Internal_Datalogger but with USB support removed (for MAX40108 Demo board), proof of concept that MAX32625 can be used successfully with VDDB(USB) left unpowered, as long as the USB library is not used.
Dependencies: max32625pico CmdLine
DataLogger_Internal.cpp
- Committer:
- whismanoid
- Date:
- 2021-04-26
- Revision:
- 28:a9a3a9db592b
- Parent:
- 27:b4ac095b83b3
- Child:
- 29:6a9edb6e973b
File content as of revision 28:a9a3a9db592b:
// /******************************************************************************* // * Copyright (C) 2021 Maxim Integrated Products, Inc., All Rights Reserved. // * // * Permission is hereby granted, free of charge, to any person obtaining a // * copy of this software and associated documentation files (the "Software"), // * to deal in the Software without restriction, including without limitation // * the rights to use, copy, modify, merge, publish, distribute, sublicense, // * and/or sell copies of the Software, and to permit persons to whom the // * Software is furnished to do so, subject to the following conditions: // * // * The above copyright notice and this permission notice shall be included // * in all copies or substantial portions of the Software. // * // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES // * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // * OTHER DEALINGS IN THE SOFTWARE. // * // * Except as contained in this notice, the name of Maxim Integrated // * Products, Inc. shall not be used except as stated in the Maxim Integrated // * Products, Inc. Branding Policy. // * // * The mere transfer of this software does not imply any licenses // * of trade secrets, proprietary technology, copyrights, patents, // * trademarks, maskwork rights, or any other form of intellectual // * property whatsoever. Maxim Integrated Products, Inc. retains all // * ownership rights. // ******************************************************************************* // */ // ******************************************************************************* // COM port settings are 9600 baud 8N1 // ******************************************************************************* // Support custom target MAX40108DEMOP2U9 based on MAX32625PICO but MAX32625_NO_BOOT // file custom_targets.json: // { // "MAX40108DEMOP2U9": { // "inherits": ["MAX32625_BASE"], // "macros_remove": [], // "macros_add": ["MAX32625_NO_BOOT"] // } // } // files copied from mbed-os\targets\TARGET_Maxim\TARGET_MAX32625\TARGET_MAX32625PICO // file TARGET_MAX40108DEMOP2U9\PeripheralNames.h -- copied from TARGET_MAX32625PICO // file TARGET_MAX40108DEMOP2U9\PinNames.h -- copied from TARGET_MAX32625PICO // files copied from mbed-os\targets\TARGET_Maxim\TARGET_MAX32625\device\___\TARGET_MAX32625_NO_BOOT // file TARGET_MAX40108DEMOP2U9\device\TOOLCHAIN_ARM_STD\MAX32625.sct // file TARGET_MAX40108DEMOP2U9\device\TOOLCHAIN_GCC_ARM\max32625.ld // file TARGET_MAX40108DEMOP2U9\device\TOOLCHAIN_IAR\MAX32625.icf // file mbed_app.json: // { // "config": { // }, // "macros": [ // "MAX40108_DEMO=9" // ], // "target_overrides": { // } // } // ******************************************************************************* // Validating project global defines from mbed_app.json "macros": [] #ifndef MAX40108_DEMO #warning "MAX40108_DEMO not defined, missing mbed_app.json" #else // #ifndef MAX40108_DEMO #warning "Note: MAX40108_DEMO is defined, which is expected" #if (MAX40108_DEMO)==(9) #warning "Note: MAX40108_DEMO is defined with the expected value of 9" #elif (MAX40108_DEMO)==(5) #warning "Note: MAX40108_DEMO is defined with the wrong value 5" #else #warning "Note: MAX40108_DEMO is defined, but with an unsupported value" #endif #endif // #ifndef MAX40108_DEMO // ******************************************************************************* #ifndef MAX40108_DEMO // #define MAX40108_DEMO 5 for U5, or #define MAX40108_DEMO 9 for U9 in banner #define MAX40108_DEMO 9 #define HAS_DAPLINK_SERIAL 1 #endif // MAX40108_DEMO //---------- CODE GENERATOR: DataLogHelloCppCodeList // CODE GENERATOR: example code includes // example code includes // standard include for target platform -- Platform_Include_Boilerplate #include "mbed.h" // Platforms: // - MAX32625MBED // - supports mbed-os-5.11, requires USBDevice library // - add https://developer.mbed.org/teams/MaximIntegrated/code/USBDevice/ // - remove max32630fthr library (if present) // - remove MAX32620FTHR library (if present) // - MAX32600MBED // - Please note the last supported version is Mbed OS 6.3. // - remove max32630fthr library (if present) // - remove MAX32620FTHR library (if present) // - Windows 10 note: Don't connect HDK until you are ready to load new firmware into the board. // - NUCLEO_F446RE // - remove USBDevice library // - remove max32630fthr library (if present) // - remove MAX32620FTHR library (if present) // - NUCLEO_F401RE // - remove USBDevice library // - remove max32630fthr library (if present) // - remove MAX32620FTHR library (if present) // - MAX32630FTHR // - #include "max32630fthr.h" // - add http://developer.mbed.org/teams/MaximIntegrated/code/max32630fthr/ // - remove MAX32620FTHR library (if present) // - MAX32620FTHR // - #include "MAX32620FTHR.h" // - remove max32630fthr library (if present) // - add https://os.mbed.com/teams/MaximIntegrated/code/MAX32620FTHR/ // - not tested yet // - MAX32625PICO // - #include "max32625pico.h" // - add https://os.mbed.com/users/switches/code/max32625pico/ // - remove max32630fthr library (if present) // - remove MAX32620FTHR library (if present) // - not tested yet // - see https://os.mbed.com/users/switches/code/max32625pico/ // - see https://os.mbed.com/users/switches/code/PICO_board_demo/ // - see https://os.mbed.com/users/switches/code/PICO_USB_I2C_SPI/ // - see https://os.mbed.com/users/switches/code/SerialInterface/ // - Note: To load the MAX32625PICO firmware, hold the button while // connecting the USB cable, then copy firmware bin file // to the MAINTENANCE drive. // - see https://os.mbed.com/platforms/MAX32625PICO/ // - see https://os.mbed.com/teams/MaximIntegrated/wiki/MAX32625PICO-Firmware-Updates // // end Platform_Include_Boilerplate //-------------------------------------------------- // Option to use SPI connected ADC #ifndef SPI_ADC_DeviceName #define SPI_ADC_DeviceName MAX11410 #undef SPI_ADC_DeviceName #endif #if defined(SPI_ADC_DeviceName) // SPI connected ADC #include "MAX11410.h" #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #if defined(TARGET) // TARGET_NAME macros from targets/TARGET_Maxim/TARGET_MAX32625/device/mxc_device.h // Create a string definition for the TARGET #define STRING_ARG(arg) #arg #define STRING_NAME(name) STRING_ARG(name) #define TARGET_NAME STRING_NAME(TARGET) #elif defined(TARGET_MAX32600) #define TARGET_NAME "MAX32600" #elif defined(TARGET_LPC1768) #define TARGET_NAME "LPC1768" #elif defined(TARGET_NUCLEO_F446RE) #define TARGET_NAME "NUCLEO_F446RE" #elif defined(TARGET_NUCLEO_F401RE) #define TARGET_NAME "NUCLEO_F401RE" #else #error TARGET NOT DEFINED #endif #if defined(TARGET_MAX32630) //-------------------------------------------------- // TARGET=MAX32630FTHR ARM Cortex-M4F 96MHz 2048kB Flash 512kB SRAM // +-------------[microUSB]-------------+ // | J1 MAX32630FTHR J2 | // ______ | [ ] RST GND [ ] | // ______ | [ ] 3V3 BAT+[ ] | // ______ | [ ] 1V8 reset SW1 | // ______ | [ ] GND J4 J3 | // analogIn0/4 | [a] AIN_0 1.2Vfs (bat) SYS [ ] | switched BAT+ // analogIn1/5 | [a] AIN_1 1.2Vfs PWR [ ] | external pwr btn // analogIn2 | [a] AIN_2 1.2Vfs +5V VBUS [ ] | USB +5V power // analogIn3 | [a] AIN_3 1.2Vfs 1-WIRE P4_0 [d] | D0 dig9 // (I2C2.SDA) | [d] P5_7 SDA2 SRN P5_6 [d] | D1 dig8 // (I2C2.SCL) | [d] P6_0 SCL2 SDIO3 P5_5 [d] | D2 dig7 // D13/SCLK | [s] P5_0 SCLK SDIO2 P5_4 [d] | D3 dig6 // D11/MOSI | [s] P5_1 MOSI SSEL P5_3 [d] | D4 dig5 // D12/MISO | [s] P5_2 MISO RTS P3_3 [d] | D5 dig4 // D10/CS | [s] P3_0 RX CTS P3_2 [d] | D6 dig3 // D9 dig0 | [d] P3_1 TX SCL P3_5 [d] | D7 dig2 // ______ | [ ] GND SDA P3_4 [d] | D8 dig1 // | | // | XIP Flash MAX14690N | // | XIP_SCLK P1_0 SDA2 P5_7 | // | XIP_MOSI P1_1 SCL2 P6_0 | // | XIP_MISO P1_2 PMIC_INIT P3_7 | // | XIP_SSEL P1_3 MPC P2_7 | // | XIP_DIO2 P1_4 MON AIN_0 | // | XIP_DIO3 P1_5 | // | | // | PAN1326B MicroSD LED | // | BT_RX P0_0 SD_SCLK P0_4 r P2_4 | // | BT_TX P0_1 SD_MOSI P0_5 g P2_5 | // | BT_CTS P0_2 SD_MISO P0_6 b P2_6 | // | BT_RTS P0_3 SD_SSEL P0_7 | // | BT_RST P1_6 DETECT P2_2 | // | BT_CLK P1_7 SW2 P2_3 | // +------------------------------------+ // MAX32630FTHR board has MAX14690 PMIC on I2C bus (P5_7 SDA, P6_0 SCL) at slave address 0101_000r 0x50 (or 0x28 for 7 MSbit address). // MAX32630FTHR board has BMI160 accelerometer on I2C bus (P5_7 SDA, P6_0 SCL) at slave address 1101_000r 0xD0 (or 0x68 for 7 MSbit address). // AIN_0 = AIN0 pin fullscale is 1.2V // AIN_1 = AIN1 pin fullscale is 1.2V // AIN_2 = AIN2 pin fullscale is 1.2V // AIN_3 = AIN3 pin fullscale is 1.2V // AIN_4 = AIN0 / 5.0 fullscale is 6.0V // AIN_5 = AIN1 / 5.0 fullscale is 6.0V // AIN_6 = VDDB / 4.0 fullscale is 4.8V // AIN_7 = VDD18 fullscale is 1.2V // AIN_8 = VDD12 fullscale is 1.2V // AIN_9 = VRTC / 2.0 fullscale is 2.4V // AIN_10 = x undefined? // AIN_11 = VDDIO / 4.0 fullscale is 4.8V // AIN_12 = VDDIOH / 4.0 fullscale is 4.8V // #include "max32630fthr.h" MAX32630FTHR pegasus(MAX32630FTHR::VIO_3V3); #define analogIn4_IS_HIGH_RANGE_OF_analogIn0 1 // MAX32630FTHR board supports only internal VREF = 1.200V at bypass capacitor C15 const float ADC_FULL_SCALE_VOLTAGE = 1.200; // Arduino connector #ifndef A0 #define A0 AIN_0 #endif #ifndef A1 #define A1 AIN_1 #endif #ifndef A2 #define A2 AIN_2 #endif #ifndef A3 #define A3 AIN_3 #endif #ifndef D0 #define D0 P4_0 #endif #ifndef D1 #define D1 P5_6 #endif #ifndef D2 #define D2 P5_5 #endif #ifndef D3 #define D3 P5_4 #endif #ifndef D4 #define D4 P5_3 #endif #ifndef D5 #define D5 P3_3 #endif #ifndef D6 #define D6 P3_2 #endif #ifndef D7 #define D7 P3_5 #endif #ifndef D8 #define D8 P3_4 #endif #ifndef D9 #define D9 P3_1 #endif #ifndef D10 #define D10 P3_0 #endif #ifndef D11 #define D11 P5_1 #endif #ifndef D12 #define D12 P5_2 #endif #ifndef D13 #define D13 P5_0 #endif //-------------------------------------------------- #elif defined(TARGET_MAX32625MBED) //-------------------------------------------------- // TARGET=MAX32625MBED ARM Cortex-M4F 96MHz 512kB Flash 160kB SRAM // +-------------------------------------+ // | MAX32625MBED Arduino UNO header | // | | // | A5/SCL[ ] | P1_7 dig15 // | A4/SDA[ ] | P1_6 dig14 // | AREF=N/C[ ] | // | GND[ ] | // | [ ]N/C SCK/13[ ] | P1_0 dig13 // | [ ]IOREF=3V3 MISO/12[ ] | P1_2 dig12 // | [ ]RST MOSI/11[ ]~| P1_1 dig11 // | [ ]3V3 CS/10[ ]~| P1_3 dig10 // | [ ]5V0 9[ ]~| P1_5 dig9 // | [ ]GND 8[ ] | P1_4 dig8 // | [ ]GND | // | [ ]Vin 7[ ] | P0_7 dig7 // | 6[ ]~| P0_6 dig6 // AIN_0 | [ ]A0 5[ ]~| P0_5 dig5 // AIN_1 | [ ]A1 4[ ] | P0_4 dig4 // AIN_2 | [ ]A2 INT1/3[ ]~| P0_3 dig3 // AIN_3 | [ ]A3 INT0/2[ ] | P0_2 dig2 // dig16 P3_4 | [ ]A4/SDA RST SCK MISO TX>1[ ] | P0_1 dig1 // dig17 P3_5 | [ ]A5/SCL [ ] [ ] [ ] RX<0[ ] | P0_0 dig0 // | [ ] [ ] [ ] | // | UNO_R3 GND MOSI 5V ____________/ // \_______________________/ // // +------------------------+ // | | // | MicroSD LED | // | SD_SCLK P2_4 r P3_0 | // | SD_MOSI P2_5 g P3_1 | // | SD_MISO P2_6 b P3_2 | // | SD_SSEL P2_7 y P3_3 | // | | // | DAPLINK BUTTONS | // | TX P2_1 SW3 P2_3 | // | RX P2_0 SW2 P2_2 | // +------------------------+ // // AIN_0 = AIN0 pin fullscale is 1.2V // AIN_1 = AIN1 pin fullscale is 1.2V // AIN_2 = AIN2 pin fullscale is 1.2V // AIN_3 = AIN3 pin fullscale is 1.2V // AIN_4 = AIN0 / 5.0 fullscale is 6.0V // AIN_5 = AIN1 / 5.0 fullscale is 6.0V // AIN_6 = VDDB / 4.0 fullscale is 4.8V // AIN_7 = VDD18 fullscale is 1.2V // AIN_8 = VDD12 fullscale is 1.2V // AIN_9 = VRTC / 2.0 fullscale is 2.4V // AIN_10 = x undefined? // AIN_11 = VDDIO / 4.0 fullscale is 4.8V // AIN_12 = VDDIOH / 4.0 fullscale is 4.8V // //#include "max32625mbed.h" // ? //MAX32625MBED mbed(MAX32625MBED::VIO_3V3); // ? #define analogIn4_IS_HIGH_RANGE_OF_analogIn0 1 // MAX32630FTHR board supports only internal VREF = 1.200V at bypass capacitor C15 const float ADC_FULL_SCALE_VOLTAGE = 1.200; // TODO: ADC_FULL_SCALE_VOLTAGE Pico? // Arduino connector #ifndef A0 #define A0 AIN_0 #endif #ifndef A1 #define A1 AIN_1 #endif #ifndef A2 #define A2 AIN_2 #endif #ifndef A3 #define A3 AIN_3 #endif #ifndef D0 #define D0 P0_0 #endif #ifndef D1 #define D1 P0_1 #endif #ifndef D2 #define D2 P0_2 #endif #ifndef D3 #define D3 P0_3 #endif #ifndef D4 #define D4 P0_4 #endif #ifndef D5 #define D5 P0_5 #endif #ifndef D6 #define D6 P0_6 #endif #ifndef D7 #define D7 P0_7 #endif #ifndef D8 #define D8 P1_4 #endif #ifndef D9 #define D9 P1_5 #endif #ifndef D10 #define D10 P1_3 #endif #ifndef D11 #define D11 P1_1 #endif #ifndef D12 #define D12 P1_2 #endif #ifndef D13 #define D13 P1_0 #endif //-------------------------------------------------- #elif defined(TARGET_MAX32600) // target MAX32600 // #define analogIn4_IS_HIGH_RANGE_OF_analogIn0 0 const float ADC_FULL_SCALE_VOLTAGE = 1.500; // //-------------------------------------------------- #elif defined(TARGET_MAX32620FTHR) #warning "TARGET_MAX32620FTHR not previously tested; need to define pins..." #include "MAX32620FTHR.h" // Initialize I/O voltages on MAX32620FTHR board MAX32620FTHR fthr(MAX32620FTHR::VIO_3V3); //#define USE_LEDS 0 ? #define analogIn4_IS_HIGH_RANGE_OF_analogIn0 1 #warning "TARGET_MAX32620FTHR not previously tested; need to verify ADC_FULL_SCALE_VOLTAGE..." const float ADC_FULL_SCALE_VOLTAGE = 1.200; // //-------------------------------------------------- #elif defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) // #warning "TARGET_MAX32625PICO not previously tested; need to define pins..." #include "max32625pico.h" // configure MAX32625PICO VDDIOH mode, and I/O voltages for DIP pins and SWD pins MAX32625PICO pico( // Select source of higher-voltage logic high supply VDDIOH // vddioh_mode_t iohMode //~ MAX32625PICO::IOH_OFF, // No connections to VDDIOH //~ MAX32625PICO::IOH_DIP_IN, // VDDIOH input from DIP pin 1 (AIN0) //~ MAX32625PICO::IOH_SWD_IN, // VDDIOH input from SWD pin 1 MAX32625PICO::IOH_3V3, // VDDIOH = 3.3V from local supply //~ MAX32625PICO::IOH_DIP_OUT, // VDDIOH = 3.3V output to DIP pin 1 //~ MAX32625PICO::IOH_SWD_OUT, // VDDIOH = 3.3V output to SWD pin 1 // // Digital I/O pin logic high voltage 1.8V or 3.3V // vio_t dipVio = MAX32625PICO::VIO_1V8 or MAX32625PICO::VIO_IOH MAX32625PICO::VIO_1V8, // 1.8V IO (local) //~ MAX32625PICO::VIO_IOH, // Use VDDIOH (from DIP pin 1, or SWD pin1, or local 3.3V) // // Software Debug logic high voltage (normally use VIO_IOH) // vio_t swdVio //~ MAX32625PICO::VIO_1V8 // 1.8V IO (local) MAX32625PICO::VIO_IOH // Use VDDIOH (from DIP pin 1, or SWD pin1, or local 3.3V) ); //#define USE_LEDS 0 ? #define analogIn4_IS_HIGH_RANGE_OF_analogIn0 1 // #warning "TARGET_MAX32625PICO not previously tested; need to verify ADC_FULL_SCALE_VOLTAGE..." const float ADC_FULL_SCALE_VOLTAGE = 1.200; // //-------------------------------------------------- #elif defined(TARGET_NUCLEO_F446RE) || defined(TARGET_NUCLEO_F401RE) // TODO1: target NUCLEO_F446RE // // USER_BUTTON PC13 // LED1 is shared with SPI_SCK on NUCLEO_F446RE PA_5, so don't use LED1. #define USE_LEDS 0 // SPI spi(SPI_MOSI, SPI_MISO, SPI_SCK); // Serial serial(SERIAL_TX, SERIAL_RX); #define analogIn4_IS_HIGH_RANGE_OF_analogIn0 0 const float ADC_FULL_SCALE_VOLTAGE = 3.300; // TODO: ADC_FULL_SCALE_VOLTAGE Pico? // //-------------------------------------------------- #elif defined(TARGET_LPC1768) //-------------------------------------------------- // TARGET=LPC1768 ARM Cortex-M3 100 MHz 512kB flash 64kB SRAM // +-------------[microUSB]-------------+ // ______ | [ ] GND +3.3V VOUT [ ] | ______ // ______ | [ ] 4.5V<VIN<9.0V +5.0V VU [ ] | ______ // ______ | [ ] VB USB.IF- [ ] | ______ // ______ | [ ] nR USB.IF+ [ ] | ______ // digitalInOut0 | [ ] p5 MOSI ETHERNET.RD- [ ] | ______ // digitalInOut1 | [ ] p6 MISO ETHERNET.RD+ [ ] | ______ // digitalInOut2 | [ ] p7 SCLK ETHERNET.TD- [ ] | ______ // digitalInOut3 | [ ] p8 ETHERNET.TD+ [ ] | ______ // digitalInOut4 | [ ] p9 TX SDA USB.D- [ ] | ______ // digitalInOut5 | [ ] p10 RX SCL USB.D+ [ ] | ______ // digitalInOut6 | [ ] p11 MOSI CAN-RD p30 [ ] | digitalInOut13 // digitalInOut7 | [ ] p12 MISO CAN-TD p29 [ ] | digitalInOut12 // digitalInOut8 | [ ] p13 TX SCLK SDA TX p28 [ ] | digitalInOut11 // digitalInOut9 | [ ] p14 RX SCL RX p27 [ ] | digitalInOut10 // analogIn0 | [ ] p15 AIN0 3.3Vfs PWM1 p26 [ ] | pwmDriver1 // analogIn1 | [ ] p16 AIN1 3.3Vfs PWM2 p25 [ ] | pwmDriver2 // analogIn2 | [ ] p17 AIN2 3.3Vfs PWM3 p24 [ ] | pwmDriver3 // analogIn3 | [ ] p18 AIN3 AOUT PWM4 p23 [ ] | pwmDriver4 // analogIn4 | [ ] p19 AIN4 3.3Vfs PWM5 p22 [ ] | pwmDriver5 // analogIn5 | [ ] p20 AIN5 3.3Vfs PWM6 p21 [ ] | pwmDriver6 // +------------------------------------+ // AIN6 = P0.3 = TGT_SBL_RXD? // AIN7 = P0.2 = TGT_SBL_TXD? // //-------------------------------------------------- // LPC1768 board uses VREF = 3.300V +A3,3V thru L1 to bypass capacitor C14 #define analogIn4_IS_HIGH_RANGE_OF_analogIn0 0 const float ADC_FULL_SCALE_VOLTAGE = 3.300; #else // not defined(TARGET_LPC1768 etc.) //-------------------------------------------------- // unknown target //-------------------------------------------------- #endif // target definition // support LEDs as digital pins 91 92 93; WIP button as digital pin 90 // move definiton of USE_LEDS earlier than find_digitalInOutPin() //-------------------------------------------------- // Option to use LEDs to show status #ifndef USE_LEDS #define USE_LEDS 1 #endif #if USE_LEDS #if defined(TARGET_MAX32630) # define LED_ON 0 # define LED_OFF 1 //-------------------------------------------------- #elif defined(TARGET_MAX32625MBED) # define LED_ON 0 # define LED_OFF 1 #elif defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) # define LED_ON 0 # define LED_OFF 1 //-------------------------------------------------- // TODO1: TARGET=MAX32625MBED ARM Cortex-M4F 96MHz 512kB Flash 160kB SRAM #elif defined(TARGET_LPC1768) # define LED_ON 1 # define LED_OFF 0 #else // not defined(TARGET_LPC1768 etc.) // USE_LEDS with some platform other than MAX32630, MAX32625MBED, LPC1768 // bugfix for MAX32600MBED LED blink pattern: check if LED_ON/LED_OFF already defined # ifndef LED_ON # define LED_ON 0 # endif # ifndef LED_OFF # define LED_OFF 1 # endif //# define LED_ON 1 //# define LED_OFF 0 #endif // target definition // support LEDs as digital pins 91 92 93; WIP button as digital pin 90 // support find_digitalInOutPin(91) return DigitalInOut of led1_RFailLED // support find_digitalInOutPin(92) return DigitalInOut of led2_GPassLED // support find_digitalInOutPin(93) return DigitalInOut of led3_BBusyLED // change led1/2/3/4 from DigitalOut to DigitalInOut DigitalInOut led1(LED1, PIN_INPUT, PullUp, LED_OFF); // MAX32630FTHR: LED1 = LED_RED DigitalInOut led2(LED2, PIN_INPUT, PullUp, LED_OFF); // MAX32630FTHR: LED2 = LED_GREEN DigitalInOut led3(LED3, PIN_INPUT, PullUp, LED_OFF); // MAX32630FTHR: LED3 = LED_BLUE DigitalInOut led4(LED4, PIN_INPUT, PullUp, LED_OFF); #else // USE_LEDS=0 // issue #41 support Nucleo_F446RE // there are no LED indicators on the board, LED1 interferes with SPI; // but we still need placeholders led1 led2 led3 led4. // Declare DigitalInOut led1 led2 led3 led4 targeting safe pins. // PinName NC means NOT_CONNECTED; DigitalOut::is_connected() returns false # define LED_ON 0 # define LED_OFF 1 // change led1/2/3/4 from DigitalOut to DigitalInOut DigitalInOut led1(NC, PIN_INPUT, PullUp, LED_OFF); DigitalInOut led2(NC, PIN_INPUT, PullUp, LED_OFF); DigitalInOut led3(NC, PIN_INPUT, PullUp, LED_OFF); DigitalInOut led4(NC, PIN_INPUT, PullUp, LED_OFF); #endif // USE_LEDS #define led1_RFailLED led1 #define led2_GPassLED led2 #define led3_BBusyLED led3 //-------------------------------------------------- // use BUTTON1 trigger some action #if defined(TARGET_MAX32630) #define HAS_BUTTON1_DEMO_INTERRUPT 1 #define HAS_BUTTON2_DEMO 0 #define HAS_BUTTON2_DEMO_INTERRUPT 0 #elif defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) // #warning "TARGET_MAX32625PICO not previously tested; need to define buttons..." #define HAS_BUTTON1_DEMO_INTERRUPT 1 #if MAX40108_DEMO #if HAS_I2C // MAX40108DEMOP2U9 HAS_I2C: J91.1=1V8 J91.2=P1_6(SDA) J91.3=P1_7(SCL) J91.4=GND // MAX40108DEMOP2U9 HAS_I2C: move button2/button3 to inaccessible pins P3_6 and P3_7 if we need J91 for I2C #define BUTTON2 P3_7 #else // HAS_I2C // MAX40108DEMOP2U9 no HAS_I2C: option using J91 for button2 and button3 instead of I2C // MAX40108DEMOP2U9 no HAS_I2C: header J91.1=1V8 J91.2=P1_6(button3/'%B3!') J91.3=P1_7(button2/'%B2!') J91.4=GND // MAX40108DEMOP2U9 no HAS_I2C: avoid conflict between digital pins D16 D17 and button2/button3 #define BUTTON2 P1_7 #endif // HAS_I2C #define HAS_BUTTON2_DEMO 0 #define HAS_BUTTON2_DEMO_INTERRUPT 1 #if HAS_I2C // MAX40108DEMOP2U9 HAS_I2C: J91.1=1V8 J91.2=P1_6(SDA) J91.3=P1_7(SCL) J91.4=GND // MAX40108DEMOP2U9 HAS_I2C: move button2/button3 to inaccessible pins P3_6 and P3_7 if we need J91 for I2C #define BUTTON3 