SSL/TLS Library

Dependents:  

CyaSSL is SSL/TLS library for embedded systems.

wolfssl.com

Revision:
0:9d17e4342598
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ctaocrypt/src/tfm.c	Sun Apr 20 12:40:57 2014 +0000
@@ -0,0 +1,2514 @@
+/* tfm.c
+ *
+ * Copyright (C) 2006-2013 wolfSSL Inc.
+ *
+ * This file is part of CyaSSL.
+ *
+ * CyaSSL is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * CyaSSL is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+
+
+/*
+ * Based on public domain TomsFastMath 0.10 by Tom St Denis, tomstdenis@iahu.ca,
+ * http://math.libtomcrypt.com
+ */
+
+/**
+ *  Edited by Moisés Guimarães (moisesguimaraesm@gmail.com)
+ *  to fit CyaSSL's needs.
+ */
+
+#ifdef HAVE_CONFIG_H
+    #include <config.h>
+#endif
+
+/* in case user set USE_FAST_MATH there */
+#include <cyassl/ctaocrypt/settings.h>
+
+#ifdef USE_FAST_MATH
+
+#include <cyassl/ctaocrypt/tfm.h>
+#include <ctaocrypt/src/asm.c>  /* will define asm MACROS or C ones */
+
+
+/* math settings check */
+word32 CheckRunTimeSettings(void)
+{
+    return CTC_SETTINGS;
+}
+
+
+/* math settings size check */
+word32 CheckRunTimeFastMath(void)
+{
+    return FP_SIZE;
+}
+
+
+/* Functions */
+
+void fp_add(fp_int *a, fp_int *b, fp_int *c)
+{
+  int     sa, sb;
+
+  /* get sign of both inputs */
+  sa = a->sign;
+  sb = b->sign;
+
+  /* handle two cases, not four */
+  if (sa == sb) {
+    /* both positive or both negative */
+    /* add their magnitudes, copy the sign */
+    c->sign = sa;
+    s_fp_add (a, b, c);
+  } else {
+    /* one positive, the other negative */
+    /* subtract the one with the greater magnitude from */
+    /* the one of the lesser magnitude.  The result gets */
+    /* the sign of the one with the greater magnitude. */
+    if (fp_cmp_mag (a, b) == FP_LT) {
+      c->sign = sb;
+      s_fp_sub (b, a, c);
+    } else {
+      c->sign = sa;
+      s_fp_sub (a, b, c);
+    }
+  }
+}
+
+/* unsigned addition */
+void s_fp_add(fp_int *a, fp_int *b, fp_int *c)
+{
+  int      x, y, oldused;
+  register fp_word  t;
+
+  y       = MAX(a->used, b->used);
+  oldused = c->used;
+  c->used = y;
+ 
+  t = 0;
+  for (x = 0; x < y; x++) {
+      t         += ((fp_word)a->dp[x]) + ((fp_word)b->dp[x]);
+      c->dp[x]   = (fp_digit)t;
+      t        >>= DIGIT_BIT;
+  }
+  if (t != 0 && x < FP_SIZE) {
+     c->dp[c->used++] = (fp_digit)t;
+     ++x;
+  }
+
+  c->used = x;
+  for (; x < oldused; x++) {
+     c->dp[x] = 0;
+  }
+  fp_clamp(c);
+}
+
+/* c = a - b */
+void fp_sub(fp_int *a, fp_int *b, fp_int *c)
+{
+  int     sa, sb;
+
+  sa = a->sign;
+  sb = b->sign;
+
+  if (sa != sb) {
+    /* subtract a negative from a positive, OR */
+    /* subtract a positive from a negative. */
+    /* In either case, ADD their magnitudes, */
+    /* and use the sign of the first number. */
+    c->sign = sa;
+    s_fp_add (a, b, c);
+  } else {
+    /* subtract a positive from a positive, OR */
+    /* subtract a negative from a negative. */
+    /* First, take the difference between their */
+    /* magnitudes, then... */
+    if (fp_cmp_mag (a, b) != FP_LT) {
+      /* Copy the sign from the first */
+      c->sign = sa;
+      /* The first has a larger or equal magnitude */
+      s_fp_sub (a, b, c);
+    } else {
+      /* The result has the *opposite* sign from */
+      /* the first number. */
+      c->sign = (sa == FP_ZPOS) ? FP_NEG : FP_ZPOS;
+      /* The second has a larger magnitude */
+      s_fp_sub (b, a, c);
+    }
+  }
+}
+
+/* unsigned subtraction ||a|| >= ||b|| ALWAYS! */
+void s_fp_sub(fp_int *a, fp_int *b, fp_int *c)
+{
+  int      x, oldbused, oldused;
+  fp_word  t;
+
+  oldused  = c->used;
+  oldbused = b->used;
+  c->used  = a->used;
+  t       = 0;
+  for (x = 0; x < oldbused; x++) {
+     t         = ((fp_word)a->dp[x]) - (((fp_word)b->dp[x]) + t);
+     c->dp[x]  = (fp_digit)t;
+     t         = (t >> DIGIT_BIT)&1;
+  }
+  for (; x < a->used; x++) {
+     t         = ((fp_word)a->dp[x]) - t;
+     c->dp[x]  = (fp_digit)t;
+     t         = (t >> DIGIT_BIT)&1;
+   }
+  for (; x < oldused; x++) {
+     c->dp[x] = 0;
+  }
+  fp_clamp(c);
+}
+
+/* c = a * b */
+void fp_mul(fp_int *A, fp_int *B, fp_int *C)
+{
+    int   y, yy;
+
+    y  = MAX(A->used, B->used);
+    yy = MIN(A->used, B->used);
+
+    /* call generic if we're out of range */
+    if (y + yy > FP_SIZE) {
+       fp_mul_comba(A, B, C);
+       return ;
+    }
+
+    /* pick a comba (unrolled 4/8/16/32 x or rolled) based on the size
+       of the largest input.  We also want to avoid doing excess mults if the 
+       inputs are not close to the next power of two.  That is, for example,
+       if say y=17 then we would do (32-17)^2 = 225 unneeded multiplications 
+    */
+
+#ifdef TFM_MUL3
+        if (y <= 3) {
+           fp_mul_comba3(A,B,C);
+           return;
+        }
+#endif
+#ifdef TFM_MUL4
+        if (y == 4) {
+           fp_mul_comba4(A,B,C);
+           return;
+        }
+#endif
+#ifdef TFM_MUL6
+        if (y <= 6) {
+           fp_mul_comba6(A,B,C);
+           return;
+        }
+#endif
+#ifdef TFM_MUL7
+        if (y == 7) {
+           fp_mul_comba7(A,B,C);
+           return;
+        }
+#endif
+#ifdef TFM_MUL8
+        if (y == 8) {
+           fp_mul_comba8(A,B,C);
+           return;
+        }
+#endif
+#ifdef TFM_MUL9
+        if (y == 9) {
+           fp_mul_comba9(A,B,C);
+           return;
+        }
+#endif
+#ifdef TFM_MUL12
+        if (y <= 12) {
+           fp_mul_comba12(A,B,C);
+           return;
+        }
+#endif
+#ifdef TFM_MUL17
+        if (y <= 17) {
+           fp_mul_comba17(A,B,C);
+           return;
+        }
+#endif
+
+#ifdef TFM_SMALL_SET
+        if (y <= 16) {
+           fp_mul_comba_small(A,B,C);
+           return;
+        }
+#endif        
+#if defined(TFM_MUL20)
+        if (y <= 20) {
+           fp_mul_comba20(A,B,C);
+           return;
+        }
+#endif
+#if defined(TFM_MUL24)
+        if (yy >= 16 && y <= 24) {
+           fp_mul_comba24(A,B,C);
+           return;
+        }
+#endif
+#if defined(TFM_MUL28)
+        if (yy >= 20 && y <= 28) {
+           fp_mul_comba28(A,B,C);
+           return;
+        }
+#endif
+#if defined(TFM_MUL32)
+        if (yy >= 24 && y <= 32) {
+           fp_mul_comba32(A,B,C);
+           return;
+        }
+#endif
+#if defined(TFM_MUL48)
+        if (yy >= 40 && y <= 48) {
+           fp_mul_comba48(A,B,C);
+           return;
+        }
+#endif        
+#if defined(TFM_MUL64)
+        if (yy >= 56 && y <= 64) {
+           fp_mul_comba64(A,B,C);
+           return;
+        }
+#endif
+        fp_mul_comba(A,B,C);
+}
+
