SSL/TLS Library

Dependents:  

CyaSSL is SSL/TLS library for embedded systems.

wolfssl.com

Revision:
0:9d17e4342598
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cyassl/ctaocrypt/tfm.h	Sun Apr 20 12:40:57 2014 +0000
@@ -0,0 +1,694 @@
+/* tfm.h
+ *
+ * Copyright (C) 2006-2013 wolfSSL Inc.
+ *
+ * This file is part of CyaSSL.
+ *
+ * CyaSSL is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * CyaSSL is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+
+
+/*
+ * Based on public domain TomsFastMath 0.10 by Tom St Denis, tomstdenis@iahu.ca,
+ * http://math.libtomcrypt.com
+ */
+
+
+/**
+ *  Edited by Moisés Guimarães (moises.guimaraes@phoebus.com.br)
+ *  to fit CyaSSL's needs.
+ */
+
+
+#ifndef CTAO_CRYPT_TFM_H
+#define CTAO_CRYPT_TFM_H
+
+#include <cyassl/ctaocrypt/types.h>
+#ifndef CHAR_BIT
+    #include <limits.h>
+#endif
+
+
+#ifdef __cplusplus
+    extern "C" {
+#endif
+
+#ifndef MIN
+   #define MIN(x,y) ((x)<(y)?(x):(y))
+#endif
+
+#ifndef MAX
+   #define MAX(x,y) ((x)>(y)?(x):(y))
+#endif
+
+
+#ifndef NO_64BIT
+/* autodetect x86-64 and make sure we are using 64-bit digits with x86-64 asm */
+#if defined(__x86_64__)
+   #if defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) 
+       #error x86-64 detected, x86-32/SSE2/ARM optimizations are not valid!
+   #endif
+   #if !defined(TFM_X86_64) && !defined(TFM_NO_ASM)
+      #define TFM_X86_64
+   #endif
+#endif
+#if defined(TFM_X86_64)
+    #if !defined(FP_64BIT)
+       #define FP_64BIT
+    #endif
+#endif
+/* use 64-bit digit even if not using asm on x86_64 */
+#if defined(__x86_64__) && !defined(FP_64BIT)
+    #define FP_64BIT
+#endif
+#endif /* NO_64BIT */
+
+/* try to detect x86-32 */
+#if defined(__i386__) && !defined(TFM_SSE2)
+   #if defined(TFM_X86_64) || defined(TFM_ARM) 
+       #error x86-32 detected, x86-64/ARM optimizations are not valid!
+   #endif
+   #if !defined(TFM_X86) && !defined(TFM_NO_ASM)
+      #define TFM_X86
+   #endif
+#endif
+
+/* make sure we're 32-bit for x86-32/sse/arm/ppc32 */
+#if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) || defined(TFM_PPC32)) && defined(FP_64BIT)
+   #warning x86-32, SSE2 and ARM, PPC32 optimizations require 32-bit digits (undefining)
+   #undef FP_64BIT
+#endif
+
+/* multi asms? */
+#ifdef TFM_X86
+   #define TFM_ASM
+#endif
+#ifdef TFM_X86_64
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+#ifdef TFM_SSE2
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+#ifdef TFM_ARM
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+#ifdef TFM_PPC32
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+#ifdef TFM_PPC64
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+#ifdef TFM_AVR32
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+
+/* we want no asm? */
+#ifdef TFM_NO_ASM
+   #undef TFM_X86
+   #undef TFM_X86_64
+   #undef TFM_SSE2
+   #undef TFM_ARM
+   #undef TFM_PPC32
+   #undef TFM_PPC64
+   #undef TFM_AVR32
+   #undef TFM_ASM   
+#endif
+
+/* ECC helpers */
+#ifdef TFM_ECC192
+   #ifdef FP_64BIT
+       #define TFM_MUL3
+       #define TFM_SQR3
+   #else
+       #define TFM_MUL6
+       #define TFM_SQR6
+   #endif
+#endif
+
+#ifdef TFM_ECC224
+   #ifdef FP_64BIT
+       #define TFM_MUL4
+       #define TFM_SQR4
+   #else
+       #define TFM_MUL7
+       #define TFM_SQR7
+   #endif
+#endif
+
+#ifdef TFM_ECC256
+   #ifdef FP_64BIT
+       #define TFM_MUL4
+       #define TFM_SQR4
+   #else
+       #define TFM_MUL8
+       #define TFM_SQR8
+   #endif
+#endif
+
+#ifdef TFM_ECC384
+   #ifdef FP_64BIT
+       #define TFM_MUL6
+       #define TFM_SQR6
+   #else
+       #define TFM_MUL12
+       #define TFM_SQR12
+   #endif
+#endif
+
+#ifdef TFM_ECC521
+   #ifdef FP_64BIT
+       #define TFM_MUL9
+       #define TFM_SQR9
+   #else
+       #define TFM_MUL17
+       #define TFM_SQR17
+   #endif
+#endif
+
+
+/* some default configurations.