P3_6 #else // HAS_I2C // MAX40108DEMOP2U9 no HAS_I2C: option using J91 for button2 and button3 instead of I2C // MAX40108DEMOP2U9 no HAS_I2C: header J91.1=1V8 J91.2=P1_6(button3/'%B3!') J91.3=P1_7(button2/'%B2!') J91.4=GND // MAX40108DEMOP2U9 no HAS_I2C: avoid conflict between digital pins D16 D17 and button2/button3 #define BUTTON3 P1_6 #endif // HAS_I2C #define HAS_BUTTON3_DEMO 0 #define HAS_BUTTON3_DEMO_INTERRUPT 1 #else // MAX40108_DEMO #define HAS_BUTTON2_DEMO 0 #define HAS_BUTTON2_DEMO_INTERRUPT 0 #endif // MAX40108_DEMO #elif defined(TARGET_MAX32625) #define HAS_BUTTON1_DEMO_INTERRUPT 1 #define HAS_BUTTON2_DEMO_INTERRUPT 1 #elif defined(TARGET_MAX32620FTHR) #warning "TARGET_MAX32620FTHR not previously tested; need to define buttons..." #define BUTTON1 SW1 #define HAS_BUTTON1_DEMO_INTERRUPT 1 #define HAS_BUTTON2_DEMO 0 #define HAS_BUTTON2_DEMO_INTERRUPT 0 #elif defined(TARGET_NUCLEO_F446RE) #define HAS_BUTTON1_DEMO_INTERRUPT 0 #define HAS_BUTTON2_DEMO_INTERRUPT 0 #elif defined(TARGET_NUCLEO_F401RE) #define HAS_BUTTON1_DEMO_INTERRUPT 0 #define HAS_BUTTON2_DEMO_INTERRUPT 0 #else #warning "target not previously tested; need to define buttons..." #endif // #ifndef HAS_BUTTON1_DEMO #define HAS_BUTTON1_DEMO 0 #endif #ifndef HAS_BUTTON2_DEMO #define HAS_BUTTON2_DEMO 0 #endif #ifndef HAS_BUTTON3_DEMO #define HAS_BUTTON3_DEMO 0 #endif // // avoid runtime error on button1 press [mbed-os-5.11] // instead of using InterruptIn, use DigitalIn and poll in main while(1) #ifndef HAS_BUTTON1_DEMO_INTERRUPT_POLLING #define HAS_BUTTON1_DEMO_INTERRUPT_POLLING 1 #endif // #ifndef HAS_BUTTON1_DEMO_INTERRUPT #define HAS_BUTTON1_DEMO_INTERRUPT 1 #endif #ifndef HAS_BUTTON2_DEMO_INTERRUPT #define HAS_BUTTON2_DEMO_INTERRUPT 1 #endif // #if HAS_BUTTON1_DEMO_INTERRUPT # if HAS_BUTTON1_DEMO_INTERRUPT_POLLING // avoid runtime error on button1 press [mbed-os-5.11] // instead of using InterruptIn, use DigitalIn and poll in main while(1) DigitalIn button1(BUTTON1); # else InterruptIn button1(BUTTON1); # endif #elif HAS_BUTTON1_DEMO DigitalIn button1(BUTTON1); #endif #if HAS_BUTTON2_DEMO_INTERRUPT # if HAS_BUTTON1_DEMO_INTERRUPT_POLLING // avoid runtime error on button1 press [mbed-os-5.11] // instead of using InterruptIn, use DigitalIn and poll in main while(1) DigitalIn button2(BUTTON2); # else InterruptIn button2(BUTTON2); # endif #elif HAS_BUTTON2_DEMO DigitalIn button2(BUTTON2); #endif #if HAS_BUTTON3_DEMO_INTERRUPT # if HAS_BUTTON1_DEMO_INTERRUPT_POLLING // avoid runtime error on button1 press [mbed-os-5.11] // instead of using InterruptIn, use DigitalIn and poll in main while(1) DigitalIn button3(BUTTON3); # else InterruptIn button3(BUTTON3); # endif #elif HAS_BUTTON3_DEMO DigitalIn button3(BUTTON3); #endif // uncrustify-0.66.1 *INDENT-OFF* //-------------------------------------------------- // Declare the DigitalInOut GPIO pins // Optional digitalInOut support. If there is only one it should be digitalInOut1. // D) Digital High/Low/Input Pin #if defined(TARGET_MAX32630) // +-------------[microUSB]-------------+ // | J1 MAX32630FTHR J2 | // | [ ] RST GND [ ] | // | [ ] 3V3 BAT+[ ] | // | [ ] 1V8 reset SW1 | // | [ ] GND J4 J3 | // | [ ] AIN_0 1.2Vfs (bat) SYS [ ] | // | [ ] AIN_1 1.2Vfs PWR [ ] | // | [ ] AIN_2 1.2Vfs +5V VBUS [ ] | // | [ ] AIN_3 1.2Vfs 1-WIRE P4_0 [ ] | dig9 // dig10 | [x] P5_7 SDA2 SRN P5_6 [ ] | dig8 // dig11 | [x] P6_0 SCL2 SDIO3 P5_5 [ ] | dig7 // dig12 | [x] P5_0 SCLK SDIO2 P5_4 [ ] | dig6 // dig13 | [x] P5_1 MOSI SSEL P5_3 [x] | dig5 // dig14 | [ ] P5_2 MISO RTS P3_3 [ ] | dig4 // dig15 | [ ] P3_0 RX CTS P3_2 [ ] | dig3 // dig0 | [ ] P3_1 TX SCL P3_5 [x] | dig2 // | [ ] GND SDA P3_4 [x] | dig1 // +------------------------------------+ #define HAS_digitalInOut0 1 // P3_1 TARGET_MAX32630 J1.15 #define HAS_digitalInOut1 1 // P3_4 TARGET_MAX32630 J3.12 #define HAS_digitalInOut2 1 // P3_5 TARGET_MAX32630 J3.11 #define HAS_digitalInOut3 1 // P3_2 TARGET_MAX32630 J3.10 #define HAS_digitalInOut4 1 // P3_3 TARGET_MAX32630 J3.9 #define HAS_digitalInOut5 1 // P5_3 TARGET_MAX32630 J3.8 #define HAS_digitalInOut6 1 // P5_4 TARGET_MAX32630 J3.7 #define HAS_digitalInOut7 1 // P5_5 TARGET_MAX32630 J3.6 #define HAS_digitalInOut8 1 // P5_6 TARGET_MAX32630 J3.5 #define HAS_digitalInOut9 1 // P4_0 TARGET_MAX32630 J3.4 #if HAS_I2C // avoid resource conflict between P5_7, P6_0 I2C and DigitalInOut #define HAS_digitalInOut10 0 // P5_7 TARGET_MAX32630 J1.9 #define HAS_digitalInOut11 0 // P6_0 TARGET_MAX32630 J1.10 #else // HAS_I2C #define HAS_digitalInOut10 1 // P5_7 TARGET_MAX32630 J1.9 #define HAS_digitalInOut11 1 // P6_0 TARGET_MAX32630 J1.10 #endif // HAS_I2C #if HAS_SPI // avoid resource conflict between P5_0, P5_1, P5_2 SPI and DigitalInOut #define HAS_digitalInOut12 0 // P5_0 TARGET_MAX32630 J1.11 #define HAS_digitalInOut13 0 // P5_1 TARGET_MAX32630 J1.12 #define HAS_digitalInOut14 0 // P5_2 TARGET_MAX32630 J1.13 #define HAS_digitalInOut15 0 // P3_0 TARGET_MAX32630 J1.14 #else // HAS_SPI #define HAS_digitalInOut12 1 // P5_0 TARGET_MAX32630 J1.11 #define HAS_digitalInOut13 1 // P5_1 TARGET_MAX32630 J1.12 #define HAS_digitalInOut14 1 // P5_2 TARGET_MAX32630 J1.13 #define HAS_digitalInOut15 1 // P3_0 TARGET_MAX32630 J1.14 #endif // HAS_SPI #if HAS_digitalInOut0 DigitalInOut digitalInOut0(P3_1, PIN_INPUT, PullUp, 1); // P3_1 TARGET_MAX32630 J1.15 #endif #if HAS_digitalInOut1 DigitalInOut digitalInOut1(P3_4, PIN_INPUT, PullUp, 1); // P3_4 TARGET_MAX32630 J3.12 #endif #if HAS_digitalInOut2 DigitalInOut digitalInOut2(P3_5, PIN_INPUT, PullUp, 1); // P3_5 TARGET_MAX32630 J3.11 #endif #if HAS_digitalInOut3 DigitalInOut digitalInOut3(P3_2, PIN_INPUT, PullUp, 1); // P3_2 TARGET_MAX32630 J3.10 #endif #if HAS_digitalInOut4 DigitalInOut digitalInOut4(P3_3, PIN_INPUT, PullUp, 1); // P3_3 TARGET_MAX32630 J3.9 #endif #if HAS_digitalInOut5 DigitalInOut digitalInOut5(P5_3, PIN_INPUT, PullUp, 1); // P5_3 TARGET_MAX32630 J3.8 #endif #if HAS_digitalInOut6 DigitalInOut digitalInOut6(P5_4, PIN_INPUT, PullUp, 1); // P5_4 TARGET_MAX32630 J3.7 #endif #if HAS_digitalInOut7 DigitalInOut digitalInOut7(P5_5, PIN_INPUT, PullUp, 1); // P5_5 TARGET_MAX32630 J3.6 #endif #if HAS_digitalInOut8 DigitalInOut digitalInOut8(P5_6, PIN_INPUT, PullUp, 1); // P5_6 TARGET_MAX32630 J3.5 #endif #if HAS_digitalInOut9 DigitalInOut digitalInOut9(P4_0, PIN_INPUT, PullUp, 1); // P4_0 TARGET_MAX32630 J3.4 #endif #if HAS_digitalInOut10 DigitalInOut digitalInOut10(P5_7, PIN_INPUT, PullUp, 1); // P5_7 TARGET_MAX32630 J1.9 #endif #if HAS_digitalInOut11 DigitalInOut digitalInOut11(P6_0, PIN_INPUT, PullUp, 1); // P6_0 TARGET_MAX32630 J1.10 #endif #if HAS_digitalInOut12 DigitalInOut digitalInOut12(P5_0, PIN_INPUT, PullUp, 1); // P5_0 TARGET_MAX32630 J1.11 #endif #if HAS_digitalInOut13 DigitalInOut digitalInOut13(P5_1, PIN_INPUT, PullUp, 1); // P5_1 TARGET_MAX32630 J1.12 #endif #if HAS_digitalInOut14 DigitalInOut digitalInOut14(P5_2, PIN_INPUT, PullUp, 1); // P5_2 TARGET_MAX32630 J1.13 #endif #if HAS_digitalInOut15 DigitalInOut digitalInOut15(P3_0, PIN_INPUT, PullUp, 1); // P3_0 TARGET_MAX32630 J1.14 #endif //-------------------------------------------------- #elif defined(TARGET_MAX32625MBED) // TARGET=MAX32625MBED ARM Cortex-M4F 96MHz 512kB Flash 160kB SRAM // +-------------------------------------+ // | MAX32625MBED Arduino UNO header | // | | // | A5/SCL[ ] | P1_7 dig15 // | A4/SDA[ ] | P1_6 dig14 // | AREF=N/C[ ] | // | GND[ ] | // | [ ]N/C SCK/13[ ] | P1_0 dig13 // | [ ]IOREF=3V3 MISO/12[ ] | P1_2 dig12 // | [ ]RST MOSI/11[ ]~| P1_1 dig11 // | [ ]3V3 CS/10[ ]~| P1_3 dig10 // | [ ]5V0 9[ ]~| P1_5 dig9 // | [ ]GND 8[ ] | P1_4 dig8 // | [ ]GND | // | [ ]Vin 7[ ] | P0_7 dig7 // | 6[ ]~| P0_6 dig6 // AIN_0 | [ ]A0 5[ ]~| P0_5 dig5 // AIN_1 | [ ]A1 4[ ] | P0_4 dig4 // AIN_2 | [ ]A2 INT1/3[ ]~| P0_3 dig3 // AIN_3 | [ ]A3 INT0/2[ ] | P0_2 dig2 // dig16 P3_4 | [ ]A4/SDA RST SCK MISO TX>1[ ] | P0_1 dig1 // dig17 P3_5 | [ ]A5/SCL [ ] [ ] [ ] RX<0[ ] | P0_0 dig0 // | [ ] [ ] [ ] | // | UNO_R3 GND MOSI 5V ____________/ // \_______________________/ // #define HAS_digitalInOut0 1 // P0_0 TARGET_MAX32625MBED D0 #define HAS_digitalInOut1 1 // P0_1 TARGET_MAX32625MBED D1 #if APPLICATION_MAX11131 #define HAS_digitalInOut2 0 // P0_2 TARGET_MAX32625MBED D2 -- MAX11131 EOC DigitalIn #else #define HAS_digitalInOut2 1 // P0_2 TARGET_MAX32625MBED D2 #endif #define HAS_digitalInOut3 1 // P0_3 TARGET_MAX32625MBED D3 #define HAS_digitalInOut4 1 // P0_4 TARGET_MAX32625MBED D4 #define HAS_digitalInOut5 1 // P0_5 TARGET_MAX32625MBED D5 #define HAS_digitalInOut6 1 // P0_6 TARGET_MAX32625MBED D6 #define HAS_digitalInOut7 1 // P0_7 TARGET_MAX32625MBED D7 #define HAS_digitalInOut8 1 // P1_4 TARGET_MAX32625MBED D8 #if APPLICATION_MAX11131 #define HAS_digitalInOut9 0 // P1_5 TARGET_MAX32625MBED D9 -- MAX11131 CNVST DigitalOut #else #define HAS_digitalInOut9 1 // P1_5 TARGET_MAX32625MBED D9 #endif #if HAS_SPI // avoid resource conflict between P5_0, P5_1, P5_2 SPI and DigitalInOut #define HAS_digitalInOut10 0 // P1_3 TARGET_MAX32635MBED CS/10 #define HAS_digitalInOut11 0 // P1_1 TARGET_MAX32635MBED MOSI/11 #define HAS_digitalInOut12 0 // P1_2 TARGET_MAX32635MBED MISO/12 #define HAS_digitalInOut13 0 // P1_0 TARGET_MAX32635MBED SCK/13 #else // HAS_SPI #define HAS_digitalInOut10 1 // P1_3 TARGET_MAX32635MBED CS/10 #define HAS_digitalInOut11 1 // P1_1 TARGET_MAX32635MBED MOSI/11 #define HAS_digitalInOut12 1 // P1_2 TARGET_MAX32635MBED MISO/12 #define HAS_digitalInOut13 1 // P1_0 TARGET_MAX32635MBED SCK/13 #endif // HAS_SPI #if HAS_I2C // avoid resource conflict between P5_7, P6_0 I2C and DigitalInOut #define HAS_digitalInOut14 0 // P1_6 TARGET_MAX32635MBED A4/SDA (10pin digital connector) #define HAS_digitalInOut15 0 // P1_7 TARGET_MAX32635MBED A5/SCL (10pin digital connector) #define HAS_digitalInOut16 0 // P3_4 TARGET_MAX32635MBED A4/SDA (6pin analog connector) #define HAS_digitalInOut17 0 // P3_5 TARGET_MAX32635MBED A5/SCL (6pin analog connector) #else // HAS_I2C #define HAS_digitalInOut14 1 // P1_6 TARGET_MAX32635MBED A4/SDA (10pin digital connector) #define HAS_digitalInOut15 1 // P1_7 TARGET_MAX32635MBED A5/SCL (10pin digital connector) #define HAS_digitalInOut16 1 // P3_4 TARGET_MAX32635MBED A4/SDA (6pin analog connector) #define HAS_digitalInOut17 1 // P3_5 TARGET_MAX32635MBED A5/SCL (6pin analog connector) #endif // HAS_I2C #if HAS_digitalInOut0 DigitalInOut digitalInOut0(P0_0, PIN_INPUT, PullUp, 1); // P0_0 TARGET_MAX32625MBED D0 #endif #if HAS_digitalInOut1 DigitalInOut digitalInOut1(P0_1, PIN_INPUT, PullUp, 1); // P0_1 TARGET_MAX32625MBED D1 #endif #if HAS_digitalInOut2 DigitalInOut