+void fp_mul_2(fp_int * a, fp_int * b)
+{
+  int     x, oldused;
+   
+  oldused = b->used;
+  b->used = a->used;
+
+  {
+    register fp_digit r, rr, *tmpa, *tmpb;
+
+    /* alias for source */
+    tmpa = a->dp;
+    
+    /* alias for dest */
+    tmpb = b->dp;
+
+    /* carry */
+    r = 0;
+    for (x = 0; x < a->used; x++) {
+    
+      /* get what will be the *next* carry bit from the 
+       * MSB of the current digit 
+       */
+      rr = *tmpa >> ((fp_digit)(DIGIT_BIT - 1));
+      
+      /* now shift up this digit, add in the carry [from the previous] */
+      *tmpb++ = ((*tmpa++ << ((fp_digit)1)) | r);
+      
+      /* copy the carry that would be from the source 
+       * digit into the next iteration 
+       */
+      r = rr;
+    }
+
+    /* new leading digit? */
+    if (r != 0 && b->used != (FP_SIZE-1)) {
+      /* add a MSB which is always 1 at this point */
+      *tmpb = 1;
+      ++(b->used);
+    }
+
+    /* now zero any excess digits on the destination 
+     * that we didn't write to 
+     */
+    tmpb = b->dp + b->used;
+    for (x = b->used; x < oldused; x++) {
+      *tmpb++ = 0;
+    }
+  }
+  b->sign = a->sign;
+}
+
+/* c = a * b */
+void fp_mul_d(fp_int *a, fp_digit b, fp_int *c)
+{
+   fp_word  w;
+   int      x, oldused;
+
+   oldused = c->used;
+   c->used = a->used;
+   c->sign = a->sign;
+   w       = 0;
+   for (x = 0; x < a->used; x++) {
+       w         = ((fp_word)a->dp[x]) * ((fp_word)b) + w;
+       c->dp[x]  = (fp_digit)w;
+       w         = w >> DIGIT_BIT;
+   }
+   if (w != 0 && (a->used != FP_SIZE)) {
+      c->dp[c->used++] = (fp_digit) w;
+      ++x;
+   }
+   for (; x < oldused; x++) {
+      c->dp[x] = 0;
+   }
+   fp_clamp(c);
+}
+
+/* c = a * 2**d */
+void fp_mul_2d(fp_int *a, int b, fp_int *c)
+{
+   fp_digit carry, carrytmp, shift;
+   int x;
+
+   /* copy it */
+   fp_copy(a, c);
+
+   /* handle whole digits */
+   if (b >= DIGIT_BIT) {
+      fp_lshd(c, b/DIGIT_BIT);
+   }
+   b %= DIGIT_BIT;
+
+   /* shift the digits */
+   if (b != 0) {
+      carry = 0;   
+      shift = DIGIT_BIT - b;
+      for (x = 0; x < c->used; x++) {
+          carrytmp = c->dp[x] >> shift;
+          c->dp[x] = (c->dp[x] << b) + carry;
+          carry = carrytmp;
+      }
+      /* store last carry if room */
+      if (carry && x < FP_SIZE) {
+         c->dp[c->used++] = carry;
+      }
+   }
+   fp_clamp(c);
+}
+
+/* generic PxQ multiplier */
+void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C)
+{
+   int       ix, iy, iz, tx, ty, pa;
+   fp_digit  c0, c1, c2, *tmpx, *tmpy;
+   fp_int    tmp, *dst;
+
+   COMBA_START;
+   COMBA_CLEAR;
+   
+   /* get size of output and trim */
+   pa = A->used + B->used;
+   if (pa >= FP_SIZE) {
+      pa = FP_SIZE-1;
+   }
+
+   if (A == C || B == C) {
+      fp_zero(&tmp);
+      dst = &tmp;
+   } else {
+      fp_zero(C);
+      dst = C;
+   }
+
+   for (ix = 0; ix < pa; ix++) {
+      /* get offsets into the two bignums */
+      ty = MIN(ix, B->used-1);
+      tx = ix - ty;
+
+      /* setup temp aliases */
+      tmpx = A->dp + tx;
+      tmpy = B->dp + ty;
+
+      /* this is the number of times the loop will iterrate, essentially its 
+         while (tx++ < a->used && ty-- >= 0) { ... }
+       */
+      iy = MIN(A->used-tx, ty+1);
+
+      /* execute loop */
+      COMBA_FORWARD;
+      for (iz = 0; iz < iy; ++iz) {
+          /* TAO change COMBA_ADD back to MULADD */
+          MULADD(*tmpx++, *tmpy--);
+      }
+
+      /* store term */
+      COMBA_STORE(dst->dp[ix]);
+  }
+  COMBA_FINI;
+
+  dst->used = pa;
+  dst->sign = A->sign ^ B->sign;
+  fp_clamp(dst);
+  fp_copy(dst, C);
+}
+
+/* a/b => cb + d == a */
+int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
+{
+  fp_int  q, x, y, t1, t2;
+  int     n, t, i, norm, neg;
+
+  /* is divisor zero ? */
+  if (fp_iszero (b) == 1) {
+    return FP_VAL;
+  }
+
+  /* if a < b then q=0, r = a */
+  if (fp_cmp_mag (a, b) == FP_LT) {
+    if (d != NULL) {
+      fp_copy (a, d);
+    } 
+    if (c != NULL) {
+      fp_zero (c);
+    }
+    return FP_OKAY;
+  }
+
+  fp_init(&q);
+  q.used = a->used + 2;
+
+  fp_init(&t1);
+  fp_init(&t2);
+  fp_init_copy(&x, a);
+  fp_init_copy(&y, b);
+
+  /* fix the sign */
+  neg = (a->sign == b->sign) ? FP_ZPOS : FP_NEG;
+  x.sign = y.sign = FP_ZPOS;
+
+  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+  norm = fp_count_bits(&y) % DIGIT_BIT;
+  if (norm < (int)(DIGIT_BIT-1)) {
+     norm = (DIGIT_BIT-1) - norm;
+     fp_mul_2d (&x, norm, &x);
+     fp_mul_2d (&y, norm, &y);
+  } else {
+     norm = 0;
+  }
+
+  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+  n = x.used - 1;
+  t = y.used - 1;
+
+  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
+  fp_lshd (&y, n - t);                                             /* y = y*b**{n-t} */
+
+  while (fp_cmp (&x, &y) != FP_LT) {
+    ++(q.dp[n - t]);
+    fp_sub (&x, &y, &x);
+  }
+
+  /* reset y by shifting it back down */
+  fp_rshd (&y, n - t);
+
+  /* step 3. for i from n down to (t + 1) */
+  for (i = n; i >= (t + 1); i--) {
+    if (i > x.used) {
+      continue;
+    }
+
+    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
+     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
+    if (x.dp[i] == y.dp[t]) {
+      q.dp[i - t - 1] = (fp_digit) ((((fp_word)1) << DIGIT_BIT) - 1);
+    } else {
+      fp_word tmp;
+      tmp = ((fp_word) x.dp[i]) << ((fp_word) DIGIT_BIT);
+      tmp |= ((fp_word) x.dp[i - 1]);
+      tmp /= ((fp_word)y.dp[t]);
+      q.dp[i - t - 1] = (fp_digit) (tmp);
+    }
+
+    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
+             xi * b**2 + xi-1 * b + xi-2 
+     
+       do q{i-t-1} -= 1; 
+    */
+    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1);
+    do {
+      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1);
+
+      /* find left hand */
+      fp_zero (&t1);
+      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+      t1.dp[1] = y.dp[t];
+      t1.used = 2;
+      fp_mul_d (&t1, q.dp[i - t - 1], &t1);
+
+      /* find right hand */
+      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+      t2.dp[2] = x.dp[i];
+      t2.used = 3;
+    } while (fp_cmp_mag(&t1, &t2) == FP_GT);
+
+    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
+    fp_mul_d (&y, q.dp[i - t - 1], &t1);
+    fp_lshd  (&t1, i - t - 1);
+    fp_sub   (&x, &t1, &x);
+
+    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
+    if (x.sign == FP_NEG) {
+      fp_copy (&y, &t1);
+      fp_lshd (&t1, i - t - 1);
+      fp_add (&x, &t1, &x);
+      q.dp[i - t - 1] = q.dp[i - t - 1] - 1;