+ */
+#if defined(FP_64BIT)
+   /* for GCC only on supported platforms */
+   typedef unsigned long long fp_digit;   /* 64bit, 128 uses mode(TI) below */
+   typedef unsigned long      fp_word __attribute__ ((mode(TI)));
+#else
+   #if defined(_MSC_VER) || defined(__BORLANDC__) 
+      typedef unsigned __int64   ulong64;
+   #else
+      typedef unsigned long long ulong64;
+   #endif
+
+   #ifndef NO_64BIT
+      typedef unsigned int       fp_digit;
+      typedef ulong64            fp_word;
+   #else
+      /* some procs like coldfire prefer not to place multiply into 64bit type
+         even though it exists */
+      typedef unsigned short     fp_digit;
+      typedef unsigned int       fp_word;
+   #endif
+#endif
+
+/* # of digits this is */
+#define DIGIT_BIT  (int)((CHAR_BIT) * sizeof(fp_digit))
+
+/* Max size of any number in bits.  Basically the largest size you will be
+ * multiplying should be half [or smaller] of FP_MAX_SIZE-four_digit
+ *
+ * It defaults to 4096-bits [allowing multiplications upto 2048x2048 bits ]
+ */
+#ifndef FP_MAX_BITS
+    #define FP_MAX_BITS           4096
+#endif
+#define FP_MAX_SIZE           (FP_MAX_BITS+(8*DIGIT_BIT))
+
+/* will this lib work? */
+#if (CHAR_BIT & 7)
+   #error CHAR_BIT must be a multiple of eight.
+#endif
+#if FP_MAX_BITS % CHAR_BIT
+   #error FP_MAX_BITS must be a multiple of CHAR_BIT
+#endif
+
+#define FP_MASK    (fp_digit)(-1)
+#define FP_SIZE    (FP_MAX_SIZE/DIGIT_BIT)
+
+/* signs */
+#define FP_ZPOS     0
+#define FP_NEG      1
+
+/* return codes */
+#define FP_OKAY     0
+#define FP_VAL      1
+#define FP_MEM      2
+
+/* equalities */
+#define FP_LT        -1   /* less than */
+#define FP_EQ         0   /* equal to */
+#define FP_GT         1   /* greater than */
+
+/* replies */
+#define FP_YES        1   /* yes response */
+#define FP_NO         0   /* no response */
+
+/* a FP type */
+typedef struct {
+    fp_digit dp[FP_SIZE];
+    int      used, 
+             sign;
+} fp_int;
+
+/* externally define this symbol to ignore the default settings, useful for changing the build from the make process */
+#ifndef TFM_ALREADY_SET
+
+/* do we want the large set of small multiplications ? 
+   Enable these if you are going to be doing a lot of small (<= 16 digit) multiplications say in ECC
+   Or if you're on a 64-bit machine doing RSA as a 1024-bit integer == 16 digits ;-)
+ */
+/* need to refactor the function */
+/*#define TFM_SMALL_SET */
+
+/* do we want huge code 
+   Enable these if you are doing 20, 24, 28, 32, 48, 64 digit multiplications (useful for RSA)
+   Less important on 64-bit machines as 32 digits == 2048 bits
+ */
+#if 0
+#define TFM_MUL3
+#define TFM_MUL4
+#define TFM_MUL6
+#define TFM_MUL7
+#define TFM_MUL8
+#define TFM_MUL9
+#define TFM_MUL12
+#define TFM_MUL17
+#endif
+#ifdef TFM_HUGE_SET
+#define TFM_MUL20
+#define TFM_MUL24
+#define TFM_MUL28
+#define TFM_MUL32
+#if (FP_MAX_BITS >= 6144) && defined(FP_64BIT)
+    #define TFM_MUL48
+#endif
+#if (FP_MAX_BITS >= 8192) && defined(FP_64BIT)
+    #define TFM_MUL64
+#endif
+#endif
+
+#if 0
+#define TFM_SQR3
+#define TFM_SQR4
+#define TFM_SQR6
+#define TFM_SQR7
+#define TFM_SQR8
+#define TFM_SQR9
+#define TFM_SQR12
+#define TFM_SQR17
+#endif
+#ifdef TFM_HUGE_SET
+#define TFM_SQR20
+#define TFM_SQR24
+#define TFM_SQR28
+#define TFM_SQR32
+#define TFM_SQR48
+#define TFM_SQR64
+#endif
+
+/* do we want some overflow checks
+   Not required if you make sure your numbers are within range (e.g. by default a modulus for fp_exptmod() can only be upto 2048 bits long)
+ */
+/* #define TFM_CHECK */
+
+/* Is the target a P4 Prescott
+ */
+/* #define TFM_PRESCOTT */
+
+/* Do we want timing resistant fp_exptmod() ?
