + + +#ifdef HAVE_CONFIG_H + #include <config.h> +#endif + +#include <wolfssl/wolfcrypt/settings.h> + +#ifndef NO_RABBIT + +#include <wolfssl/wolfcrypt/rabbit.h> +#include <wolfssl/wolfcrypt/error-crypt.h> +#include <wolfssl/wolfcrypt/logging.h> +#ifdef NO_INLINE + #include <wolfssl/wolfcrypt/misc.h> +#else + #define WOLFSSL_MISC_INCLUDED + #include <wolfcrypt/src/misc.c> +#endif + + +#ifdef BIG_ENDIAN_ORDER + #define LITTLE32(x) ByteReverseWord32(x) +#else + #define LITTLE32(x) (x) +#endif + +#define U32V(x) ((word32)(x) & 0xFFFFFFFFU) + + +/* Square a 32-bit unsigned integer to obtain the 64-bit result and return */ +/* the upper 32 bits XOR the lower 32 bits */ +static word32 RABBIT_g_func(word32 x) +{ + /* Temporary variables */ + word32 a, b, h, l; + + /* Construct high and low argument for squaring */ + a = x&0xFFFF; + b = x>>16; + + /* Calculate high and low result of squaring */ + h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b; + l = x*x; + + /* Return high XOR low */ + return U32V(h^l); +} + + +/* Calculate the next internal state */ +static void RABBIT_next_state(RabbitCtx* ctx) +{ + /* Temporary variables */ + word32 g[8], c_old[8], i; + + /* Save old counter values */ + for (i=0; i<8; i++) + c_old[i] = ctx->c[i]; + + /* Calculate new counter values */ + ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry); + ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0])); + ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1])); + ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2])); + ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3])); + ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4])); + ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5])); + ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6])); + ctx->carry = (ctx->c[7] < c_old[7]); + + /* Calculate the g-values */ + for (i=0;i<8;i++) + g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i])); + + /* Calculate new state values */ + ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16)); + ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]); + ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16)); + ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]); + ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16)); + ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]); + ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16)); + ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]); +} + + +/* IV setup */ +static void wc_RabbitSetIV(Rabbit* ctx, const byte* inIv) +{ + /* Temporary variables */ + word32 i0, i1, i2, i3, i; + word32 iv[2]; + + if (inIv) + XMEMCPY(iv, inIv, sizeof(iv)); + else + XMEMSET(iv, 0, sizeof(iv)); + + /* Generate four subvectors */ + i0 = LITTLE32(iv[0]); + i2 = LITTLE32(iv[1]); + i1 = (i0>>16) | (i2&0xFFFF0000); + i3 = (i2<<16) | (i0&0x0000FFFF); + + /* Modify counter values */ + ctx->workCtx.c[0] = ctx->masterCtx.c[0] ^ i0; + ctx->workCtx.c[1] = ctx->masterCtx.c[1] ^ i1; + ctx->workCtx.c[2] = ctx->masterCtx.c[2] ^ i2; + ctx->workCtx.c[3] = ctx->masterCtx.c[3] ^ i3; + ctx->workCtx.c[4] = ctx->masterCtx.c[4] ^ i0; + ctx->workCtx.c[5] = ctx->masterCtx.c[5] ^ i1; + ctx->workCtx.c[6] = ctx->masterCtx.c[6] ^ i2; + ctx->workCtx.c[7] = ctx->masterCtx.c[7] ^ i3; + + /* Copy state variables */ + for (i=0; i<8; i++) + ctx->workCtx.x[i] = ctx->masterCtx.x[i]; + ctx->workCtx.carry = ctx->masterCtx.carry; + + /* Iterate the system four times */ + for (i=0; i<4; i++) + RABBIT_next_state(&(ctx->workCtx)); +} + + +/* Key setup */ +static INLINE int DoKey(Rabbit* ctx, const byte* key, const byte* iv) +{ + /* Temporary variables */ + word32 k0, k1, k2, k3, i; + + /* Generate four subkeys */ + k0 = LITTLE32(*(word32*)(key+ 0)); + k1 = LITTLE32(*(word32*)(key+ 4)); + k2 = LITTLE32(*(word32*)(key+ 8)); + k3 = LITTLE32(*(word32*)(key+12)); + + /* Generate initial state variables */ + ctx->masterCtx.x[0] = k0; + ctx->masterCtx.x[2] = k1; + ctx->masterCtx.x[4] = k2; + ctx->masterCtx.x[6] = k3; + ctx->masterCtx.x[1] = U32V(k3<<16) | (k2>>16); + ctx->masterCtx.x[3] = U32V(k0<<16) | (k3>>16); + ctx->masterCtx.x[5] = U32V(k1<<16) | (k0>>16); + ctx->masterCtx.x[7] = U32V(k2<<16) | (k1>>16); + + /* Generate initial counter values */ + ctx->masterCtx.c[0] = rotlFixed(k2, 16); + ctx->masterCtx.c[2] = rotlFixed(k3, 16); + ctx->masterCtx.c[4] = rotlFixed(k0, 16); + ctx->masterCtx.c[6] = rotlFixed(k1, 16); + ctx->masterCtx.