+    }
+  }
+
+  /* now q is the quotient and x is the remainder 
+   * [which we have to normalize] 
+   */
+  
+  /* get sign before writing to c */
+  x.sign = x.used == 0 ? FP_ZPOS : a->sign;
+
+  if (c != NULL) {
+    fp_clamp (&q);
+    fp_copy (&q, c);
+    c->sign = neg;
+  }
+
+  if (d != NULL) {
+    fp_div_2d (&x, norm, &x, NULL);
+
+/* the following is a kludge, essentially we were seeing the right remainder but 
+   with excess digits that should have been zero
+ */
+    for (i = b->used; i < x.used; i++) {
+        x.dp[i] = 0;
+    }
+    fp_clamp(&x);
+    fp_copy (&x, d);
+  }
+
+  return FP_OKAY;
+}
+
+/* b = a/2 */
+void fp_div_2(fp_int * a, fp_int * b)
+{
+  int     x, oldused;
+
+  oldused = b->used;
+  b->used = a->used;
+  {
+    register fp_digit r, rr, *tmpa, *tmpb;
+
+    /* source alias */
+    tmpa = a->dp + b->used - 1;
+
+    /* dest alias */
+    tmpb = b->dp + b->used - 1;
+
+    /* carry */
+    r = 0;
+    for (x = b->used - 1; x >= 0; x--) {
+      /* get the carry for the next iteration */
+      rr = *tmpa & 1;
+
+      /* shift the current digit, add in carry and store */
+      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+
+      /* forward carry to next iteration */
+      r = rr;
+    }
+
+    /* zero excess digits */
+    tmpb = b->dp + b->used;
+    for (x = b->used; x < oldused; x++) {
+      *tmpb++ = 0;
+    }
+  }
+  b->sign = a->sign;
+  fp_clamp (b);
+}
+
+/* c = a / 2**b */
+void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d)
+{
+  int      D;
+  fp_int   t;
+
+  /* if the shift count is <= 0 then we do no work */
+  if (b <= 0) {
+    fp_copy (a, c);
+    if (d != NULL) {
+      fp_zero (d);
+    }
+    return;
+  }
+
+  fp_init(&t);
+
+  /* get the remainder */
+  if (d != NULL) {
+    fp_mod_2d (a, b, &t);
+  }
+
+  /* copy */
+  fp_copy(a, c);
+
+  /* shift by as many digits in the bit count */
+  if (b >= (int)DIGIT_BIT) {
+    fp_rshd (c, b / DIGIT_BIT);
+  }
+
+  /* shift any bit count < DIGIT_BIT */
+  D = (b % DIGIT_BIT);
+  if (D != 0) {
+    fp_rshb(c, D);
+  }
+  fp_clamp (c);
+  if (d != NULL) {
+    fp_copy (&t, d);
+  }
+}
+
+/* c = a mod b, 0 <= c < b  */
+int fp_mod(fp_int *a, fp_int *b, fp_int *c)
+{
+   fp_int t;
+   int    err;
+
+   fp_zero(&t);
+   if ((err = fp_div(a, b, NULL, &t)) != FP_OKAY) {
+      return err;
+   }
+   if (t.sign != b->sign) {
+      fp_add(&t, b, c);
+   } else {
+      fp_copy(&t, c);
+  }
+  return FP_OKAY;
+}
+
+/* c = a mod 2**d */
+void fp_mod_2d(fp_int *a, int b, fp_int *c)
+{
+   int x;
+
+   /* zero if count less than or equal to zero */
+   if (b <= 0) {
+      fp_zero(c);
+      return;
+   }
+
+   /* get copy of input */
+   fp_copy(a, c);
+ 
+   /* if 2**d is larger than we just return */
+   if (b >= (DIGIT_BIT * a->used)) {
+      return;
+   }
+
+  /* zero digits above the last digit of the modulus */
+  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
+    c->dp[x] = 0;
+  }
+  /* clear the digit that is not completely outside/inside the modulus */
+  c->dp[b / DIGIT_BIT] &= ~((fp_digit)0) >> (DIGIT_BIT - b);
+  fp_clamp (c);
+}
+
+static int fp_invmod_slow (fp_int * a, fp_int * b, fp_int * c)
+{
+  fp_int  x, y, u, v, A, B, C, D;
+  int     res;
+
+  /* b cannot be negative */
+  if (b->sign == FP_NEG || fp_iszero(b) == 1) {
+    return FP_VAL;
+  }
+
+  /* init temps */
+  fp_init(&x);    fp_init(&y);
+  fp_init(&u);    fp_init(&v);
+  fp_init(&A);    fp_init(&B);
+  fp_init(&C);    fp_init(&D);
+
+  /* x = a, y = b */
+  if ((res = fp_mod(a, b, &x)) != FP_OKAY) {
+      return res;
+  }
+  fp_copy(b, &y);
+
+  /* 2. [modified] if x,y are both even then return an error! */
+  if (fp_iseven (&x) == 1 && fp_iseven (&y) == 1) {
+    return FP_VAL;
+  }
+
+  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+  fp_copy (&x, &u);
+  fp_copy (&y, &v);
+  fp_set (&A, 1);
+  fp_set (&D, 1);
+
+top:
+  /* 4.  while u is even do */
+  while (fp_iseven (&u) == 1) {
+    /* 4.1 u = u/2 */
+    fp_div_2 (&u, &u);
+
+    /* 4.2 if A or B is odd then */
+    if (fp_isodd (&A) == 1 || fp_isodd (&B) == 1) {
+      /* A = (A+y)/2, B = (B-x)/2 */
+      fp_add (&A, &y, &A);
+      fp_sub (&B, &x, &B);
+    }
+    /* A = A/2, B = B/2 */
+    fp_div_2 (&A, &A);
+    fp_div_2 (&B, &B);
+  }
+
+  /* 5.  while v is even do */
+  while (fp_iseven (&v) == 1) {
+    /* 5.1 v = v/2 */
+    fp_div_2 (&v, &v);
+
+    /* 5.2 if C or D is odd then */
+    if (fp_isodd (&C) == 1 || fp_isodd (&D) == 1) {
+      /* C = (C+y)/2, D = (D-x)/2 */
+      fp_add (&C, &y, &C);
+      fp_sub (&D, &x, &D);
+    }
+    /* C = C/2, D = D/2 */
+    fp_div_2 (&C, &C);
+    fp_div_2 (&D, &D);
+  }
+
+  /* 6.  if u >= v then */
+  if (fp_cmp (&u, &v) != FP_LT) {
+    /* u = u - v, A = A - C, B = B - D */
+    fp_sub (&u, &v, &u);
+    fp_sub (&A, &C, &A);
+    fp_sub (&B, &D, &B);
+  } else {
+    /* v - v - u, C = C - A, D = D - B */
+    fp_sub (&v, &u, &v);
+    fp_sub (&C, &A, &C);
+    fp_sub (&D, &B, &D);
+  }
+
+  /* if not zero goto step 4 */
+  if (fp_iszero (&u) == 0)
+    goto top;
+
+  /* now a = C, b = D, gcd == g*v */
+
+  /* if v != 1 then there is no inverse */
+  if (fp_cmp_d (&v, 1) != FP_EQ) {
+    return FP_VAL;
+  }
+
+  /* if its too low */
+  while (fp_cmp_d(&C, 0) == FP_LT) {
+      fp_add(&C, b, &C);
+  }
+  
+  /* too big */
+  while (fp_cmp_mag(&C, b) != FP_LT) {
+      fp_sub(&C, b, &C);
+  }
+  
+  /* C is now the inverse */
+  fp_copy(&C, c);
+  return FP_OKAY;
+}
+
+/* c = 1/a (mod b) for odd b only */
+int fp_invmod(fp_int *a, fp_int *b, fp_int *c)
+{
+  fp_int  x, y, u, v, B, D;
+  int     neg;
+
+  /* 2. [modified] b must be odd   */
+  if (fp_iseven (b) == FP_YES) {
+    return fp_invmod_slow(a,b,c);
+  }
+
+  /* init all our temps */
+  fp_init(&x);  fp_init(&y);
+  fp_init(&u);  fp_init(&v);
+  fp_init(&B);  fp_init(&D);
+
+  /* x == modulus, y == value to invert */
+  fp_copy(b, &x);
+
+  /* we need y = |a| */
+  fp_abs(a, &y);
+
+  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+  fp_copy(&x, &u);
+  fp_copy(&y, &v);
+  fp_set (&D, 1);
+
+top:
+  /* 4.  while u is even do */
+  while (fp_iseven (&u) == FP_YES) {
+    /* 4.1 u = u/2 */
+    fp_div_2 (&u, &u);
+
+    /* 4.2 if B is odd then */
+    if (fp_isodd (&B) == FP_YES) {
+      fp_sub (&B, &x, &B);
+    }
+    /* B = B/2 */
+    fp_div_2 (&B, &B);
+  }
+
+  /* 5.  while v is even do */
+  while (fp_iseven (&v) == FP_YES) {
+    /* 5.1 v = v/2 */
+    fp_div_2 (&v, &v);
+
+    /* 5.2 if D is odd then */
+    if (fp_isodd (&D) == FP_YES) {
+      /* D = (D-x)/2 */
+      fp_sub (&D, &x, &D);
+    }