digitalInOut2(P0_2, PIN_INPUT, PullUp, 1); // P0_2 TARGET_MAX32625MBED D2 #endif #if HAS_digitalInOut3 DigitalInOut digitalInOut3(P0_3, PIN_INPUT, PullUp, 1); // P0_3 TARGET_MAX32625MBED D3 #endif #if HAS_digitalInOut4 DigitalInOut digitalInOut4(P0_4, PIN_INPUT, PullUp, 1); // P0_4 TARGET_MAX32625MBED D4 #endif #if HAS_digitalInOut5 DigitalInOut digitalInOut5(P0_5, PIN_INPUT, PullUp, 1); // P0_5 TARGET_MAX32625MBED D5 #endif #if HAS_digitalInOut6 DigitalInOut digitalInOut6(P0_6, PIN_INPUT, PullUp, 1); // P0_6 TARGET_MAX32625MBED D6 #endif #if HAS_digitalInOut7 DigitalInOut digitalInOut7(P0_7, PIN_INPUT, PullUp, 1); // P0_7 TARGET_MAX32625MBED D7 #endif #if HAS_digitalInOut8 DigitalInOut digitalInOut8(P1_4, PIN_INPUT, PullUp, 1); // P1_4 TARGET_MAX32625MBED D8 #endif #if HAS_digitalInOut9 DigitalInOut digitalInOut9(P1_5, PIN_INPUT, PullUp, 1); // P1_5 TARGET_MAX32625MBED D9 #endif #if HAS_digitalInOut10 DigitalInOut digitalInOut10(P1_3, PIN_INPUT, PullUp, 1); // P1_3 TARGET_MAX32635MBED CS/10 #endif #if HAS_digitalInOut11 DigitalInOut digitalInOut11(P1_1, PIN_INPUT, PullUp, 1); // P1_1 TARGET_MAX32635MBED MOSI/11 #endif #if HAS_digitalInOut12 DigitalInOut digitalInOut12(P1_2, PIN_INPUT, PullUp, 1); // P1_2 TARGET_MAX32635MBED MISO/12 #endif #if HAS_digitalInOut13 DigitalInOut digitalInOut13(P1_0, PIN_INPUT, PullUp, 1); // P1_0 TARGET_MAX32635MBED SCK/13 #endif #if HAS_digitalInOut14 // Ensure that the unused I2C pins do not interfere with analog inputs A4 and A5 // DigitalInOut mode can be one of PullUp, PullDown, PullNone, OpenDrain DigitalInOut digitalInOut14(P1_6, PIN_INPUT, OpenDrain, 1); // P1_6 TARGET_MAX32635MBED A4/SDA (10pin digital connector) #endif #if HAS_digitalInOut15 // Ensure that the unused I2C pins do not interfere with analog inputs A4 and A5 DigitalInOut digitalInOut15(P1_7, PIN_INPUT, OpenDrain, 1); // P1_7 TARGET_MAX32635MBED A5/SCL (10pin digital connector) #endif #if HAS_digitalInOut16 // Ensure that the unused I2C pins do not interfere with analog inputs A4 and A5 // DigitalInOut mode can be one of PullUp, PullDown, PullNone, OpenDrain // PullUp-->3.4V, PullDown-->1.7V, PullNone-->3.5V, OpenDrain-->0.00V DigitalInOut digitalInOut16(P3_4, PIN_INPUT, OpenDrain, 0); // P3_4 TARGET_MAX32635MBED A4/SDA (6pin analog connector) #endif #if HAS_digitalInOut17 // Ensure that the unused I2C pins do not interfere with analog inputs A4 and A5 DigitalInOut digitalInOut17(P3_5, PIN_INPUT, OpenDrain, 0); // P3_5 TARGET_MAX32635MBED A5/SCL (6pin analog connector) #endif //-------------------------------------------------- #elif defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) // TARGET=MAX32625PICO ARM Cortex-M4F 96MHz 512kB Flash 160kB SRAM // +-------------[microUSB]-------------+ // | [27]D+ D-[26] | // | | // | [BUTTON P2_7] | // | P2_4 LED_R P2_5 LED_G P2_6 LED_B | // | | // 1V8 | [11] 1.8V MAX32625PICO GND [10] | GND // 3V3 | [12] 3.3V +5V [09] | 5V0 // SPI CS D7 | [13] P0_7 CS s-ssel P4_7 [08] | D15 // SPI MISO D6 | [14] P0_6 MISO s-miso P4_6 [07] | D14 // SPI MOSI D5 | [15] P0_5 MOSI s-mosi P4_5 [06] | D13 // SPI SCLK D4 | [16] P0_4 SCLK s-sclk P4_4 [05] | D12 // D3 | [17] P0_3 RTS SCL P1_7 [04] | SCL/D17 // D2 | [18] P0_2 CTS SDA P1_6 [03] | SDA/D16 // TX/D1 | [19] P0_1 TX0 AIN_2 [02] | A2 // RX/D0 | [20] P0_0 RX0 AIN_0 [01] | A0/A4 // | | // | DAPLINK | // | J3 p3_3 p3_2 p3_0 p3_1 p3_7 | // | DAP [ ] [ ] [RX2][TX2][ ] | // | TOP [ ] [ ] [ ] [ ] [ ] | // | AIN1/A5 gnd gnd nc AIN3 | // | IOH 1-wire | // | | // |NO USE RST P2_0 P2_1 | // |BOTTOM [ ] [ ] [RX1][ ] [TX1] | // | RST SWC GND SWD 1V8 | // |BOTTOM [21] [22] [23] [24] [25] | // +------------------------------------+ #if MAX40108_DEMO // MAX40108 demo p2: D0..D7 = P0_0..P0_7; D8..15 = P4_0..P4_7; D16/D17=I2C #endif // AIN_0 = AIN0 pin fullscale is 1.2V // AIN_1 = AIN1 pin fullscale is 1.2V // AIN_2 = AIN2 pin fullscale is 1.2V // AIN_3 = AIN3 pin fullscale is 1.2V // AIN_4 = AIN0 / 5.0 fullscale is 6.0V // AIN_5 = AIN1 / 5.0 fullscale is 6.0V // AIN_6 = VDDB / 4.0 fullscale is 4.8V // AIN_7 = VDD18 fullscale is 1.2V // AIN_8 = VDD12 fullscale is 1.2V // AIN_9 = VRTC / 2.0 fullscale is 2.4V // AIN_10 = x undefined? // AIN_11 = VDDIO / 4.0 fullscale is 4.8V // AIN_12 = VDDIOH / 4.0 fullscale is 4.8V // #if MAX40108_DEMO // avoid resource conflict D0,D1 alternate function as RX/TX #define HAS_digitalInOut0 0 #define HAS_digitalInOut1 0 #else #define HAS_digitalInOut0 1 #define HAS_digitalInOut1 1 // P0_1 TARGET_MAX32625PICO D1 #endif #if APPLICATION_MAX11131 // avoid resource conflict D2 alternate function as interrupt input #define HAS_digitalInOut2 0 #else #define HAS_digitalInOut2 1 #endif #define HAS_digitalInOut3 1 #define HAS_digitalInOut4 1 #define HAS_digitalInOut5 1 #define HAS_digitalInOut6 1 #define HAS_digitalInOut7 1 // #define HAS_digitalInOut8 1 #define HAS_digitalInOut9 1 #define HAS_digitalInOut10 1 #define HAS_digitalInOut11 1 #define HAS_digitalInOut12 1 #define HAS_digitalInOut13 1 #define HAS_digitalInOut14 1 #define HAS_digitalInOut15 1 #if HAS_I2C // MAX40108DEMOP2U9 HAS_I2C: J91.1=1V8 J91.2=P1_6(SDA) J91.3=P1_7(SCL) J91.4=GND // MAX40108DEMOP2U9 HAS_I2C: move button2/button3 to inaccessible pins P3_6 and P3_7 if we need J91 for I2C // #define BUTTON2 P3_7 // avoid resource conflict between I2C and DigitalInOut #define HAS_digitalInOut16 0 // P1_6 TARGET_MAX40108DEMOP2U9 J91.2=P1_6(button3/'%B3!'/SDA) #define HAS_digitalInOut17 0 // P1_7 TARGET_MAX40108DEMOP2U9 J91.3=P1_7(button2/'%B2!'/SCL) #else // HAS_I2C // MAX40108DEMOP2U9 no HAS_I2C: option using J91 for button2 and button3 instead of I2C // MAX40108DEMOP2U9 no HAS_I2C: header J91.1=1V8 J91.2=P1_6(button3/'%B3!') J91.3=P1_7(button2/'%B2!') J91.4=GND // MAX40108DEMOP2U9 no HAS_I2C: avoid conflict between digital pins D16 D17 and button2/button3 // #define BUTTON2 P1_7 #if HAS_BUTTON3_DEMO_INTERRUPT // MAX40108DEMOP2U9 avoid conflict between digital pins D16 D17 and button2/button3 #define HAS_digitalInOut16 0 // P1_6 TARGET_MAX40108DEMOP2U9 J91.2=P1_6(button3/'%B3!'/SDA) #else // HAS_BUTTON3_DEMO_INTERRUPT #define HAS_digitalInOut16 1 // P1_6 TARGET_MAX40108DEMOP2U9 J91.2=P1_6(button3/'%B3!'/SDA) #endif // HAS_BUTTON3_DEMO_INTERRUPT #if HAS_BUTTON2_DEMO_INTERRUPT // MAX40108DEMOP2U9 avoid conflict between digital pins D16 D17 and button2/button3 #define HAS_digitalInOut17 0 // P1_7 TARGET_MAX40108DEMOP2U9 J91.3=P1_7(button2/'%B2!'/SCL) #else // HAS_BUTTON2_DEMO_INTERRUPT #define HAS_digitalInOut17 1 // P1_7 TARGET_MAX40108DEMOP2U9 J91.3=P1_7(button2/'%B2!'/SCL) #endif // HAS_BUTTON2_DEMO_INTERRUPT #endif // HAS_I2C #if HAS_digitalInOut0 DigitalInOut digitalInOut0(P0_0, PIN_INPUT, PullUp, 1); // P0_0 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D0 #endif #if HAS_digitalInOut1 DigitalInOut digitalInOut1(P0_1, PIN_INPUT, PullUp, 1); // P0_1 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D1 #endif #if HAS_digitalInOut2 DigitalInOut digitalInOut2(P0_2, PIN_INPUT, PullUp, 1); // P0_2 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D2 #endif #if HAS_digitalInOut3 DigitalInOut digitalInOut3(P0_3, PIN_INPUT, PullUp, 1); // P0_3 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D3 #endif #if HAS_digitalInOut4 DigitalInOut digitalInOut4(P0_4, PIN_INPUT, PullUp, 1); // P0_4 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D4 #endif #if HAS_digitalInOut5 DigitalInOut digitalInOut5(P0_5, PIN_INPUT, PullUp, 1); // P0_5 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D5 #endif #if HAS_digitalInOut6 DigitalInOut digitalInOut6(P0_6, PIN_INPUT, PullUp, 1); // P0_6 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D6 #endif #if HAS_digitalInOut7 DigitalInOut digitalInOut7(P0_7, PIN_INPUT, PullUp, 1); // P0_7 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D7 #endif #if HAS_digitalInOut8 DigitalInOut digitalInOut8(P4_0, PIN_INPUT, PullUp, 1); // P4_0 TARGET_MAX40108DEMOP2U9 D8 #endif #if HAS_digitalInOut9 DigitalInOut digitalInOut9(P4_1, PIN_INPUT, PullUp, 1); // P4_1 TARGET_MAX40108DEMOP2U9 D9 #endif #if HAS_digitalInOut10 DigitalInOut digitalInOut10(P4_2, PIN_INPUT, PullUp, 1); // P4_2 TARGET_MAX40108DEMOP2U9 D10 #endif #if HAS_digitalInOut11 DigitalInOut digitalInOut11(P4_3, PIN_INPUT, PullUp, 1); // P4_3 TARGET_MAX40108DEMOP2U9 D11 #endif #if HAS_digitalInOut12 DigitalInOut digitalInOut12(P4_4, PIN_INPUT, PullUp, 1); // P4_4 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D12 #endif #if HAS_digitalInOut13 DigitalInOut digitalInOut13(P4_5, PIN_INPUT, PullUp, 1); // P4_5 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D13 #endif #if HAS_digitalInOut14 DigitalInOut digitalInOut14(P4_6, PIN_INPUT, PullUp, 1); // P4_6 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D14 #endif #if HAS_digitalInOut15 DigitalInOut digitalInOut15(P4_7, PIN_INPUT, PullUp, 1); // P4_7 TARGET_MAX32625PICO TARGET_MAX40108DEMOP2U9 D15 #endif #if HAS_digitalInOut16 // Ensure that the unused I2C pins do not interfere with analog inputs A4 and A5 // DigitalInOut mode can be one of PullUp, PullDown, PullNone, OpenDrain DigitalInOut digitalInOut16(P1_6, PIN_INPUT, OpenDrain, 1); // P1_6 TARGET_MAX40108DEMOP2U9 J91.2=P1_6(button3/'%B3!'/SDA) #endif #if HAS_digitalInOut17 // Ensure that the unused I2C pins do not interfere with analog inputs A4 and A5 DigitalInOut digitalInOut17(P1_7, PIN_INPUT, OpenDrain, 1); // P1_7 TARGET_MAX40108DEMOP2U9 J91.3=P1_7(button2/'%B2!'