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF); + ctx->masterCtx.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF); + ctx->masterCtx.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF); + ctx->masterCtx.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF); + + /* Clear carry bit */ + ctx->masterCtx.carry = 0; + + /* Iterate the system four times */ + for (i=0; i<4; i++) + RABBIT_next_state(&(ctx->masterCtx)); + + /* Modify the counters */ + for (i=0; i<8; i++) + ctx->masterCtx.c[i] ^= ctx->masterCtx.x[(i+4)&0x7]; + + /* Copy master instance to work instance */ + for (i=0; i<8; i++) { + ctx->workCtx.x[i] = ctx->masterCtx.x[i]; + ctx->workCtx.c[i] = ctx->masterCtx.c[i]; + } + ctx->workCtx.carry = ctx->masterCtx.carry; + + wc_RabbitSetIV(ctx, iv); + + return 0; +} + + +int wc_Rabbit_SetHeap(Rabbit* ctx, void* heap) +{ + if (ctx == NULL) { + return BAD_FUNC_ARG; + } + +#ifdef XSTREAM_ALIGN + ctx->heap = heap; +#endif + + (void)heap; + return 0; +} + + +/* Key setup */ +int wc_RabbitSetKey(Rabbit* ctx, const byte* key, const byte* iv) +{ +#ifdef XSTREAM_ALIGN + /* default heap to NULL or heap test value */ + #ifdef WOLFSSL_HEAP_TEST + ctx->heap = (void*)WOLFSSL_HEAP_TEST; + #else + ctx->heap = NULL; + #endif /* WOLFSSL_HEAP_TEST */ + + if ((wolfssl_word)key % 4) { + int alignKey[4]; + + /* iv aligned in SetIV */ + WOLFSSL_MSG("wc_RabbitSetKey unaligned key"); + + XMEMCPY(alignKey, key, sizeof(alignKey)); + + return DoKey(ctx, (const byte*)alignKey, iv); + } +#endif /* XSTREAM_ALIGN */ + + return DoKey(ctx, key, iv); +} + + +/* Encrypt/decrypt a message of any size */ +static INLINE int DoProcess(Rabbit* ctx, byte* output, const byte* input, + word32 msglen) +{ + /* Encrypt/decrypt all full blocks */ + while (msglen >= 16) { + /* Iterate the system */ + RABBIT_next_state(&(ctx->workCtx)); + + /* Encrypt/decrypt 16 bytes of data */ + *(word32*)(output+ 0) = *(word32*)(input+ 0) ^ + LITTLE32(ctx->workCtx.x[0] ^ (ctx->workCtx.x[5]>>16) ^ + U32V(ctx->workCtx.x[3]<<16)); + *(word32*)(output+ 4) = *(word32*)(input+ 4) ^ + LITTLE32(ctx->workCtx.x[2] ^ (ctx->workCtx.x[7]>>16) ^ + U32V(ctx->workCtx.x[5]<<16)); + *(word32*)(output+ 8) = *(word32*)(input+ 8) ^ + LITTLE32(ctx->workCtx.x[4] ^ (ctx->workCtx.x[1]>>16) ^ + U32V(ctx->workCtx.x[7]<<16)); + *(word32*)(output+12) = *(word32*)(input+12) ^ + LITTLE32(ctx->workCtx.x[6] ^ (ctx->workCtx.x[3]>>16) ^ + U32V(ctx->workCtx.x[1]<<16)); + + /* Increment pointers and decrement length */ + input += 16; + output += 16; + msglen -= 16; + } + + /* Encrypt/decrypt remaining data */ + if (msglen) { + + word32 i; + word32 tmp[4]; + byte* buffer = (byte*)tmp; + + XMEMSET(tmp, 0, sizeof(tmp)); /* help static analysis */ + + /* Iterate the system */ + RABBIT_next_state(&(ctx->workCtx)); + + /* Generate 16 bytes of pseudo-random data */ + tmp[0] = LITTLE32(ctx->workCtx.x[0] ^ + (ctx->workCtx.x[5]>>16) ^ U32V(ctx->workCtx.x[3]<<16)); + tmp[1] = LITTLE32(ctx->workCtx.x[2] ^ + (ctx->workCtx.x[7]>>16) ^ U32V(ctx->workCtx.x[5]<<16)); + tmp[2] = LITTLE32(ctx->workCtx.x[4] ^ + (ctx->workCtx.x[1]>>16) ^ U32V(ctx->workCtx.x[7]<<16)); + tmp[3] = LITTLE32(ctx->workCtx.x[6] ^ + (ctx->workCtx.x[3]>>16) ^ U32V(ctx->workCtx.x[1]<<16)); + + /* Encrypt/decrypt the data */ + for (i=0; i<msglen; i++) + output[i] = input[i] ^ buffer[i]; + } + + return 0; +} + + +/* Encrypt/decrypt a message of any size */ +int wc_RabbitProcess(Rabbit* ctx, byte* output, const byte* input, word32 msglen) +{ +#ifdef XSTREAM_ALIGN + if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) { + #ifndef NO_WOLFSSL_ALLOC_ALIGN + byte* tmp; + WOLFSSL_MSG("wc_RabbitProcess unaligned"); + + tmp = (byte*)XMALLOC(msglen, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); + if (tmp == NULL) return MEMORY_E; + + XMEMCPY(tmp, input, msglen); + DoProcess(ctx, tmp, tmp, msglen); + XMEMCPY(output, tmp, msglen); + + XFREE(tmp, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); + + return 0; + #else + return BAD_ALIGN_E; + #endif + } +#endif /* XSTREAM_ALIGN */ + + return DoProcess(ctx, output, input, msglen); +} + + +#endif /* NO_RABBIT */ +