+    /* D = D/2 */
+    fp_div_2 (&D, &D);
+  }
+
+  /* 6.  if u >= v then */
+  if (fp_cmp (&u, &v) != FP_LT) {
+    /* u = u - v, B = B - D */
+    fp_sub (&u, &v, &u);
+    fp_sub (&B, &D, &B);
+  } else {
+    /* v - v - u, D = D - B */
+    fp_sub (&v, &u, &v);
+    fp_sub (&D, &B, &D);
+  }
+
+  /* if not zero goto step 4 */
+  if (fp_iszero (&u) == FP_NO) {
+    goto top;
+  }
+
+  /* now a = C, b = D, gcd == g*v */
+
+  /* if v != 1 then there is no inverse */
+  if (fp_cmp_d (&v, 1) != FP_EQ) {
+    return FP_VAL;
+  }
+
+  /* b is now the inverse */
+  neg = a->sign;
+  while (D.sign == FP_NEG) {
+    fp_add (&D, b, &D);
+  }
+  fp_copy (&D, c);
+  c->sign = neg;
+  return FP_OKAY;
+}
+
+/* d = a * b (mod c) */
+int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
+{
+  fp_int tmp;
+  fp_zero(&tmp);
+  fp_mul(a, b, &tmp);
+  return fp_mod(&tmp, c, d);
+}
+
+#ifdef TFM_TIMING_RESISTANT
+
+/* timing resistant montgomery ladder based exptmod 
+
+   Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder", Cryptographic Hardware and Embedded Systems, CHES 2002
+*/
+static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
+{
+  fp_int   R[2];
+  fp_digit buf, mp;
+  int      err, bitcnt, digidx, y;
+
+  /* now setup montgomery  */
+  if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) {
+     return err;
+  }
+
+  fp_init(&R[0]);   
+  fp_init(&R[1]);   
+   
+  /* now we need R mod m */
+  fp_montgomery_calc_normalization (&R[0], P);
+
+  /* now set R[0][1] to G * R mod m */
+  if (fp_cmp_mag(P, G) != FP_GT) {
+     /* G > P so we reduce it first */
+     fp_mod(G, P, &R[1]);
+  } else {
+     fp_copy(G, &R[1]);
+  }
+  fp_mulmod (&R[1], &R[0], P, &R[1]);
+
+  /* for j = t-1 downto 0 do
+        r_!k = R0*R1; r_k = r_k^2
+  */
+  
+  /* set initial mode and bit cnt */
+  bitcnt = 1;
+  buf    = 0;
+  digidx = X->used - 1;
+
+  for (;;) {
+    /* grab next digit as required */
+    if (--bitcnt == 0) {
+      /* if digidx == -1 we are out of digits so break */
+      if (digidx == -1) {
+        break;
+      }
+      /* read next digit and reset bitcnt */
+      buf    = X->dp[digidx--];
+      bitcnt = (int)DIGIT_BIT;
+    }
+
+    /* grab the next msb from the exponent */
+    y     = (int)(buf >> (DIGIT_BIT - 1)) & 1;
+    buf <<= (fp_digit)1;
+
+    /* do ops */
+    fp_mul(&R[0], &R[1], &R[y^1]); fp_montgomery_reduce(&R[y^1], P, mp);
+    fp_sqr(&R[y], &R[y]);          fp_montgomery_reduce(&R[y], P, mp);
+  }
+
+   fp_montgomery_reduce(&R[0], P, mp);
+   fp_copy(&R[0], Y);
+   return FP_OKAY;
+}   
+
+#else
+
+/* y = g**x (mod b) 
+ * Some restrictions... x must be positive and < b
+ */
+static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
+{
+  fp_int   M[64], res;
+  fp_digit buf, mp;
+  int      err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+  /* find window size */
+  x = fp_count_bits (X);
+  if (x <= 21) {
+    winsize = 1;
+  } else if (x <= 36) {
+    winsize = 3;
+  } else if (x <= 140) {
+    winsize = 4;
+  } else if (x <= 450) {
+    winsize = 5;
+  } else {
+    winsize = 6;
+  } 
+
+  /* init M array */
+  XMEMSET(M, 0, sizeof(M)); 
+
+  /* now setup montgomery  */
+  if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) {
+     return err;
+  }
+
+  /* setup result */
+  fp_init(&res);
+
+  /* create M table
+   *
+   * The M table contains powers of the input base, e.g. M[x] = G^x mod P
+   *
+   * The first half of the table is not computed though accept for M[0] and M[1]
+   */
+
+   /* now we need R mod m */
+   fp_montgomery_calc_normalization (&res, P);
+
+   /* now set M[1] to G * R mod m */
+   if (fp_cmp_mag(P, G) != FP_GT) {
+      /* G > P so we reduce it first */
+      fp_mod(G, P, &M[1]);
+   } else {
+      fp_copy(G, &M[1]);
+   }
+   fp_mulmod (&M[1], &res, P, &M[1]);
+
+  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+  fp_copy (&M[1], &M[1 << (winsize - 1)]);
+  for (x = 0; x < (winsize - 1); x++) {
+    fp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)]);
+    fp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp);
+  }
+
+  /* create upper table */
+  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+    fp_mul(&M[x - 1], &M[1], &M[x]);
+    fp_montgomery_reduce(&M[x], P, mp);
+  }
+
+  /* set initial mode and bit cnt */
+  mode   = 0;
+  bitcnt = 1;
+  buf    = 0;
+  digidx = X->used - 1;
+  bitcpy = 0;
+  bitbuf = 0;
+
+  for (;;) {
+    /* grab next digit as required */
+    if (--bitcnt == 0) {
+      /* if digidx == -1 we are out of digits so break */
+      if (digidx == -1) {
+        break;
+      }
+      /* read next digit and reset bitcnt */
+      buf    = X->dp[digidx--];
+      bitcnt = (int)DIGIT_BIT;
+    }
+
+    /* grab the next msb from the exponent */
+    y     = (int)(buf >> (DIGIT_BIT - 1)) & 1;
+    buf <<= (fp_digit)1;
+
+    /* if the bit is zero and mode == 0 then we ignore it
+     * These represent the leading zero bits before the first 1 bit
+     * in the exponent.  Technically this opt is not required but it
+     * does lower the # of trivial squaring/reductions used
+     */
+    if (mode == 0 && y == 0) {
+      continue;
+    }
+
+    /* if the bit is zero and mode == 1 then we square */
+    if (mode == 1 && y == 0) {
+      fp_sqr(&res, &res);
+      fp_montgomery_reduce(&res, P, mp);
+      continue;
+    }
+
+    /* else we add it to the window */
+    bitbuf |= (y << (winsize - ++bitcpy));
+    mode    = 2;
+
+    if (bitcpy == winsize) {
+      /* ok window is filled so square as required and multiply  */
+      /* square first */
+      for (x = 0; x < winsize; x++) {
+        fp_sqr(&res, &res);
+        fp_montgomery_reduce(&res, P, mp);
+      }
+
+      /* then multiply */
+      fp_mul(&res, &M[bitbuf], &res);
+      fp_montgomery_reduce(&res, P, mp);
+
+      /* empty window and reset */
+      bitcpy = 0;
+      bitbuf = 0;
+      mode   = 1;
+    }
+  }
+
+  /* if bits remain then square/multiply */
+  if (mode == 2 && bitcpy > 0) {
+    /* square then multiply if the bit is set */
+    for (x = 0; x < bitcpy; x++) {
+      fp_sqr(&res, &res);
+      fp_montgomery_reduce(&res, P, mp);
+
+      /* get next bit of the window */
+      bitbuf <<= 1;
+      if ((bitbuf & (1 << winsize)) != 0) {
+        /* then multiply */
+        fp_mul(&res, &M[1], &res);
+        fp_montgomery_reduce(&res, P, mp);
+      }
+    }
+  }
+
+  /* fixup result if Montgomery reduction is used
+   * recall that any value in a Montgomery system is
+   * actually multiplied by R mod n.  So we have
+   * to reduce one more time to cancel out the factor
+   * of R.