+ * This makes it slower but also timing invariant with respect to the exponent 
+ */
+/* #define TFM_TIMING_RESISTANT */
+
+#endif /* TFM_ALREADY_SET */
+
+/* functions */
+
+/* returns a TFM ident string useful for debugging... */
+/*const char *fp_ident(void);*/
+
+/* initialize [or zero] an fp int */
+#define fp_init(a)  (void)XMEMSET((a), 0, sizeof(fp_int))
+#define fp_zero(a)  fp_init(a)
+
+/* zero/even/odd ? */
+#define fp_iszero(a) (((a)->used == 0) ? FP_YES : FP_NO)
+#define fp_iseven(a) (((a)->used >= 0 && (((a)->dp[0] & 1) == 0)) ? FP_YES : FP_NO)
+#define fp_isodd(a)  (((a)->used > 0  && (((a)->dp[0] & 1) == 1)) ? FP_YES : FP_NO)
+
+/* set to a small digit */
+void fp_set(fp_int *a, fp_digit b);
+
+/* copy from a to b */
+#define fp_copy(a, b)  (void)(((a) != (b)) ? ((void)XMEMCPY((b), (a), sizeof(fp_int))) : (void)0)
+#define fp_init_copy(a, b) fp_copy(b, a)
+
+/* clamp digits */
+#define fp_clamp(a)   { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : FP_ZPOS; }
+
+/* negate and absolute */
+#define fp_neg(a, b)  { fp_copy(a, b); (b)->sign ^= 1; fp_clamp(b); }
+#define fp_abs(a, b)  { fp_copy(a, b); (b)->sign  = 0; }
+
+/* right shift x digits */
+void fp_rshd(fp_int *a, int x);
+
+/* right shift x bits */
+void fp_rshb(fp_int *a, int x);
+
+/* left shift x digits */
+void fp_lshd(fp_int *a, int x);
+
+/* signed comparison */
+int fp_cmp(fp_int *a, fp_int *b);
+
+/* unsigned comparison */
+int fp_cmp_mag(fp_int *a, fp_int *b);
+
+/* power of 2 operations */
+void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d);
+void fp_mod_2d(fp_int *a, int b, fp_int *c);
+void fp_mul_2d(fp_int *a, int b, fp_int *c);
+void fp_2expt (fp_int *a, int b);
+void fp_mul_2(fp_int *a, fp_int *c);
+void fp_div_2(fp_int *a, fp_int *c);
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+/*int fp_cnt_lsb(fp_int *a);*/
+
+/* c = a + b */
+void fp_add(fp_int *a, fp_int *b, fp_int *c);
+
+/* c = a - b */
+void fp_sub(fp_int *a, fp_int *b, fp_int *c);
+
+/* c = a * b */
+void fp_mul(fp_int *a, fp_int *b, fp_int *c);
+
+/* b = a*a  */
+void fp_sqr(fp_int *a, fp_int *b);
+
+/* a/b => cb + d == a */
+int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+
+/* c = a mod b, 0 <= c < b  */
+int fp_mod(fp_int *a, fp_int *b, fp_int *c);
+
+/* compare against a single digit */
+int fp_cmp_d(fp_int *a, fp_digit b);
+
+/* c = a + b */
+void fp_add_d(fp_int *a, fp_digit b, fp_int *c);
+
+/* c = a - b */
+void fp_sub_d(fp_int *a, fp_digit b, fp_int *c);
+
+/* c = a * b */
+void fp_mul_d(fp_int *a, fp_digit b, fp_int *c);
+
+/* a/b => cb + d == a */
+/*int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d);*/
+
+/* c = a mod b, 0 <= c < b  */
+/*int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c);*/
+
+/* ---> number theory <--- */
+/* d = a + b (mod c) */
+/*int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/
+
+/* d = a - b (mod c) */
+/*int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/
+
+/* d = a * b (mod c) */
+int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+
+/* c = a * a (mod b) */
+int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c);
+
+/* c = 1/a (mod b) */
+int fp_invmod(fp_int *a, fp_int *b, fp_int *c);
+
+/* c = (a, b) */
+/*void fp_gcd(fp_int *a, fp_int *b, fp_int *c);*/
+
+/* c = [a, b] */
+/*void fp_lcm(fp_int *a, fp_int *b, fp_int *c);*/
+
+/* setups the montgomery reduction */
+int fp_montgomery_setup(fp_int *a, fp_digit *mp);
+
+/* computes a = B**n mod b without division or multiplication useful for
+ * normalizing numbers in a Montgomery system.