/SCL) #endif //-------------------------------------------------- #elif defined(TARGET_NUCLEO_F446RE) || defined(TARGET_NUCLEO_F401RE) #define HAS_digitalInOut0 0 #define HAS_digitalInOut1 0 #if APPLICATION_MAX11131 // D2 -- MAX11131 EOC DigitalIn #define HAS_digitalInOut2 0 #else #define HAS_digitalInOut2 1 #endif #define HAS_digitalInOut3 1 #define HAS_digitalInOut4 1 #define HAS_digitalInOut5 1 #define HAS_digitalInOut6 1 #define HAS_digitalInOut7 1 #if APPLICATION_MAX5715 // D8 -- MAX5715 CLRb DigitalOut #define HAS_digitalInOut8 0 #else #define HAS_digitalInOut8 1 #endif #if APPLICATION_MAX5715 // D9 -- MAX5715 LDACb DigitalOut #define HAS_digitalInOut9 0 #elif APPLICATION_MAX11131 // D9 -- MAX11131 CNVST DigitalOut #define HAS_digitalInOut9 0 #else #define HAS_digitalInOut9 1 #endif #if HAS_SPI // avoid resource conflict between P5_0, P5_1, P5_2 SPI and DigitalInOut // Arduino digital pin D10 SPI function is CS/10 // Arduino digital pin D11 SPI function is MOSI/11 // Arduino digital pin D12 SPI function is MISO/12 // Arduino digital pin D13 SPI function is SCK/13 #define HAS_digitalInOut10 0 #define HAS_digitalInOut11 0 #define HAS_digitalInOut12 0 #define HAS_digitalInOut13 0 #else // HAS_SPI #define HAS_digitalInOut10 1 #define HAS_digitalInOut11 1 #define HAS_digitalInOut12 1 #define HAS_digitalInOut13 1 #endif // HAS_SPI #if HAS_I2C // avoid resource conflict between P5_7, P6_0 I2C and DigitalInOut // Arduino digital pin D14 I2C function is A4/SDA (10pin digital connector) // Arduino digital pin D15 I2C function is A5/SCL (10pin digital connector) // Arduino digital pin D16 I2C function is A4/SDA (6pin analog connector) // Arduino digital pin D17 I2C function is A5/SCL (6pin analog connector) #define HAS_digitalInOut14 0 #define HAS_digitalInOut15 0 #define HAS_digitalInOut16 0 #define HAS_digitalInOut17 0 #else // HAS_I2C #define HAS_digitalInOut14 1 #define HAS_digitalInOut15 1 #define HAS_digitalInOut16 0 #define HAS_digitalInOut17 0 #endif // HAS_I2C #if HAS_digitalInOut0 DigitalInOut digitalInOut0(D0, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut1 DigitalInOut digitalInOut1(D1, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut2 DigitalInOut digitalInOut2(D2, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut3 DigitalInOut digitalInOut3(D3, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut4 DigitalInOut digitalInOut4(D4, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut5 DigitalInOut digitalInOut5(D5, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut6 DigitalInOut digitalInOut6(D6, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut7 DigitalInOut digitalInOut7(D7, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut8 DigitalInOut digitalInOut8(D8, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut9 DigitalInOut digitalInOut9(D9, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut10 // Arduino digital pin D10 SPI function is CS/10 DigitalInOut digitalInOut10(D10, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut11 // Arduino digital pin D11 SPI function is MOSI/11 DigitalInOut digitalInOut11(D11, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut12 // Arduino digital pin D12 SPI function is MISO/12 DigitalInOut digitalInOut12(D12, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut13 // Arduino digital pin D13 SPI function is SCK/13 DigitalInOut digitalInOut13(D13, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut14 // Arduino digital pin D14 I2C function is A4/SDA (10pin digital connector) DigitalInOut digitalInOut14(D14, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut15 // Arduino digital pin D15 I2C function is A5/SCL (10pin digital connector) DigitalInOut digitalInOut15(D15, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut16 // Arduino digital pin D16 I2C function is A4/SDA (6pin analog connector) DigitalInOut digitalInOut16(D16, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut17 // Arduino digital pin D17 I2C function is A5/SCL (6pin analog connector) DigitalInOut digitalInOut17(D17, PIN_INPUT, PullUp, 1); #endif //-------------------------------------------------- #elif defined(TARGET_LPC1768) #define HAS_digitalInOut0 1 #define HAS_digitalInOut1 1 #define HAS_digitalInOut2 1 #define HAS_digitalInOut3 1 #define HAS_digitalInOut4 1 #define HAS_digitalInOut5 1 #define HAS_digitalInOut6 1 #define HAS_digitalInOut7 1 #define HAS_digitalInOut8 1 #define HAS_digitalInOut9 1 // #define HAS_digitalInOut10 1 // #define HAS_digitalInOut11 1 // #define HAS_digitalInOut12 1 // #define HAS_digitalInOut13 1 // #define HAS_digitalInOut14 1 // #define HAS_digitalInOut15 1 #if HAS_digitalInOut0 DigitalInOut digitalInOut0(p5, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.9/I2STX_SDA/MOSI1/MAT2.3 #endif #if HAS_digitalInOut1 DigitalInOut digitalInOut1(p6, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.8/I2STX_WS/MISO1/MAT2.2 #endif #if HAS_digitalInOut2 DigitalInOut digitalInOut2(p7, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.7/I2STX_CLK/SCK1/MAT2.1 #endif #if HAS_digitalInOut3 DigitalInOut digitalInOut3(p8, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.6/I2SRX_SDA/SSEL1/MAT2.0 #endif #if HAS_digitalInOut4 DigitalInOut digitalInOut4(p9, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.0/CAN_RX1/TXD3/SDA1 #endif #if HAS_digitalInOut5 DigitalInOut digitalInOut5(p10, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.1/CAN_TX1/RXD3/SCL1 #endif #if HAS_digitalInOut6 DigitalInOut digitalInOut6(p11, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.18/DCD1/MOSI0/MOSI1 #endif #if HAS_digitalInOut7 DigitalInOut digitalInOut7(p12, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.17/CTS1/MISO0/MISO #endif #if HAS_digitalInOut8 DigitalInOut digitalInOut8(p13, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.15/TXD1/SCK0/SCK #endif #if HAS_digitalInOut9 DigitalInOut digitalInOut9(p14, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.16/RXD1/SSEL0/SSEL #endif // // these pins support analog input analogIn0 .. analogIn5 //DigitalInOut digitalInOut_(p15, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.23/AD0.0/I2SRX_CLK/CAP3.0 //DigitalInOut digitalInOut_(p16, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.24/AD0.1/I2SRX_WS/CAP3.1 //DigitalInOut digitalInOut_(p17, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.25/AD0.2/I2SRX_SDA/TXD3 //DigitalInOut digitalInOut_(p18, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.26/AD0.3/AOUT/RXD3 //DigitalInOut digitalInOut_(p19, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P1.30/VBUS/AD0.4 //DigitalInOut digitalInOut_(p20, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P1.31/SCK1/AD0.5 // // these pins support PWM pwmDriver1 .. pwmDriver6 //DigitalInOut digitalInOut_(p21, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P2.5/PWM1.6/DTR1/TRACEDATA0 //DigitalInOut digitalInOut_(p22, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P2.4/PWM1.5/DSR1/TRACEDATA1 //DigitalInOut digitalInOut_(p23, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P2.3/PWM1.4/DCD1/TRACEDATA2 //DigitalInOut digitalInOut_(p24, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P2.2/PWM1.3/CTS1/TRACEDATA3 //DigitalInOut digitalInOut_(p25, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P2.1/PWM1.2/RXD1 //DigitalInOut digitalInOut_(p26, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P2.0/PWM1.1/TXD1/TRACECLK // // these could be additional digitalInOut pins #if HAS_digitalInOut10 DigitalInOut digitalInOut10(p27, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.11/RXD2/SCL2/MAT3.1 #endif #if HAS_digitalInOut11 DigitalInOut digitalInOut11(p28, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.10/TXD2/SDA2/MAT3.0 #endif #if HAS_digitalInOut12 DigitalInOut digitalInOut12(p29, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.5/I2SRX_WS/CAN_TX2/CAP2.1 #endif #if HAS_digitalInOut13 DigitalInOut digitalInOut13(p30, PIN_INPUT, PullUp, 1); // TARGET_LPC1768 P0.4/I2SRX_CLK/CAN_RX2/CAP2.0 #endif #if HAS_digitalInOut14 DigitalInOut digitalInOut14(___, PIN_INPUT, PullUp, 1); #endif #if HAS_digitalInOut15 DigitalInOut digitalInOut15(___, PIN_INPUT, PullUp, 1); #endif #else // unknown target #endif // uncrustify-0.66.1 *INDENT-ON* #if HAS_digitalInOut0 || HAS_digitalInOut1 \ || HAS_digitalInOut2 || HAS_digitalInOut3 \ || HAS_digitalInOut4 || HAS_digitalInOut5 \ || HAS_digitalInOut6 || HAS_digitalInOut7 \ || HAS_digitalInOut8 || HAS_digitalInOut9 \ || HAS_digitalInOut10 || HAS_digitalInOut11 \ || HAS_digitalInOut12 || HAS_digitalInOut13 \ || HAS_digitalInOut14 || HAS_digitalInOut15 \ || HAS_digitalInOut16 || HAS_digitalInOut17 #define HAS_digitalInOuts 1 #else #warning "Note: There are no digitalInOut resources defined" #endif // uncrustify-0.66.1 *INDENT-OFF* //-------------------------------------------------- // Declare the AnalogIn driver // Optional analogIn support. If there is only one it should be analogIn1. // A) analog input #if defined(TARGET_MAX32630) #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 #define HAS_analogIn6 1 #define HAS_analogIn7 1 #define HAS_analogIn8 1 #define HAS_analogIn9 1 // #define HAS_analogIn10 0 // #define HAS_analogIn11 0 // #define HAS_analogIn12 0 // #define HAS_analogIn13 0 // #define HAS_analogIn14 0 // #define HAS_analogIn15 0 #if HAS_analogIn0 AnalogIn analogIn0(AIN_0); // TARGET_MAX32630 J1.5 AIN_0 = AIN0 pin fullscale is 1.2V #endif #if HAS_analogIn1 AnalogIn analogIn1(AIN_1); // TARGET_MAX32630 J1.6 AIN_1 = AIN1 pin fullscale is 1.2V #endif #if HAS_analogIn2 AnalogIn analogIn2(AIN_2); // TARGET_MAX32630 J1.7 AIN_2 = AIN2 pin fullscale is 1.2V #endif #if HAS_analogIn3 AnalogIn analogIn3(AIN_3); // TARGET_MAX32630 J1.8 AIN_3 = AIN3 pin fullscale is 1.2V #endif #if HAS_analogIn4 AnalogIn analogIn4(AIN_4); // TARGET_MAX32630 J1.5 AIN_4 = AIN0 / 5.0 fullscale is 6.0V #endif #if HAS_analogIn5 AnalogIn analogIn5(AIN_5); // TARGET_MAX32630 J1.6 AIN_5 = AIN1 / 5.0 fullscale is 6.0V #endif #if HAS_analogIn6 AnalogIn analogIn6(AIN_6); // TARGET_MAX32630 AIN_6 = VDDB / 4.0 fullscale is 4.8V #endif #if HAS_analogIn7 AnalogIn analogIn7(AIN_7); // TARGET_MAX32630 AIN_7 = VDD18 fullscale is 1.2V #endif #if HAS_analogIn8 AnalogIn analogIn8(AIN_8); // TARGET_MAX32630 AIN_8 = VDD12 fullscale is 1.2V #endif #if HAS_analogIn9 AnalogIn analogIn9(AIN_9); // TARGET_MAX32630 AIN_9 = VRTC / 2.0 fullscale is 2.4V #endif #if HAS_analogIn10 AnalogIn analogIn10(____); // TARGET_MAX32630 AIN_10 = x undefined? #endif #if HAS_analogIn11 AnalogIn analogIn11(____); // TARGET_MAX32630 AIN_11 = VDDIO / 4.0 fullscale is 4.8V #endif #if HAS_analogIn12 AnalogIn analogIn12(____); // TARGET_MAX32630 AIN_12 = VDDIOH / 4.0 fullscale is 4.8V #endif #if HAS_analogIn13 AnalogIn analogIn13(____); #endif #if HAS_analogIn14 AnalogIn analogIn14(____); #endif #if HAS_analogIn15 AnalogIn analogIn15(____); #endif //-------------------------------------------------- #elif defined(TARGET_MAX32625MBED) #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 #if HAS_analogIn0 AnalogIn analogIn0(AIN_0); // TARGET_MAX32630 J1.5 AIN_0 = AIN0 pin fullscale is 1.2V #endif #if HAS_analogIn1 AnalogIn analogIn1(AIN_1); // TARGET_MAX32630 J1.6 AIN_1 = AIN1 pin fullscale is 1.2V #endif #if HAS_analogIn2 AnalogIn analogIn2(AIN_2); // TARGET_MAX32630 J1.7 AIN_2 = AIN2 pin fullscale is 1.2V #endif #if HAS_analogIn3 AnalogIn analogIn3(AIN_3); // TARGET_MAX32630 J1.8 AIN_3 = AIN3 pin fullscale is 1.2V #endif #if HAS_analogIn4 AnalogIn analogIn4(AIN_4); // TARGET_MAX32630 J1.5 AIN_4 = AIN0 / 5.0 fullscale is 6.0V #endif #if HAS_analogIn5 AnalogIn analogIn5(AIN_5); // TARGET_MAX32630 J1.6 AIN_5 = AIN1 / 5.0 fullscale is 6.0V #endif //-------------------------------------------------- #elif defined(TARGET_MAX32620FTHR) #warning "TARGET_MAX32620FTHR not previously tested; need to verify analogIn0..." #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 #define HAS_analogIn6 1 #define HAS_analogIn7 1 #define HAS_analogIn8 1 #define HAS_analogIn9 1 // #define HAS_analogIn10 0 // #define HAS_analogIn11 0 // #define HAS_analogIn12 0 // #define HAS_analogIn13 0 // #define HAS_analogIn14 0 // #define HAS_analogIn15 0 #if HAS_analogIn0 AnalogIn analogIn0(AIN_0); // TARGET_MAX32620FTHR J1.5 AIN_0 = AIN0 pin fullscale is 1.2V #endif #if HAS_analogIn1 AnalogIn analogIn1(AIN_1); // TARGET_MAX32620FTHR J1.6 AIN_1 = AIN1 pin fullscale is 1.2V #endif #if HAS_analogIn2 AnalogIn analogIn2(AIN_2); // TARGET_MAX32620FTHR J1.7 AIN_2 = AIN2 pin fullscale is 1.2V #endif #if HAS_analogIn3 AnalogIn analogIn3(AIN_3); // TARGET_MAX32620FTHR J1.8 AIN_3 = AIN3 pin fullscale is 1.2V #endif #if HAS_analogIn4 AnalogIn analogIn4(AIN_4); // TARGET_MAX32620FTHR J1.5 AIN_4 = AIN0 / 5.0 fullscale is 6.0V #endif #if HAS_analogIn5 AnalogIn analogIn5(AIN_5); // TARGET_MAX32620FTHR J1.6 AIN_5 = AIN1 / 5.0 fullscale is 6.0V #endif #if HAS_analogIn6 AnalogIn analogIn6(AIN_6); // TARGET_MAX32620FTHR AIN_6 = VDDB / 4.0 fullscale is 4.8V #endif #if HAS_analogIn7 AnalogIn analogIn7(AIN_7); // TARGET_MAX32620FTHR AIN_7 = VDD18 fullscale is 1.2V #endif #if HAS_analogIn8 AnalogIn analogIn8(AIN_8); // TARGET_MAX32620FTHR AIN_8 = VDD12 fullscale is 1.2V #endif #if HAS_analogIn9 AnalogIn analogIn9(AIN_9); // TARGET_MAX32620FTHR AIN_9 = VRTC / 2.0 fullscale is 2.4V #endif #if HAS_analogIn10 AnalogIn analogIn10(____); // TARGET_MAX32620FTHR AIN_10 = x undefined? #endif #if HAS_analogIn11 AnalogIn analogIn11(____); // TARGET_MAX32620FTHR AIN_11 = VDDIO / 4.0 fullscale is 4.8V #endif #if HAS_analogIn12 AnalogIn analogIn12(____); // TARGET_MAX32620FTHR AIN_12 = VDDIOH / 4.0 fullscale is 4.8V #endif #if HAS_analogIn13 AnalogIn analogIn13(____); #endif #if HAS_analogIn14 AnalogIn analogIn14(____); #endif #if HAS_analogIn15 AnalogIn analogIn15(____); #endif //-------------------------------------------------- #elif defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) #warning "TARGET_MAX32625PICO not previously tested; need to verify analogIn0..." #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 #if HAS_analogIn0 AnalogIn analogIn0(AIN_0); // TARGET_MAX32630 J1.5 AIN_0 = AIN0 pin fullscale is 1.2V #endif #if HAS_analogIn1 AnalogIn analogIn1(AIN_1); // TARGET_MAX32630 J1.6 AIN_1 = AIN1 pin fullscale is 1.2V #endif #if HAS_analogIn2 AnalogIn analogIn2(AIN_2); // TARGET_MAX32630 J1.7 AIN_2 = AIN2 pin fullscale is 1.2V #endif #if HAS_analogIn3 AnalogIn analogIn3(AIN_3); // TARGET_MAX32630 J1.8 AIN_3 = AIN3 pin fullscale is 1.2V #endif #if HAS_analogIn4 AnalogIn analogIn4(AIN_4); // TARGET_MAX32630 J1.5 AIN_4 = AIN0 / 5.0 fullscale is 6.0V #endif #if HAS_analogIn5 AnalogIn analogIn5(AIN_5); // TARGET_MAX32630 J1.6 AIN_5 = AIN1 / 5.0 fullscale is 6.0V #endif //-------------------------------------------------- #elif defined(TARGET_MAX32600) #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 #if HAS_analogIn0 AnalogIn analogIn0(A0); #endif #if HAS_analogIn1 AnalogIn analogIn1(A1); #endif #if HAS_analogIn2 AnalogIn analogIn2(A2); #endif #if HAS_analogIn3 AnalogIn analogIn3(A3); #endif #if HAS_analogIn4 AnalogIn analogIn4(A4); #endif #if HAS_analogIn5 AnalogIn analogIn5(A5); #endif //-------------------------------------------------- #elif defined(TARGET_NUCLEO_F446RE) #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 #if HAS_analogIn0 AnalogIn analogIn0(A0); #endif #if HAS_analogIn1 AnalogIn analogIn1(A1); #endif #if HAS_analogIn2 AnalogIn analogIn2(A2); #endif #if HAS_analogIn3 AnalogIn analogIn3(A3); #endif #if HAS_analogIn4 AnalogIn analogIn4(A4); #endif #if HAS_analogIn5 AnalogIn analogIn5(A5); #endif //-------------------------------------------------- #elif defined(TARGET_NUCLEO_F401RE) #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 #if HAS_analogIn0 AnalogIn analogIn0(A0); #endif #if HAS_analogIn1 AnalogIn analogIn1(A1); #endif #if HAS_analogIn2 AnalogIn analogIn2(A2); #endif #if HAS_analogIn3 AnalogIn analogIn3(A3); #endif #if HAS_analogIn4 AnalogIn analogIn4(A4); #endif #if HAS_analogIn5 AnalogIn analogIn5(A5); #endif //-------------------------------------------------- // TODO1: TARGET=MAX32625MBED ARM Cortex-M4F 96MHz 512kB Flash 160kB SRAM #elif defined(TARGET_LPC1768) #define HAS_analogIn0 1 #define HAS_analogIn1 1 #define HAS_analogIn2 1 #define HAS_analogIn3 1 #define HAS_analogIn4 1 #define HAS_analogIn5 1 // #define HAS_analogIn6 1 // #define HAS_analogIn7 1 // #define HAS_analogIn8 1 // #define HAS_analogIn9 1 // #define HAS_analogIn10 1 // #define HAS_analogIn11 1 // #define HAS_analogIn12 1 // #define HAS_analogIn13 1 // #define HAS_analogIn14 1 // #define HAS_analogIn15 1 #if HAS_analogIn0 AnalogIn analogIn0(p15); // TARGET_LPC1768 P0.23/AD0.0/I2SRX_CLK/CAP3.0 #endif #if HAS_analogIn1 AnalogIn analogIn1(p16); // TARGET_LPC1768 P0.24/AD0.1/I2SRX_WS/CAP3.1 #endif #if HAS_analogIn2 AnalogIn analogIn2(p17); // TARGET_LPC1768 P0.25/AD0.2/I2SRX_SDA/TXD3 #endif #if HAS_analogIn3 AnalogIn analogIn3(p18); // TARGET_LPC1768 P0.26/AD0.3/AOUT/RXD3 #endif #if HAS_analogIn4 AnalogIn analogIn4(p19); // TARGET_LPC1768 P1.30/VBUS/AD0.4 #endif #if HAS_analogIn5 AnalogIn analogIn5(p20); // TARGET_LPC1768 P1.31/SCK1/AD0.5 #endif #if HAS_analogIn6 AnalogIn analogIn6(____); #endif #if HAS_analogIn7 AnalogIn analogIn7(____); #endif #if HAS_analogIn8 AnalogIn analogIn8(____); #endif #if HAS_analogIn9 AnalogIn analogIn9(____); #endif #if HAS_analogIn10 AnalogIn analogIn10(____); #endif #if HAS_analogIn11 AnalogIn analogIn11(____); #endif #if HAS_analogIn12 AnalogIn analogIn12(____); #endif #if HAS_analogIn13 AnalogIn analogIn13(____); #endif #if HAS_analogIn14 AnalogIn analogIn14(____); #endif #if HAS_analogIn15 AnalogIn analogIn15(____); #endif #else // unknown target #endif // uncrustify-0.66.1 *INDENT-ON* #if HAS_analogIn0 || HAS_analogIn1 \ || HAS_analogIn2 || HAS_analogIn3 \ || HAS_analogIn4 || HAS_analogIn5 \ || HAS_analogIn6 || HAS_analogIn7 \ || HAS_analogIn8 || HAS_analogIn9 \ || HAS_analogIn10 || HAS_analogIn11 \ || HAS_analogIn12 || HAS_analogIn13 \ || HAS_analogIn14 || HAS_analogIn15 #define HAS_analogIns 1 #else #warning "Note: There are no analogIn resources defined" #endif // DigitalInOut pin resource: print the pin index names to serial #if HAS_digitalInOuts void list_digitalInOutPins(Stream& serialStream) { #if HAS_digitalInOut0 serialStream.printf(" 0"); #endif #if HAS_digitalInOut1 serialStream.printf(" 1"); #endif #if HAS_digitalInOut2 serialStream.printf(" 2"); #endif #if HAS_digitalInOut3 serialStream.printf(" 3"); #endif #if HAS_digitalInOut4 serialStream.printf(" 4"); #endif #if HAS_digitalInOut5 serialStream.printf(" 5"); #endif #if HAS_digitalInOut6 serialStream.printf(" 6"); #endif #if HAS_digitalInOut7 serialStream.printf(" 7"); #endif #if HAS_digitalInOut8 serialStream.printf(" 8"); #endif #if HAS_digitalInOut9 serialStream.printf(" 9"); #endif #if HAS_digitalInOut10 serialStream.printf(" 10"); #endif #if HAS_digitalInOut11 serialStream.printf(" 11"); #endif #if HAS_digitalInOut12 serialStream.printf(" 12"); #endif #if HAS_digitalInOut13 serialStream.printf(" 13"); #endif #if HAS_digitalInOut14 serialStream.printf(" 14"); #endif #if HAS_digitalInOut15 serialStream.printf(" 15"); #endif #if HAS_digitalInOut16 serialStream.printf(" 16"); #endif #if HAS_digitalInOut17 serialStream.printf(" 17"); #endif #if USE_LEDS // support LEDs as digital pins 91 92 93; WIP button as digital pin 90 // support list_digitalInOutPins() listing buttons and leds as pin numbers 90/91/92/93 // TODO: support find_digitalInOutPin(90) return DigitalInOut of switch SW1/BUTTON1 //~ serialStream.printf(" 90"); // support find_digitalInOutPin(91) return DigitalInOut of led1_RFailLED serialStream.printf(" 91"); // support find_digitalInOutPin(92) return DigitalInOut of led2_GPassLED serialStream.printf(" 92"); // support find_digitalInOutPin(93) return DigitalInOut of led3_BBusyLED serialStream.printf(" 93"); #else // USE_LEDS #endif // USE_LEDS } #endif // DigitalInOut pin resource: search index #if HAS_digitalInOuts DigitalInOut& find_digitalInOutPin(int cPinIndex) { switch (cPinIndex) { default: // default to the first defined digitalInOut pin #if HAS_digitalInOut0 case '0': case 0x00: return digitalInOut0; #endif #if HAS_digitalInOut1 case '1': case 0x01: return digitalInOut1; #endif #if HAS_digitalInOut2 case '2': case 0x02: return digitalInOut2; #endif #if HAS_digitalInOut3 case '3': case 0x03: return digitalInOut3; #endif #if HAS_digitalInOut4 case '4': case 0x04: return digitalInOut4; #endif #if HAS_digitalInOut5 case '5': case 0x05: return digitalInOut5; #endif #if HAS_digitalInOut6 case '6': case 0x06: return digitalInOut6; #endif #if HAS_digitalInOut7 case '7': case 0x07: return digitalInOut7; #endif #if HAS_digitalInOut8 case '8': case 0x08: return digitalInOut8; #endif #if HAS_digitalInOut9 case '9': case 0x09: return digitalInOut9; #endif #if HAS_digitalInOut10 case 'a': case 0x0a: return digitalInOut10; #endif #if HAS_digitalInOut11 case 'b': case 0x0b: return digitalInOut11; #endif #if HAS_digitalInOut12 case 'c': case 0x0c: return digitalInOut12; #endif #if HAS_digitalInOut13 case 'd': case 0x0d: return digitalInOut13; #endif #if HAS_digitalInOut14 case 'e': case 0x0e: return digitalInOut14; #endif #if HAS_digitalInOut15 case 'f': case 0x0f: return digitalInOut15; #endif #if HAS_digitalInOut16 case 'g': case 0x10: return digitalInOut16; #endif #if HAS_digitalInOut17 case 'h': case 0x11: return digitalInOut17; #endif // support LEDs as digital pins 91 92 93; WIP button as digital pin 90 // TODO: support find_digitalInOutPin(90) return DigitalInOut of switch SW1/BUTTON1 //~ case 90: return button1; #if USE_LEDS // support find_digitalInOutPin(91) return DigitalInOut of led1_RFailLED case 91: return led1_RFailLED; // support find_digitalInOutPin(92) return DigitalInOut of led2_GPassLED case 92: return led2_GPassLED; // support find_digitalInOutPin(93) return DigitalInOut of led3_BBusyLED case 93: return led3_BBusyLED; #else // USE_LEDS #endif // USE_LEDS } } #endif // AnalogIn pin resource: search index #if HAS_analogIns AnalogIn& find_analogInPin(int cPinIndex) { switch (cPinIndex) { default: // default to the first defined analogIn pin #if HAS_analogIn0 case '0': case 0x00: return analogIn0; #endif #if HAS_analogIn1 case '1': case 0x01: return analogIn1; #endif #if HAS_analogIn2 case '2': case 0x02: return analogIn2; #endif #if HAS_analogIn3 case '3': case 0x03: return analogIn3; #endif #if HAS_analogIn4 case '4': case 0x04: return analogIn4; #endif #if HAS_analogIn5 case '5': case 0x05: return analogIn5; #endif #if HAS_analogIn6 case '6': case 0x06: return analogIn6; #endif #if HAS_analogIn7 case '7': case 0x07: return analogIn7; #endif #if HAS_analogIn8 case '8': case 0x08: return analogIn8; #endif #if HAS_analogIn9 case '9': case 0x09: return analogIn9; #endif #if HAS_analogIn10 case 'a': case 0x0a: return analogIn10; #endif #if HAS_analogIn11 case 'b': case 0x0b: return analogIn11; #endif #if HAS_analogIn12 case 'c': case 0x0c: return analogIn12; #endif #if HAS_analogIn13 case 'd': case 0x0d: return analogIn13; #endif #if HAS_analogIn14 case 'e': case 0x0e: return analogIn14; #endif #if HAS_analogIn15 case 'f': case 0x0f: return analogIn15; #endif } } #endif #if HAS_analogIns const float analogInPin_fullScaleVoltage[] = { # if defined(TARGET_MAX32630) ADC_FULL_SCALE_VOLTAGE, // analogIn0 ADC_FULL_SCALE_VOLTAGE, // analogIn1 ADC_FULL_SCALE_VOLTAGE, // analogIn2 ADC_FULL_SCALE_VOLTAGE, // analogIn3 ADC_FULL_SCALE_VOLTAGE * 5.0f, // analogIn4 // AIN_4 = AIN0 / 5.0 fullscale is 6.0V ADC_FULL_SCALE_VOLTAGE * 5.0f, // analogIn4 // AIN_5 = AIN1 / 5.0 fullscale is 6.0V ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn6 // AIN_6 = VDDB / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE, // analogIn7 // AIN_7 = VDD18 fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE, // analogIn8 // AIN_8 = VDD12 fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE * 2.0f, // analogIn9 // AIN_9 = VRTC / 2.0 fullscale is 2.4V ADC_FULL_SCALE_VOLTAGE, // analogIn10 // AIN_10 = x undefined? ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn11 // AIN_11 = VDDIO / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn12 // AIN_12 = VDDIOH / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE, // analogIn13 ADC_FULL_SCALE_VOLTAGE, // analogIn14 ADC_FULL_SCALE_VOLTAGE // analogIn15 # elif defined(TARGET_MAX32620FTHR) #warning "TARGET_MAX32620FTHR not previously tested; need to verify analogIn0..." ADC_FULL_SCALE_VOLTAGE, // analogIn0 ADC_FULL_SCALE_VOLTAGE, // analogIn1 ADC_FULL_SCALE_VOLTAGE, // analogIn2 ADC_FULL_SCALE_VOLTAGE, // analogIn3 ADC_FULL_SCALE_VOLTAGE * 5.0f, // analogIn4 // AIN_4 = AIN0 / 5.0 fullscale is 6.0V ADC_FULL_SCALE_VOLTAGE * 5.0f, // analogIn4 // AIN_5 = AIN1 / 5.0 fullscale is 6.0V ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn6 // AIN_6 = VDDB / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE, // analogIn7 // AIN_7 = VDD18 fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE, // analogIn8 // AIN_8 = VDD12 fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE * 2.0f, // analogIn9 // AIN_9 = VRTC / 2.0 fullscale is 2.4V ADC_FULL_SCALE_VOLTAGE, // analogIn10 // AIN_10 = x undefined? ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn11 // AIN_11 = VDDIO / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn12 // AIN_12 = VDDIOH / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE, // analogIn13 ADC_FULL_SCALE_VOLTAGE, // analogIn14 ADC_FULL_SCALE_VOLTAGE // analogIn15 #elif defined(TARGET_MAX32625MBED) || defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) ADC_FULL_SCALE_VOLTAGE * 1.0f, // analogIn0 // fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE * 1.0f, // analogIn1 // fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE * 1.0f, // analogIn2 // fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE * 1.0f, // analogIn3 // fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE * 5.0f, // analogIn4 // AIN_4 = AIN0 / 5.0 fullscale is 6.0V ADC_FULL_SCALE_VOLTAGE * 5.0f, // analogIn4 // AIN_5 = AIN1 / 5.0 fullscale is 6.0V ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn6 // AIN_6 = VDDB / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE, // analogIn7 // AIN_7 = VDD18 fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE, // analogIn8 // AIN_8 = VDD12 fullscale is 1.2V ADC_FULL_SCALE_VOLTAGE * 2.0f, // analogIn9 // AIN_9 = VRTC / 2.0 fullscale is 2.4V ADC_FULL_SCALE_VOLTAGE, // analogIn10 // AIN_10 = x undefined? ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn11 // AIN_11 = VDDIO / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE * 4.0f, // analogIn12 // AIN_12 = VDDIOH / 4.0 fullscale is 4.8V ADC_FULL_SCALE_VOLTAGE, // analogIn13 ADC_FULL_SCALE_VOLTAGE, // analogIn14 ADC_FULL_SCALE_VOLTAGE // analogIn15 #elif defined(TARGET_NUCLEO_F446RE) ADC_FULL_SCALE_VOLTAGE, // analogIn0 ADC_FULL_SCALE_VOLTAGE, // analogIn1 ADC_FULL_SCALE_VOLTAGE, // analogIn2 ADC_FULL_SCALE_VOLTAGE, // analogIn3 ADC_FULL_SCALE_VOLTAGE, // analogIn4 ADC_FULL_SCALE_VOLTAGE, // analogIn5 ADC_FULL_SCALE_VOLTAGE, // analogIn6 ADC_FULL_SCALE_VOLTAGE, // analogIn7 ADC_FULL_SCALE_VOLTAGE, // analogIn8 ADC_FULL_SCALE_VOLTAGE, // analogIn9 ADC_FULL_SCALE_VOLTAGE, // analogIn10 ADC_FULL_SCALE_VOLTAGE, // analogIn11 ADC_FULL_SCALE_VOLTAGE, // analogIn12 ADC_FULL_SCALE_VOLTAGE, // analogIn13 ADC_FULL_SCALE_VOLTAGE, // analogIn14 ADC_FULL_SCALE_VOLTAGE // analogIn15 #elif defined(TARGET_NUCLEO_F401RE) ADC_FULL_SCALE_VOLTAGE, // analogIn0 ADC_FULL_SCALE_VOLTAGE, // analogIn1 ADC_FULL_SCALE_VOLTAGE, // analogIn2 ADC_FULL_SCALE_VOLTAGE, // analogIn3 ADC_FULL_SCALE_VOLTAGE, // analogIn4 ADC_FULL_SCALE_VOLTAGE, // analogIn5 ADC_FULL_SCALE_VOLTAGE, // analogIn6 ADC_FULL_SCALE_VOLTAGE, // analogIn7 ADC_FULL_SCALE_VOLTAGE, // analogIn8 ADC_FULL_SCALE_VOLTAGE, // analogIn9 ADC_FULL_SCALE_VOLTAGE, // analogIn10 ADC_FULL_SCALE_VOLTAGE, // analogIn11 ADC_FULL_SCALE_VOLTAGE, // analogIn12 ADC_FULL_SCALE_VOLTAGE, // analogIn13 ADC_FULL_SCALE_VOLTAGE, // analogIn14 ADC_FULL_SCALE_VOLTAGE // analogIn15 //#elif defined(TARGET_LPC1768) #else // unknown target ADC_FULL_SCALE_VOLTAGE, // analogIn0 ADC_FULL_SCALE_VOLTAGE, // analogIn1 ADC_FULL_SCALE_VOLTAGE, // analogIn2 ADC_FULL_SCALE_VOLTAGE, // analogIn3 ADC_FULL_SCALE_VOLTAGE, // analogIn4 ADC_FULL_SCALE_VOLTAGE, // analogIn5 ADC_FULL_SCALE_VOLTAGE, // analogIn6 ADC_FULL_SCALE_VOLTAGE, // analogIn7 ADC_FULL_SCALE_VOLTAGE, // analogIn8 ADC_FULL_SCALE_VOLTAGE, // analogIn9 ADC_FULL_SCALE_VOLTAGE, // analogIn10 ADC_FULL_SCALE_VOLTAGE, // analogIn11 ADC_FULL_SCALE_VOLTAGE, // analogIn12 ADC_FULL_SCALE_VOLTAGE, // analogIn13 ADC_FULL_SCALE_VOLTAGE, // analogIn14 ADC_FULL_SCALE_VOLTAGE // analogIn15 # endif }; #endif //-------------------------------------------------- // TODO support CmdLine command menus (like on Serial_Tester) #ifndef USE_CMDLINE_MENUS #define USE_CMDLINE_MENUS 1 //~ #undef USE_CMDLINE_MENUS #endif #if USE_CMDLINE_MENUS // support CmdLine command menus #include "CmdLine.h" #endif // USE_CMDLINE_MENUS support CmdLine command menus #if USE_CMDLINE_MENUS // support CmdLine command menus extern CmdLine cmdLine; // declared later #endif // USE_CMDLINE_MENUS support CmdLine command menus //-------------------------------------------------- // Datalog trigger types #ifndef USE_DATALOGGER_TRIGGER #define USE_DATALOGGER_TRIGGER 1 //~ #undef USE_DATALOGGER_TRIGGER #endif #if USE_DATALOGGER_TRIGGER // support Datalog trigger typedef enum Datalogger_Trigger_enum_t { trigger_Halt = 0, //!< halt trigger_FreeRun = 1, //!< free run as fast as possible trigger_Timer = 2, //!< timer (configure interval) trigger_PlatformDigitalInput, //!< platform digital input (configure digital input pin reference) trigger_SPIDeviceRegRead, //!< SPI device register read (configure regaddr, mask value, match value) } Datalogger_Trigger_enum_t; Datalogger_Trigger_enum_t Datalogger_Trigger = trigger_FreeRun; // // configuration for trigger_Timer int g_timer_interval_msec = 500; // trigger_Timer int g_timer_interval_count = 10; // trigger_Timer int g_timer_interval_counter = 0; // trigger_Timer // // TODO: configuration for trigger_PlatformDigitalInput // // TODO: configuration for trigger_SPIDeviceRegRead // #endif // USE_DATALOGGER_TRIGGER support Datalog trigger //-------------------------------------------------- // support trigger_SPIDeviceRegRead: Datalog when SPI read of address matches mask #ifndef USE_DATALOGGER_SPIDeviceRegRead #define USE_DATALOGGER_SPIDeviceRegRead 0 #endif // USE_DATALOGGER_SPIDeviceRegRead #if USE_DATALOGGER_SPIDeviceRegRead // TODO: uint16_t regAddr; // TODO: uint16_t regDataMask; // TODO: uint16_t regDataTest; #endif // USE_DATALOGGER_SPIDeviceRegRead //-------------------------------------------------- // Datalogger_RunActionTable() supported actions #ifndef USE_DATALOGGER_ActionTable #define USE_DATALOGGER_ActionTable 1 //~ #undef USE_DATALOGGER_ActionTable #endif #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions // // Datalogger_RunActionTable() supported actions typedef enum action_type_enum_t { action_noop = 0, // no operation action_digitalOutLow, // pin = low if condition action_digitalOutHigh, // pin = low if condition action_trigger_Halt, action_trigger_FreeRun, action_trigger_Timer, action_trigger_PlatformDigitalInput, action_trigger_SPIDeviceRegRead, } action_type_enum_t; // // Datalogger_RunActionTable() supported conditions typedef enum action_condition_enum_t { condition_always = 0, // ( true ) condition_if_An_gt_threshold, // (Platform_Voltage[channel] > threhsold) condition_if_An_lt_threshold, // (Platform_Voltage[channel] < threhsold) condition_if_An_eq_threshold, // (Platform_Voltage[channel] == threhsold) condition_if_An_ge_threshold, // (Platform_Voltage[channel] >= threhsold) condition_if_An_le_threshold, // (Platform_Voltage[channel] <= threhsold) condition_if_An_ne_threshold, // (Platform_Voltage[channel] != threhsold) condition_if_AINn_gt_threshold, // (SPI_AIN_Voltage[channel] > threhsold) condition_if_AINn_lt_threshold, // (SPI_AIN_Voltage[channel] < threhsold) condition_if_AINn_eq_threshold, // (SPI_AIN_Voltage[channel] == threhsold) condition_if_AINn_ge_threshold, // (SPI_AIN_Voltage[channel] >= threhsold) condition_if_AINn_le_threshold, // (SPI_AIN_Voltage[channel] <= threhsold) condition_if_AINn_ne_threshold, // (SPI_AIN_Voltage[channel] != threhsold) } condition_enum_t; // // Datalogger_RunActionTable() structure typedef struct action_table_row_t { action_type_enum_t action; int digitalOutPin; action_condition_enum_t condition; int condition_channel; double condition_threshold; } action_table_row_t; #if MAX40108_DEMO const int channel_WE = 2; const double threshold_WE_0V5 = 0.5; const double threshold_WE_0V6 = 0.6; const double threshold_WE_0V7 = 0.7; const int pin_LED_1 = 91; // support find_digitalInOutPin(91) return DigitalInOut of led1_RFailLED const int pin_LED_2 = 92; // support find_digitalInOutPin(92) return