+   */
+  fp_montgomery_reduce(&res, P, mp);
+
+  /* swap res with Y */
+  fp_copy (&res, Y);
+  return FP_OKAY;
+}
+
+#endif
+
+int fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
+{
+   /* prevent overflows */
+   if (P->used > (FP_SIZE/2)) {
+      return FP_VAL;
+   }
+
+   if (X->sign == FP_NEG) {
+#ifndef POSITIVE_EXP_ONLY  /* reduce stack if assume no negatives */
+      int    err;
+      fp_int tmp;
+
+      /* yes, copy G and invmod it */
+      fp_copy(G, &tmp);
+      if ((err = fp_invmod(&tmp, P, &tmp)) != FP_OKAY) {
+         return err;
+      }
+      X->sign = FP_ZPOS;
+      err =  _fp_exptmod(&tmp, X, P, Y);
+      if (X != Y) {
+         X->sign = FP_NEG;
+      }
+      return err;
+#else
+      return FP_VAL;
+#endif 
+   }
+   else {
+      /* Positive exponent so just exptmod */
+      return _fp_exptmod(G, X, P, Y);
+   }
+}
+
+/* computes a = 2**b */
+void fp_2expt(fp_int *a, int b)
+{
+   int     z;
+
+   /* zero a as per default */
+   fp_zero (a);
+
+   if (b < 0) { 
+      return;
+   }
+
+   z = b / DIGIT_BIT;
+   if (z >= FP_SIZE) {
+      return; 
+   }
+
+  /* set the used count of where the bit will go */
+  a->used = z + 1;
+
+  /* put the single bit in its place */
+  a->dp[z] = ((fp_digit)1) << (b % DIGIT_BIT);
+}
+
+/* b = a*a  */
+void fp_sqr(fp_int *A, fp_int *B)
+{
+    int y = A->used;
+
+    /* call generic if we're out of range */
+    if (y + y > FP_SIZE) {
+       fp_sqr_comba(A, B);
+       return ;
+    }
+
+#if defined(TFM_SQR3)
+        if (y <= 3) {
+           fp_sqr_comba3(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR4)
+        if (y == 4) {
+           fp_sqr_comba4(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR6)
+        if (y <= 6) {
+           fp_sqr_comba6(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR7)
+        if (y == 7) {
+           fp_sqr_comba7(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR8)
+        if (y == 8) {
+           fp_sqr_comba8(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR9)
+        if (y == 9) {
+           fp_sqr_comba9(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR12)
+        if (y <= 12) {
+           fp_sqr_comba12(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR17)
+        if (y <= 17) {
+           fp_sqr_comba17(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SMALL_SET)
+        if (y <= 16) {
+           fp_sqr_comba_small(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR20)
+        if (y <= 20) {
+           fp_sqr_comba20(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR24)
+        if (y <= 24) {
+           fp_sqr_comba24(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR28)
+        if (y <= 28) {
+           fp_sqr_comba28(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR32)
+        if (y <= 32) {
+           fp_sqr_comba32(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR48)
+        if (y <= 48) {
+           fp_sqr_comba48(A,B);
+           return;
+        }
+#endif
+#if defined(TFM_SQR64)
+        if (y <= 64) {
+           fp_sqr_comba64(A,B);
+           return;
+        }
+#endif
+       fp_sqr_comba(A, B);
+}
+
+/* generic comba squarer */
+void fp_sqr_comba(fp_int *A, fp_int *B)
+{
+  int       pa, ix, iz;
+  fp_digit  c0, c1, c2;
+  fp_int    tmp, *dst;
+#ifdef TFM_ISO
+  fp_word   tt;
+#endif    
+
+  /* get size of output and trim */
+  pa = A->used + A->used;
+  if (pa >= FP_SIZE) {
+     pa = FP_SIZE-1;
+  }
+
+  /* number of output digits to produce */
+  COMBA_START;
+  COMBA_CLEAR;
+
+  if (A == B) {
+     fp_zero(&tmp);
+     dst = &tmp;
+  } else {
+     fp_zero(B);
+     dst = B;
+  }
+
+  for (ix = 0; ix < pa; ix++) { 
+      int      tx, ty, iy;
+      fp_digit *tmpy, *tmpx;
+
+      /* get offsets into the two bignums */
+      ty = MIN(A->used-1, ix);
+      tx = ix - ty;
+
+      /* setup temp aliases */
+      tmpx = A->dp + tx;
+      tmpy = A->dp + ty;
+
+      /* this is the number of times the loop will iterrate,
+         while (tx++ < a->used && ty-- >= 0) { ... }
+       */
+      iy = MIN(A->used-tx, ty+1);
+
+      /* now for squaring tx can never equal ty 
+       * we halve the distance since they approach 
+       * at a rate of 2x and we have to round because 
+       * odd cases need to be executed
+       */
+      iy = MIN(iy, (ty-tx+1)>>1);
+
+      /* forward carries */
+      COMBA_FORWARD;
+
+      /* execute loop */
+      for (iz = 0; iz < iy; iz++) {
+          SQRADD2(*tmpx++, *tmpy--);
+      }
+
+      /* even columns have the square term in them */
+      if ((ix&1) == 0) {
+          /* TAO change COMBA_ADD back to SQRADD */
+          SQRADD(A->dp[ix>>1], A->dp[ix>>1]);
+      }
+
+      /* store it */
+      COMBA_STORE(dst->dp[ix]);
+  }
+
+  COMBA_FINI;
+
+  /* setup dest */
+  dst->used = pa;
+  fp_clamp (dst);
+  if (dst != B) {
+     fp_copy(dst, B);
+  }
+}
+
+int fp_cmp(fp_int *a, fp_int *b)
+{
+   if (a->sign == FP_NEG && b->sign == FP_ZPOS) {
+      return FP_LT;
+   } else if (a->sign == FP_ZPOS && b->sign == FP_NEG) {
+      return FP_GT;
+   } else {
+      /* compare digits */
+      if (a->sign == FP_NEG) {
+         /* if negative compare opposite direction */
+         return fp_cmp_mag(b, a);
+      } else {
+         return fp_cmp_mag(a, b);
+      }
+   }
+}
+
+/* compare against a single digit */
+int fp_cmp_d(fp_int *a, fp_digit b)
+{
+  /* compare based on sign */
+  if ((b && a->used == 0) || a->sign == FP_NEG) {
+    return FP_LT;
+  }
+
+  /* compare based on magnitude */
+  if (a->used > 1) {
+    return FP_GT;
+  }
+
+  /* compare the only digit of a to b */
+  if (a->dp[0] > b) {
+    return FP_GT;
+  } else if (a->dp[0] < b) {
+    return FP_LT;
+  } else {
+    return FP_EQ;
+  }
+
+}
+
+int fp_cmp_mag(fp_int *a, fp_int *b)
+{
+   int x;
+
+   if (a->used > b->used) {
+      return FP_GT;
+   } else if (a->used < b->used) {
+      return FP_LT;
+   } else {
+      for (x = a->used - 1; x >= 0; x--) {
+          if (a->dp[x] > b->dp[x]) {
+             return FP_GT;
+          } else if (a->dp[x] < b->dp[x]) {
+             return FP_LT;
+          }
+      }
+   }
+   return FP_EQ;
+}
+
+/* setups the montgomery reduction */
+int fp_montgomery_setup(fp_int *a, fp_digit *rho)
+{
+  fp_digit x, b;
+
+/* fast inversion mod 2**k
+ *
+ * Based on the fact that
+ *
+ * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
+ *                    =>  2*X*A - X*X*A*A = 1
+ *                    =>  2*(1) - (1)     = 1
+ */
+  b = a->dp[0];
+
+  if ((b & 1) == 0) {
+    return FP_VAL;
+  }
+
+  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
+  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
+  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
+#ifdef FP_64BIT
+  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
+#endif
+
+  /* rho = -1/m mod b */
+  *rho = (fp_digit) (((fp_word) 1 << ((fp_word) DIGIT_BIT)) - ((fp_word)x));
+
+  return FP_OKAY;
+}
+
+/* computes a = B**n mod b without division or multiplication useful for
+ * normalizing numbers in a Montgomery system.