+ */
+void fp_montgomery_calc_normalization(fp_int *a, fp_int *b);
+
+/* computes x/R == x (mod N) via Montgomery Reduction */
+void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp);
+
+/* d = a**b (mod c) */
+int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+
+/* primality stuff */
+
+/* perform a Miller-Rabin test of a to the base b and store result in "result" */
+/*void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result);*/
+
+/* 256 trial divisions + 8 Miller-Rabins, returns FP_YES if probable prime  */
+/*int fp_isprime(fp_int *a);*/
+
+/* Primality generation flags */
+/*#define TFM_PRIME_BBS      0x0001 */ /* BBS style prime */
+/*#define TFM_PRIME_SAFE     0x0002 */ /* Safe prime (p-1)/2 == prime */
+/*#define TFM_PRIME_2MSB_OFF 0x0004 */ /* force 2nd MSB to 0 */
+/*#define TFM_PRIME_2MSB_ON  0x0008 */ /* force 2nd MSB to 1 */
+
+/* callback for fp_prime_random, should fill dst with random bytes and return how many read [upto len] */
+/*typedef int tfm_prime_callback(unsigned char *dst, int len, void *dat);*/
+
+/*#define fp_prime_random(a, t, size, bbs, cb, dat) fp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?TFM_PRIME_BBS:0, cb, dat)*/
+
+/*int fp_prime_random_ex(fp_int *a, int t, int size, int flags, tfm_prime_callback cb, void *dat);*/
+
+/* radix conersions */
+int fp_count_bits(fp_int *a);
+int fp_leading_bit(fp_int *a);
+
+int fp_unsigned_bin_size(fp_int *a);
+void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c);
+void fp_to_unsigned_bin(fp_int *a, unsigned char *b);
+
+/*int fp_signed_bin_size(fp_int *a);*/
+/*void fp_read_signed_bin(fp_int *a, unsigned char *b, int c);*/
+/*void fp_to_signed_bin(fp_int *a, unsigned char *b);*/
+
+/*int fp_read_radix(fp_int *a, char *str, int radix);*/
+/*int fp_toradix(fp_int *a, char *str, int radix);*/
+/*int fp_toradix_n(fp_int * a, char *str, int radix, int maxlen);*/
+
+
+/* VARIOUS LOW LEVEL STUFFS */
+void s_fp_add(fp_int *a, fp_int *b, fp_int *c);
+void s_fp_sub(fp_int *a, fp_int *b, fp_int *c);
+void fp_reverse(unsigned char *s, int len);
+
+void fp_mul_comba(fp_int *a, fp_int *b, fp_int *c);
+
+#ifdef TFM_SMALL_SET
+void fp_mul_comba_small(fp_int *a, fp_int *b, fp_int *c);
+#endif
+
+#ifdef TFM_MUL3
+void fp_mul_comba3(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL4
+void fp_mul_comba4(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL6
+void fp_mul_comba6(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL7
+void fp_mul_comba7(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL8
+void fp_mul_comba8(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL9
+void fp_mul_comba9(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL12
+void fp_mul_comba12(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL17
+void fp_mul_comba17(fp_int *a, fp_int *b, fp_int *c);
+#endif
+
+#ifdef TFM_MUL20
+void fp_mul_comba20(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL24
+void fp_mul_comba24(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL28
+void fp_mul_comba28(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL32
+void fp_mul_comba32(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL48
+void fp_mul_comba48(fp_int *a, fp_int *b, fp_int *c);
+#endif
+#ifdef TFM_MUL64
+void fp_mul_comba64(fp_int *a, fp_int *b, fp_int *c);
+#endif
+
+void fp_sqr_comba(fp_int *a, fp_int *b);
+
+#ifdef TFM_SMALL_SET
+void fp_sqr_comba_small(fp_int *a, fp_int *b);
+#endif
+
+#ifdef TFM_SQR3
+void fp_sqr_comba3(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR4
+void fp_sqr_comba4(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR6