+ */
+void fp_montgomery_calc_normalization(fp_int *a, fp_int *b)
+{
+  int     x, bits;
+
+  /* how many bits of last digit does b use */
+  bits = fp_count_bits (b) % DIGIT_BIT;
+  if (!bits) bits = DIGIT_BIT;
+
+  /* compute A = B^(n-1) * 2^(bits-1) */
+  if (b->used > 1) {
+     fp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1);
+  } else {
+     fp_set(a, 1);
+     bits = 1;
+  }
+
+  /* now compute C = A * B mod b */
+  for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
+    fp_mul_2 (a, a);
+    if (fp_cmp_mag (a, b) != FP_LT) {
+      s_fp_sub (a, b, a);
+    }
+  }
+}
+
+
+#ifdef TFM_SMALL_MONT_SET
+    #include "fp_mont_small.i"
+#endif
+
+/* computes x/R == x (mod N) via Montgomery Reduction */
+void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
+{
+   fp_digit c[FP_SIZE], *_c, *tmpm, mu = 0;
+   int      oldused, x, y, pa;
+
+   /* bail if too large */
+   if (m->used > (FP_SIZE/2)) {
+      (void)mu;                     /* shut up compiler */
+      return;
+   }
+
+#ifdef TFM_SMALL_MONT_SET
+   if (m->used <= 16) {
+      fp_montgomery_reduce_small(a, m, mp);
+      return;
+   }
+#endif
+
+
+   /* now zero the buff */
+   XMEMSET(c, 0, sizeof c);
+   pa = m->used;
+
+   /* copy the input */
+   oldused = a->used;
+   for (x = 0; x < oldused; x++) {
+       c[x] = a->dp[x];
+   }
+   MONT_START;
+
+   for (x = 0; x < pa; x++) {
+       fp_digit cy = 0;
+       /* get Mu for this round */
+       LOOP_START;
+       _c   = c + x;
+       tmpm = m->dp;
+       y = 0;
+       #if (defined(TFM_SSE2) || defined(TFM_X86_64))
+        for (; y < (pa & ~7); y += 8) {
+              INNERMUL8;
+              _c   += 8;
+              tmpm += 8;
+           }
+       #endif
+
+       for (; y < pa; y++) {
+          INNERMUL;
+          ++_c;
+       }
+       LOOP_END;
+       while (cy) {
+           PROPCARRY;
+           ++_c;
+       }
+  }         
+
+  /* now copy out */
+  _c   = c + pa;
+  tmpm = a->dp;
+  for (x = 0; x < pa+1; x++) {
+     *tmpm++ = *_c++;
+  }
+
+  for (; x < oldused; x++)   {
+     *tmpm++ = 0;
+  }
+
+  MONT_FINI;
+
+  a->used = pa+1;
+  fp_clamp(a);
+  
+  /* if A >= m then A = A - m */
+  if (fp_cmp_mag (a, m) != FP_LT) {
+    s_fp_sub (a, m, a);
+  }
+}
+
+void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c)
+{
+  /* zero the int */
+  fp_zero (a);
+
+  /* If we know the endianness of this architecture, and we're using
+     32-bit fp_digits, we can optimize this */
+#if (defined(LITTLE_ENDIAN_ORDER) || defined(BIG_ENDIAN_ORDER)) && !defined(FP_64BIT)
+  /* But not for both simultaneously */
+#if defined(LITTLE_ENDIAN_ORDER) && defined(BIG_ENDIAN_ORDER)
+#error Both LITTLE_ENDIAN_ORDER and BIG_ENDIAN_ORDER defined.
+#endif
+  {
+     unsigned char *pd = (unsigned char *)a->dp;
+
+     if ((unsigned)c > (FP_SIZE * sizeof(fp_digit))) {
+        int excess = c - (FP_SIZE * sizeof(fp_digit));
+        c -= excess;
+        b += excess;
+     }
+     a->used = (c + sizeof(fp_digit) - 1)/sizeof(fp_digit);
+     /* read the bytes in */
+#ifdef BIG_ENDIAN_ORDER
+     {
+       /* Use Duff's device to unroll the loop. */
+       int idx = (c - 1) & ~3;
+       switch (c % 4) {
+       case 0:	do { pd[idx+0] = *b++;
+       case 3:	     pd[idx+1] = *b++;
+       case 2:	     pd[idx+2] = *b++;
+       case 1:	     pd[idx+3] = *b++;
+                     idx -= 4;
+	 	        } while ((c -= 4) > 0);
+       }
+     }
+#else
+     for (c -= 1; c >= 0; c -= 1) {
+       pd[c] = *b++;
+     }
+#endif
+  }
+#else
+  /* read the bytes in */
+  for (; c > 0; c--) {
+     fp_mul_2d (a, 8, a);
+     a->dp[0] |= *b++;
+     a->used += 1;
+  }
+#endif
+  fp_clamp (a);
+}
+
+void fp_to_unsigned_bin(fp_int *a, unsigned char *b)
+{
+  int     x;
+  fp_int  t;
+
+  fp_init_copy(&t, a);
+
+  x = 0;
+  while (fp_iszero (&t) == FP_NO) {
+      b[x++] = (unsigned char) (t.dp[0] & 255);
+      fp_div_2d (&t, 8, &t, NULL);
+  }
+  fp_reverse (b, x);
+}
+
+int fp_unsigned_bin_size(fp_int *a)
+{
+  int     size = fp_count_bits (a);
+  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+}
+
+void fp_set(fp_int *a, fp_digit b)
+{
+   fp_zero(a);
+   a->dp[0] = b;
+   a->used  = a->dp[0] ? 1 : 0;
+}
+
+int fp_count_bits (fp_int * a)
+{
+  int     r;
+  fp_digit q;
+
+  /* shortcut */
+  if (a->used == 0) {
+    return 0;
+  }
+
+  /* get number of digits and add that */
+  r = (a->used - 1) * DIGIT_BIT;
+
+  /* take the last digit and count the bits in it */
+  q = a->dp[a->used - 1];
+  while (q > ((fp_digit) 0)) {
+    ++r;
+    q >>= ((fp_digit) 1);
+  }
+  return r;
+}
+
+int fp_leading_bit(fp_int *a)
+{
+    int bit = 0;
+
+    if (a->used != 0) {
+        fp_digit q = a->dp[a->used - 1];
+        int qSz = sizeof(fp_digit);
+
+        while (qSz > 0) {
+            if ((unsigned char)q != 0)
+                bit = (q & 0x80) != 0;
+            q >>= 8;
+            qSz--;
+        }
+    }
+
+    return bit;
+}
+
+void fp_lshd(fp_int *a, int x)
+{
+   int y;
+
+   /* move up and truncate as required */
+   y = MIN(a->used + x - 1, (int)(FP_SIZE-1));
+
+   /* store new size */
+   a->used = y + 1;
+
+   /* move digits */
+   for (; y >= x; y--) {
+       a->dp[y] = a->dp[y-x];
+   }
+ 
+   /* zero lower digits */
+   for (; y >= 0; y--) {
+       a->dp[y] = 0;
+   }
+
+   /* clamp digits */
+   fp_clamp(a);
+}
+
+
+/* right shift by bit count */
+void fp_rshb(fp_int *c, int x)
+{
+    register fp_digit *tmpc, mask, shift;
+    fp_digit r, rr;
+    fp_digit D = x;
+
+    /* mask */
+    mask = (((fp_digit)1) << D) - 1;
+
+    /* shift for lsb */
+    shift = DIGIT_BIT - D;
+
+    /* alias */
+    tmpc = c->dp + (c->used - 1);
+
+    /* carry */
+    r = 0;
+    for (x = c->used - 1; x >= 0; x--) {
+      /* get the lower  bits of this word in a temp */
+      rr = *tmpc & mask;
+
+      /* shift the current word and mix in the carry bits from previous word */
+      *tmpc = (*tmpc >> D) | (r << shift);
+      --tmpc;
+
+      /* set the carry to the carry bits of the current word found above */
+      r = rr;
+    }
+}
+
+
+void fp_rshd(fp_int *a, int x)
+{
+  int y;
+
+  /* too many digits just zero and return */
+  if (x >= a->used) {
+     fp_zero(a);
+     return;
+  }
+
+   /* shift */
+   for (y = 0; y < a->used - x; y++) {
+      a->dp[y] = a->dp[y+x];
+   }
+
+   /* zero rest */
+   for (; y < a->used; y++) {
+      a->dp[y] = 0;
+   }
+   
+   /* decrement count */
+   a->used -= x;
+   fp_clamp(a);
+}
+
+/* reverse an array, used for radix code */
+void fp_reverse (unsigned char *s, int len)
+{
+  int     ix, iy;
+  unsigned char t;
+
+  ix = 0;
+  iy = len - 1;
+  while (ix < iy) {
+    t     = s[ix];
+    s[ix] = s[iy];
+    s[iy] = t;
+    ++ix;
+    --iy;
+  }
+}
+
+
+/* c = a - b */
+void fp_sub_d(fp_int *a, fp_digit b, fp_int *c)
+{
+   fp_int tmp;
+   fp_set(&tmp, b);
+   fp_sub(a, &tmp, c);
+}
+
+
+/* CyaSSL callers from normal lib */
+
+/* init a new mp_int */
+int mp_init (mp_int * a)
+{
+  if (a)
+    fp_init(a);
+  return MP_OKAY;
+}
+
+/* clear one (frees)  */
+void mp_clear (mp_int * a)
+{
+  fp_zero(a);
+}
+
+/* handle up to 6 inits */
+int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, mp_int* f)
+{
+    if (a)
+        fp_init(a);
+    if (b)
+        fp_init(b);
+    if (c)
+        fp_init(c);
+    if (d)
+        fp_init(d);
+    if (e)
+        fp_init(e);
+    if (f)
+        fp_init(f);
+
+    return MP_OKAY;
+}
+
+/* high level addition (handles signs) */
+int mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+  fp_add(a, b, c);
+  return MP_OKAY;
+}
+
+/* high level subtraction (handles signs) */
+int mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+  fp_sub(a, b, c);
+  return MP_OKAY;
+}
+
+/* high level multiplication (handles sign) */
+int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+  fp_mul(a, b, c);
+  return MP_OKAY;
+}
+
+/* d = a * b (mod c) */
+int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+  return fp_mulmod(a, b, c, d);
+}
+
+/* c = a mod b, 0 <= c < b */
+int mp_mod (mp_int * a, mp_int * b, mp_int * c)
+{
+  return fp_mod (a, b, c);
+}
+
+/* hac 14.61, pp608 */
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+  return fp_invmod(a, b, c);
+}
+
+/* this is a shell function that calls either the normal or Montgomery
+ * exptmod functions.  Originally the call to the montgomery code was
+ * embedded in the normal function but that wasted alot of stack space
+ * for nothing (since 99% of the time the Montgomery code would be called)
+ */
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+  return fp_exptmod(G, X, P, Y);
+}
+
+/* compare two ints (signed)*/
+int mp_cmp (mp_int * a, mp_int * b)
+{
+  return fp_cmp(a, b);
+}
+
+/* compare a digit */
+int mp_cmp_d(mp_int * a, mp_digit b)
+{
+  return fp_cmp_d(a, b);
+}
+
+/* get the size for an unsigned equivalent */
+int mp_unsigned_bin_size (mp_int * a)
+{
+  return fp_unsigned_bin_size(a);
+}
+
+/* store in unsigned [big endian] format */
+int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
+{
+  fp_to_unsigned_bin(a,b);
+  return MP_OKAY;
+}
+
+/* reads a unsigned char array, assumes the msb is stored first [big endian] */
+int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
+{
+  fp_read_unsigned_bin(a, (unsigned char *)b, c);
+  return MP_OKAY;
+}
+
+
+int mp_sub_d(fp_int *a, fp_digit b, fp_int *c)
+{
+    fp_sub_d(a, b, c);
+    return MP_OKAY;
+}
+
+
+/* fast math conversion */
+int mp_copy(fp_int* a, fp_int* b)
+{
+    fp_copy(a, b);
+    return MP_OKAY;
+}
+
+
+/* fast math conversion */
+int mp_isodd(mp_int* a)
+{
+    return fp_isodd(a);
+}
+
+
+/* fast math conversion */
+int mp_iszero(mp_int* a)
+{
+    return fp_iszero(a);
+}
+
+
+/* fast math conversion */
+int mp_count_bits (mp_int* a)
+{
+    return fp_count_bits(a);
+}
+
+
+int mp_leading_bit (mp_int* a)
+{
+    return fp_leading_bit(a);
+}
+
+
+/* fast math conversion */
+void mp_rshb (mp_int* a, int x)
+{
+    fp_rshb(a, x);
+}
+
+
+/* fast math wrappers */
+int mp_set_int(fp_int *a, fp_digit b)
+{
+    fp_set(a, b);
+    return MP_OKAY;
+}
+
+
+#if defined(CYASSL_KEY_GEN) || defined (HAVE_ECC)
+
+/* c = a * a (mod b) */
+int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c)
+{
+  fp_int tmp;
+  fp_zero(&tmp);
+  fp_sqr(a, &tmp);
+  return fp_mod(&tmp, b, c);
+}
+
+/* fast math conversion */
+int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c)
+{
+    return fp_sqrmod(a, b, c);
+}
+
+/* fast math conversion */
+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b)
+{
+    fp_montgomery_calc_normalization(a, b);
+    return MP_OKAY;
+}
+
+#endif /* CYASSL_KEYGEN || HAVE_ECC */
+
+
+#ifdef CYASSL_KEY_GEN
+
+void fp_gcd(fp_int *a, fp_int *b, fp_int *c);
+void fp_lcm(fp_int *a, fp_int *b, fp_int *c);
+int  fp_isprime(fp_int *a);
+int  fp_cnt_lsb(fp_int *a);
+
+int mp_gcd(fp_int *a, fp_int *b, fp_int *c)
+{
+    fp_gcd(a, b, c);
+    return MP_OKAY;
+}
+
+
+int mp_lcm(fp_int *a, fp_int *b, fp_int *c)
+{
+    fp_lcm(a, b, c);
+    return MP_OKAY;
+}
+
+
+int mp_prime_is_prime(mp_int* a, int t, int* result)
+{
+    (void)t;
+    *result = fp_isprime(a);
+    return MP_OKAY;
+}
+
+
+
+static int s_is_power_of_two(fp_digit b, int *p)
+{
+   int x;
+
+   /* fast return if no power of two */
+   if ((b==0) || (b & (b-1))) {
+      return 0;
+   }
+
+   for (x = 0; x < DIGIT_BIT; x++) {
+      if (b == (((fp_digit)1)<<x)) {
+         *p = x;
+         return 1;
+      }
+   }
+   return 0;
+}
+
+/* a/b => cb + d == a */
+static int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d)
+{
+  fp_int   q;
+  fp_word  w;
+  fp_digit t;
+  int      ix;
+
+  /* cannot divide by zero */
+  if (b == 0) {
+     return FP_VAL;
+  }
+
+  /* quick outs */
+  if (b == 1 || fp_iszero(a) == 1) {
+     if (d != NULL) {
+        *d = 0;
+     }
+     if (c != NULL) {
+        fp_copy(a, c);
+     }
+     return FP_OKAY;
+  }
+
+  /* power of two ? */
+  if (s_is_power_of_two(b, &ix) == 1) {
+     if (d != NULL) {
+        *d = a->dp[0] & ((((fp_digit)1)<<ix) - 1);
+     }
+     if (c != NULL) {
+        fp_div_2d(a, ix, c, NULL);
+     }
+     return FP_OKAY;
+  }
+
+  /* no easy answer [c'est la vie].  Just division */
+  fp_init(&q);
+  
+  q.used = a->used;
+  q.sign = a->sign;
+  w = 0;
+  for (ix = a->used - 1; ix >= 0; ix--) {
+     w = (w << ((fp_word)DIGIT_BIT)) | ((fp_word)a->dp[ix]);
+     
+     if (w >= b) {
+        t = (fp_digit)(w / b);
+        w -= ((fp_word)t) * ((fp_word)b);
+      } else {
+        t = 0;
+      }
+      q.dp[ix] = (fp_digit)t;
+  }
+  
+  if (d != NULL) {
+     *d = (fp_digit)w;
+  }
+  
+  if (c != NULL) {
+     fp_clamp(&q);
+     fp_copy(&q, c);
+  }
+ 
+  return FP_OKAY;
+}
+
+
+/* c = a mod b, 0 <= c < b  */
+static int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c)
+{
+   return fp_div_d(a, b, NULL, c);
+}
+
+
+/* Miller-Rabin test of "a" to the base of "b" as described in 
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often 
+ * very much lower.