+void fp_sqr_comba6(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR7
+void fp_sqr_comba7(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR8
+void fp_sqr_comba8(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR9
+void fp_sqr_comba9(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR12
+void fp_sqr_comba12(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR17
+void fp_sqr_comba17(fp_int *a, fp_int *b);
+#endif
+
+#ifdef TFM_SQR20
+void fp_sqr_comba20(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR24
+void fp_sqr_comba24(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR28
+void fp_sqr_comba28(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR32
+void fp_sqr_comba32(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR48
+void fp_sqr_comba48(fp_int *a, fp_int *b);
+#endif
+#ifdef TFM_SQR64
+void fp_sqr_comba64(fp_int *a, fp_int *b);
+#endif
+/*extern const char *fp_s_rmap;*/
+
+
+/**
+ * Used by CyaSSL 
+ */
+
+/* Types */
+    typedef fp_digit mp_digit;
+    typedef fp_word  mp_word;
+    typedef fp_int mp_int;
+
+/* Constants */
+    #define MP_LT   FP_LT   /* less than    */
+    #define MP_EQ   FP_EQ   /* equal to     */
+    #define MP_GT   FP_GT   /* greater than */
+    #define MP_OKAY FP_OKAY /* ok result    */
+    #define MP_NO   FP_NO   /* yes/no result */
+    #define MP_YES  FP_YES  /* yes/no result */
+
+/* Prototypes */
+int  mp_init (mp_int * a);
+void mp_clear (mp_int * a);
+int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, mp_int* f);
+
+int  mp_add (mp_int * a, mp_int * b, mp_int * c);
+int  mp_sub (mp_int * a, mp_int * b, mp_int * c);
+int  mp_add_d (mp_int * a, mp_digit b, mp_int * c);
+
+int  mp_mul (mp_int * a, mp_int * b, mp_int * c);
+int  mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
+int  mp_mod(mp_int *a, mp_int *b, mp_int *c);
+int  mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+int  mp_exptmod (mp_int * g, mp_int * x, mp_int * p, mp_int * y);
+
+int  mp_cmp(mp_int *a, mp_int *b);
+int  mp_cmp_d(mp_int *a, mp_digit b);
+
+int  mp_unsigned_bin_size(mp_int * a);
+int  mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c);
+int  mp_to_unsigned_bin (mp_int * a, unsigned char *b);
+
+int  mp_sub_d(fp_int *a, fp_digit b, fp_int *c);
+int  mp_copy(fp_int* a, fp_int* b);
+int  mp_isodd(mp_int* a);
+int  mp_iszero(mp_int* a);
+int  mp_count_bits(mp_int *a);
+int  mp_leading_bit(mp_int *a);
+int  mp_set_int(fp_int *a, fp_digit b);
+void mp_rshb(mp_int *a, int x);
+
+#ifdef HAVE_ECC
+    int mp_read_radix(mp_int* a, const char* str, int radix);
+    int mp_set(fp_int *a, fp_digit b);
+    int mp_sqr(fp_int *a, fp_int *b);
+    int mp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp);
+    int mp_montgomery_setup(fp_int *a, fp_digit *rho);
+    int mp_div_2(fp_int * a, fp_int * b);
+    int mp_init_copy(fp_int * a, fp_int * b); 
+#endif
+
+#if defined(HAVE_ECC) || defined(CYASSL_KEY_GEN)
+    int mp_sqrmod(mp_int* a, mp_int* b, mp_int* c);
+    int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+#endif
+
+#ifdef CYASSL_KEY_GEN
+int  mp_gcd(fp_int *a, fp_int *b, fp_int *c);
+int  mp_lcm(fp_int *a, fp_int *b, fp_int *c);
+int  mp_prime_is_prime(mp_int* a, int t, int* result);
+#endif /* CYASSL_KEY_GEN */
+
+CYASSL_API word32 CheckRunTimeFastMath(void);
+
+/* If user uses RSA, DH, DSA, or ECC math lib directly then fast math FP_SIZE
+   must match, return 1 if a match otherwise 0 */
+#define CheckFastMathSettings() (FP_SIZE == CheckRunTimeFastMath())
+#ifdef __cplusplus
+   }
+#endif
+
+
+#endif  /* CTAO_CRYPT_TFM_H */