+ */
+static void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result)
+{
+  fp_int  n1, y, r;
+  int     s, j;
+
+  /* default */
+  *result = FP_NO;
+
+  /* ensure b > 1 */
+  if (fp_cmp_d(b, 1) != FP_GT) {
+     return;
+  }     
+
+  /* get n1 = a - 1 */
+  fp_init_copy(&n1, a);
+  fp_sub_d(&n1, 1, &n1);
+
+  /* set 2**s * r = n1 */
+  fp_init_copy(&r, &n1);
+
+  /* count the number of least significant bits
+   * which are zero
+   */
+  s = fp_cnt_lsb(&r);
+
+  /* now divide n - 1 by 2**s */
+  fp_div_2d (&r, s, &r, NULL);
+
+  /* compute y = b**r mod a */
+  fp_init(&y);
+  fp_exptmod(b, &r, a, &y);
+
+  /* if y != 1 and y != n1 do */
+  if (fp_cmp_d (&y, 1) != FP_EQ && fp_cmp (&y, &n1) != FP_EQ) {
+    j = 1;
+    /* while j <= s-1 and y != n1 */
+    while ((j <= (s - 1)) && fp_cmp (&y, &n1) != FP_EQ) {
+      fp_sqrmod (&y, a, &y);
+
+      /* if y == 1 then composite */
+      if (fp_cmp_d (&y, 1) == FP_EQ) {
+         return;
+      }
+      ++j;
+    }
+
+    /* if y != n1 then composite */
+    if (fp_cmp (&y, &n1) != FP_EQ) {
+       return;
+    }
+  }
+
+  /* probably prime now */
+  *result = FP_YES;
+}
+
+
+/* a few primes */
+static const fp_digit primes[256] = {
+  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
+  0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+  0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+  0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+  0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+  0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+  0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+  0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+  0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+  0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+  0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+  0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+  0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+  0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+  0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+  0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+  0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+  0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+  0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+  0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+  0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+  0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+  0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+  0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+  0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+};
+
+int fp_isprime(fp_int *a)
+{
+   fp_int   b;
+   fp_digit d = 0;
+   int      r, res;
+
+   /* do trial division */
+   for (r = 0; r < 256; r++) {
+       fp_mod_d(a, primes[r], &d);
+       if (d == 0) {
+          return FP_NO;
+       }
+   }
+
+   /* now do 8 miller rabins */
+   fp_init(&b);
+   for (r = 0; r < 8; r++) {
+       fp_set(&b, primes[r]);
+       fp_prime_miller_rabin(a, &b, &res);
+       if (res == FP_NO) {
+          return FP_NO;
+       }
+   }
+   return FP_YES;
+}
+
+
+/* c = [a, b] */
+void fp_lcm(fp_int *a, fp_int *b, fp_int *c)
+{
+   fp_int  t1, t2;
+
+   fp_init(&t1);
+   fp_init(&t2);
+   fp_gcd(a, b, &t1);
+   if (fp_cmp_mag(a, b) == FP_GT) {
+      fp_div(a, &t1, &t2, NULL);
+      fp_mul(b, &t2, c);
+   } else {
+      fp_div(b, &t1, &t2, NULL);
+      fp_mul(a, &t2, c);
+   }   
+}
+
+
+static const int lnz[16] = {
+   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
+};
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+int fp_cnt_lsb(fp_int *a)
+{
+   int x;
+   fp_digit q, qq;
+
+   /* easy out */
+   if (fp_iszero(a) == 1) {
+      return 0;
+   }
+
+   /* scan lower digits until non-zero */
+   for (x = 0; x < a->used && a->dp[x] == 0; x++);
+   q = a->dp[x];
+   x *= DIGIT_BIT;
+
+   /* now scan this digit until a 1 is found */
+   if ((q & 1) == 0) {
+      do {
+         qq  = q & 15;
+         x  += lnz[qq];
+         q >>= 4;
+      } while (qq == 0);
+   }
+   return x;
+}
+
+
+/* c = (a, b) */
+void fp_gcd(fp_int *a, fp_int *b, fp_int *c)
+{
+   fp_int u, v, r;
+
+   /* either zero than gcd is the largest */
+   if (fp_iszero (a) == 1 && fp_iszero (b) == 0) {
+     fp_abs (b, c);
+     return;
+   }
+   if (fp_iszero (a) == 0 && fp_iszero (b) == 1) {
+     fp_abs (a, c);
+     return;
+   }
+
+   /* optimized.  At this point if a == 0 then
+    * b must equal zero too
+    */
+   if (fp_iszero (a) == 1) {
+     fp_zero(c);
+     return;
+   }
+
+   /* sort inputs */
+   if (fp_cmp_mag(a, b) != FP_LT) {
+      fp_init_copy(&u, a);
+      fp_init_copy(&v, b);
+   } else {
+      fp_init_copy(&u, b);
+      fp_init_copy(&v, a);
+   }
+ 
+   fp_zero(&r);
+   while (fp_iszero(&v) == FP_NO) {
+      fp_mod(&u, &v, &r);
+      fp_copy(&v, &u);
+      fp_copy(&r, &v);
+   }
+   fp_copy(&u, c);
+}
+
+#endif /* CYASSL_KEY_GEN */
+
+
+#if defined(HAVE_ECC) || !defined(NO_PWDBASED)
+/* c = a + b */
+void fp_add_d(fp_int *a, fp_digit b, fp_int *c)
+{
+   fp_int tmp;
+   fp_set(&tmp, b);
+   fp_add(a,&tmp,c);
+}
+
+/* external compatibility */
+int mp_add_d(fp_int *a, fp_digit b, fp_int *c)
+{
+    fp_add_d(a, b, c);
+    return MP_OKAY;
+}
+
+#endif  /* HAVE_ECC || !NO_PWDBASED */
+
+
+#ifdef HAVE_ECC
+
+/* chars used in radix conversions */
+static const char *fp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+
+static int fp_read_radix(fp_int *a, const char *str, int radix)
+{
+  int     y, neg;
+  char    ch;
+
+  /* make sure the radix is ok */
+  if (radix < 2 || radix > 64) {
+    return FP_VAL;
+  }
+
+  /* if the leading digit is a
+   * minus set the sign to negative.
+   */
+  if (*str == '-') {
+    ++str;
+    neg = FP_NEG;
+  } else {
+    neg = FP_ZPOS;
+  }
+
+  /* set the integer to the default of zero */
+  fp_zero (a);
+
+  /* process each digit of the string */
+  while (*str) {
+    /* if the radix < 36 the conversion is case insensitive
+     * this allows numbers like 1AB and 1ab to represent the same  value
+     * [e.g. in hex]
+     */
+    ch = (char) ((radix < 36) ? XTOUPPER(*str) : *str);
+    for (y = 0; y < 64; y++) {
+      if (ch == fp_s_rmap[y]) {
+         break;
+      }
+    }
+
+    /* if the char was found in the map
+     * and is less than the given radix add it
+     * to the number, otherwise exit the loop.
+     */
+    if (y < radix) {
+      fp_mul_d (a, (fp_digit) radix, a);
+      fp_add_d (a, (fp_digit) y, a);
+    } else {
+      break;
+    }
+    ++str;
+  }
+
+  /* set the sign only if a != 0 */
+  if (fp_iszero(a) != FP_YES) {
+     a->sign = neg;
+  }
+  return FP_OKAY;
+}
+
+/* fast math conversion */
+int mp_read_radix(mp_int *a, const char *str, int radix)
+{
+    return fp_read_radix(a, str, radix);
+}
+
+/* fast math conversion */
+int mp_set(fp_int *a, fp_digit b)
+{
+    fp_set(a,b);
+    return MP_OKAY;
+}
+
+/* fast math conversion */
+int mp_sqr(fp_int *A, fp_int *B)
+{
+    fp_sqr(A, B);
+    return MP_OKAY;
+}
+  
+/* fast math conversion */
+int mp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
+{
+    fp_montgomery_reduce(a, m, mp);
+    return MP_OKAY;
+}
+
+
+/* fast math conversion */
+int mp_montgomery_setup(fp_int *a, fp_digit *rho)
+{
+    return fp_montgomery_setup(a, rho);
+}
+
+int mp_div_2(fp_int * a, fp_int * b)
+{
+    fp_div_2(a, b);
+    return MP_OKAY;
+}
+
+
+int mp_init_copy(fp_int * a, fp_int * b)
+{
+    fp_init_copy(a, b);
+    return MP_OKAY;
+}
+
+
+
+#endif /* HAVE_ECC */
+
+#endif /* USE_FAST_MATH */