DigitalInOut of led2_GPassLED const int pin_LED_3 = 93; // support find_digitalInOutPin(93) return DigitalInOut of led3_BBusyLED #endif const int ACTION_TABLE_ROW_MAX = 20; #if MAX40108_DEMO bool Datalogger_action_table_enabled = true; int Datalogger_action_table_row_count = 6; // assert (Datalogger_action_table_row_count <= ACTION_TABLE_ROW_MAX) #else // MAX40108_DEMO int Datalogger_action_table_row_count = 0; #endif // MAX40108_DEMO action_table_row_t Datalogger_action_table[ACTION_TABLE_ROW_MAX] = { #if MAX40108_DEMO // LED indicator show (WE > 0.5V) // L@0 act=1 pin=92 if=1 ch=2 x=0.500000 -- digitalOutLow D92 if A2 > 0.500000 {action_digitalOutLow, pin_LED_2, condition_if_An_gt_threshold, channel_WE, threshold_WE_0V5}, // // LED indicator show (WE > 0.6V) // L@1 act=1 pin=93 if=1 ch=2 x=0.600000 -- digitalOutLow D93 if A2 > 0.600000 {action_digitalOutLow, pin_LED_3, condition_if_An_gt_threshold, channel_WE, threshold_WE_0V6}, // // switch to always-on mode `trigger_FreeRun` if (WE > 0.7V) // L@2 act=4 if=1 ch=2 x=0.700000 -- trigger_FreeRun if A2 > 0.700000 {action_trigger_FreeRun, 0, condition_if_An_gt_threshold, channel_WE, threshold_WE_0V7}, // // switch to intermittent-sleep-mode `trigger_Timer` if (WE < 0.6V) // L@3 act=5 if=2 ch=2 x=0.600000 -- trigger_Timer(10 x 500msec) if A2 < 0.600000 {action_trigger_Timer, 0, condition_if_An_lt_threshold, channel_WE, threshold_WE_0V6}, // // LED indicator show (`Datalogger_Trigger` == `trigger_FreeRun`) // {action_noop, 0, condition_always, 0, 0}, // L@4 act=1 pin=91 if=1 ch=2 x=0.700000 -- digitalOutLow D91 if A2 > 0.700000 {action_digitalOutLow, pin_LED_1, condition_if_An_gt_threshold, channel_WE, threshold_WE_0V7}, // // L@5 act=2 pin=91 if=2 ch=2 x=0.600000 -- digitalOutHigh D91 if A2 < 0.600000 {action_digitalOutHigh, pin_LED_1, condition_if_An_lt_threshold, channel_WE, threshold_WE_0V6}, // #endif // MAX40108_DEMO // {action_noop, 0, condition_always, 0, 0}, }; #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions //-------------------------------------------------- // print column header banner for csv data columns uint8_t Datalogger_Need_PrintHeader = true; uint8_t need_reinit = true; void Datalogger_PrintHeader(CmdLine& cmdLine); void Datalogger_AcquireRow(); #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions // TODO: Datalogger_RunActionTable() between Datalogger_AcquireRow() and Datalogger_PrintRow() void Datalogger_RunActionTable(); #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions void Datalogger_PrintRow(CmdLine& cmdLine); //-------------------------------------------------- // Option to validate SPI link by reading PART_ID register #ifndef VERIFY_PART_ID_IN_LOOP #if defined(SPI_ADC_DeviceName) // SPI connected ADC #define VERIFY_PART_ID_IN_LOOP 1 #else #define VERIFY_PART_ID_IN_LOOP 0 #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #endif //-------------------------------------------------- #define NUM_DUT_ANALOG_IN_CHANNELS 10 #if defined(SPI_ADC_DeviceName) // SPI connected ADC // MAX11410 individual channels 1=LSB, 2=Volt, 0=Disabled typedef enum SPI_AIN_Enable_t { SPI_AIN_Disable = 0, SPI_AIN_Enable_LSB = 1, SPI_AIN_Enable_Volt = 2, } SPI_AIN_Enable_t; uint8_t SPI_AIN_Enable_ch[NUM_DUT_ANALOG_IN_CHANNELS] = { SPI_AIN_Enable_LSB, // AIN0 1=LSB SPI_AIN_Enable_LSB, // AIN1 1=LSB SPI_AIN_Enable_LSB, // AIN2 1=LSB SPI_AIN_Enable_LSB, // AIN3 1=LSB SPI_AIN_Enable_LSB, // AIN4 1=LSB SPI_AIN_Enable_LSB, // AIN5 1=LSB SPI_AIN_Enable_LSB, // AIN6 1=LSB SPI_AIN_Enable_LSB, // AIN7 1=LSB SPI_AIN_Enable_LSB, // AIN8 1=LSB SPI_AIN_Enable_LSB, // AIN9 1=LSB }; // double SPI_AIN_Voltage[NUM_DUT_ANALOG_IN_CHANNELS]; // Optional custom per-channel header suffix #ifndef HAS_SPI_AIN_customChannelHeader #define HAS_SPI_AIN_customChannelHeader 0 #endif #if HAS_SPI_AIN_customChannelHeader // Optional custom per-channel header suffix const char* const SPI_AIN_customChannelHeader_ch[NUM_DUT_ANALOG_IN_CHANNELS] = { "", // MAX40108: AIN0_1V0_current_ 0.591202*100/3.34 = 17.70065868263473mA "", // MAX40108: AIN1_1V0_voltage "WE", // MAX40108: AIN2_WE "CE", // MAX40108: AIN3_CE "*100/3.34=mA", // MAX40108: AIN4_*100/3.34=mA "CELL_VOLTAGE", // MAX40108: AIN5_CELL_VOLTAGE }; #endif // HAS_SPI_AIN_customChannelHeader #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // ---------- Measure_Voltage_custom_props in Measure_Voltage @pre and in class properties ---------- #if defined(SPI_ADC_DeviceName) // SPI connected ADC // MAX11410 specific per-channel config register v_filter uint8_t SPI_AIN_Cfg_v_filter_ch[NUM_DUT_ANALOG_IN_CHANNELS] = { 0x34, // AIN0 @ v_filter=0x34 0x34, // AIN1 @ v_filter=0x34 0x34, // AIN2 @ v_filter=0x34 0x34, // AIN3 @ v_filter=0x34 0x34, // AIN4 @ v_filter=0x34 0x34, // AIN5 @ v_filter=0x34 0x34, // AIN6 @ v_filter=0x34 0x34, // AIN7 @ v_filter=0x34 0x34, // AIN8 @ v_filter=0x34 0x34, // AIN9 @ v_filter=0x34 }; // // MAX11410 specific per-channel config register v_ctrl uint8_t SPI_AIN_Cfg_v_ctrl_ch[NUM_DUT_ANALOG_IN_CHANNELS] = { 0x42, // AIN0 @ v_ctrl=0x42 0x42, // AIN1 @ v_ctrl=0x42 0x42, // AIN2 @ v_ctrl=0x42 0x42, // AIN3 @ v_ctrl=0x42 0x42, // AIN4 @ v_ctrl=0x42 0x42, // AIN5 @ v_ctrl=0x42 0x42, // AIN6 @ v_ctrl=0x42 0x42, // AIN7 @ v_ctrl=0x42 0x42, // AIN8 @ v_ctrl=0x42 0x42, // AIN9 @ v_ctrl=0x42 }; // // MAX11410 specific per-channel config register v_pga uint8_t SPI_AIN_Cfg_v_pga_ch[NUM_DUT_ANALOG_IN_CHANNELS] = { 0x00, // AIN0 @ v_pga=0x00 0x00, // AIN1 @ v_pga=0x00 0x00, // AIN2 @ v_pga=0x00 0x00, // AIN3 @ v_pga=0x00 0x00, // AIN4 @ v_pga=0x00 0x00, // AIN5 @ v_pga=0x00 0x00, // AIN6 @ v_pga=0x00 0x00, // AIN7 @ v_pga=0x00 0x00, // AIN8 @ v_pga=0x00 0x00, // AIN9 @ v_pga=0x00 }; // #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // ---------- Measure_Voltage_custom_props ---------- // ---------- CUSTOMIZED from MAX11410_Hello after g_MAX11410_device.Init() ---------- // filter register configuration in Measure_Voltage and Read_All_Voltages CONV_TYPE_01_Continuous //~ const uint8_t custom_v_filter = 0x34; // @ v_filter=0x34 --*LINEF_11_SINC4 RATE_0100 | 60SPS //~ const uint8_t custom_v_filter = 0x00; // @ v_filter=0x00 -- LINEF_00_50Hz_60Hz_FIR RATE_0000 | 1.1SPS //~ const uint8_t custom_v_filter = 0x01; // @ v_filter=0x01 -- LINEF_00_50Hz_60Hz_FIR RATE_0001 | 2.1SPS //~ const uint8_t custom_v_filter = 0x02; // @ v_filter=0x02 -- LINEF_00_50Hz_60Hz_FIR RATE_0010 | 4.2SPS //~ const uint8_t custom_v_filter = 0x03; // @ v_filter=0x03 -- LINEF_00_50Hz_60Hz_FIR RATE_0011 | 8.4SPS //~ const uint8_t custom_v_filter = 0x04; // @ v_filter=0x04 -- LINEF_00_50Hz_60Hz_FIR RATE_0100 | 16.8SPS //~ const uint8_t custom_v_filter = 0x10; // @ v_filter=0x10 -- LINEF_01_50Hz_FIR RATE_0000 | 1.3SPS //~ const uint8_t custom_v_filter = 0x11; // @ v_filter=0x11 -- LINEF_01_50Hz_FIR RATE_0001 | 2.7SPS //~ const uint8_t custom_v_filter = 0x12; // @ v_filter=0x12 -- LINEF_01_50Hz_FIR RATE_0010 | 5.3SPS //~ const uint8_t custom_v_filter = 0x13; // @ v_filter=0x13 -- LINEF_01_50Hz_FIR RATE_0011 | 10.7SPS //~ const uint8_t custom_v_filter = 0x14; // @ v_filter=0x14 -- LINEF_01_50Hz_FIR RATE_0100 | 21.3SPS //~ const uint8_t custom_v_filter = 0x15; // @ v_filter=0x15 -- LINEF_01_50Hz_FIR RATE_0101 | 40.0SPS //~ const uint8_t custom_v_filter = 0x20; // @ v_filter=0x20 -- LINEF_10_60Hz_FIR RATE_0000 | 1.3SPS //~ const uint8_t custom_v_filter = 0x21; // @ v_filter=0x21 -- LINEF_10_60Hz_FIR RATE_0001 | 2.7SPS //~ const uint8_t custom_v_filter = 0x22; // @ v_filter=0x22 -- LINEF_10_60Hz_FIR RATE_0010 | 5.3SPS //~ const uint8_t custom_v_filter = 0x23; // @ v_filter=0x23 -- LINEF_10_60Hz_FIR RATE_0011 | 10.7SPS //~ const uint8_t custom_v_filter = 0x24; // @ v_filter=0x24 -- LINEF_10_60Hz_FIR RATE_0100 | 21.3SPS //~ const uint8_t custom_v_filter = 0x25; // @ v_filter=0x25 -- LINEF_10_60Hz_FIR RATE_0101 | 40.0SPS //~ const uint8_t custom_v_filter = 0x30; // @ v_filter=0x30 -- LINEF_11_SINC4 RATE_0000 | 4SPS //~ const uint8_t custom_v_filter = 0x31; // @ v_filter=0x31 -- LINEF_11_SINC4 RATE_0001 | 10SPS //~ const uint8_t custom_v_filter = 0x32; // @ v_filter=0x32 -- LINEF_11_SINC4 RATE_0010 | 20SPS //~ const uint8_t custom_v_filter = 0x33; // @ v_filter=0x33 -- LINEF_11_SINC4 RATE_0011 | 40SPS //~ const uint8_t custom_v_filter = 0x34; // @ v_filter=0x34 --*LINEF_11_SINC4 RATE_0100 | 60SPS //~ const uint8_t custom_v_filter = 0x35; // @ v_filter=0x35 -- LINEF_11_SINC4 RATE_0101 | 120SPS //~ const uint8_t custom_v_filter = 0x36; // @ v_filter=0x36 -- LINEF_11_SINC4 RATE_0110 | 240SPS //~ const uint8_t custom_v_filter = 0x37; // @ v_filter=0x37 -- LINEF_11_SINC4 RATE_0111 | 480SPS //~ const uint8_t custom_v_filter = 0x38; // @ v_filter=0x38 -- LINEF_11_SINC4 RATE_1000 | 960SPS //~ const uint8_t custom_v_filter = 0x39; // @ v_filter=0x39 -- LINEF_11_SINC4 RATE_1001 | 1920SPS // ---------- CUSTOMIZED from MAX11410_Hello ---------- // // ---------- CUSTOMIZED from MAX11410_Hello after g_MAX11410_device.Init() ---------- // pga register configuration in Measure_Voltage and Read_All_Voltages //~ const uint8_t custom_v_pga = 0x00; // @ v_pga=0x00 -- 0x00 SIG_PATH_00_BUFFERED //~ const uint8_t custom_v_pga = 0x00; // @ v_pga=0x00 -- 0x00 SIG_PATH_00_BUFFERED //~ const uint8_t custom_v_pga = 0x10; // @ v_pga=0x10 -- 0x10 SIG_PATH_01_BYPASS //~ const uint8_t custom_v_pga = 0x20; // @ v_pga=0x20 -- 0x20 SIG_PATH_10_PGA GAIN_000_1 //~ const uint8_t custom_v_pga = 0x21; // @ v_pga=0x21 --*0x21 SIG_PATH_10_PGA GAIN_001_2 //~ const uint8_t custom_v_pga = 0x22; // @ v_pga=0x22 -- 0x22 SIG_PATH_10_PGA GAIN_010_4 //~ const uint8_t custom_v_pga = 0x23; // @ v_pga=0x23 -- 0x23 SIG_PATH_10_PGA GAIN_011_8 //~ const uint8_t custom_v_pga = 0x24; // @ v_pga=0x24 -- 0x24 SIG_PATH_10_PGA GAIN_100_16 //~ const uint8_t custom_v_pga = 0x25; // @ v_pga=0x25 -- 0x25 SIG_PATH_10_PGA GAIN_101_32 //~ const uint8_t custom_v_pga = 0x26; // @ v_pga=0x26 -- 0x26 SIG_PATH_10_PGA GAIN_110_64 //~ const uint8_t custom_v_pga = 0x27; // @ v_pga=0x27 -- 0x27 SIG_PATH_10_PGA GAIN_111_128 // ---------- CUSTOMIZED from MAX11410_Hello ---------- // // ---------- CUSTOMIZED from MAX11410_Hello after g_MAX11410_device.Init() ---------- // ctrl register configuration in Measure_Voltage and Read_All_Voltages //~ const uint8_t custom_v_ctrl = 0x42; // @ v_ctrl=0x42 -- 0x40 unipolar, 0x02 REF_SEL_010_REF2P_REF2N //~ const uint8_t custom_v_ctrl = 0x40; // @ v_ctrl=0x40 -- 0x40 unipolar, 0x00 REF_SEL_000_AIN0_AIN1 //~ const uint8_t custom_v_ctrl = 0x44; // @ v_ctrl=0x44 -- 0x40 unipolar, 0x04 REF_SEL_100_AIN0_AGND //~ const uint8_t custom_v_ctrl = 0x58; // @ v_ctrl=0x58 -- 0x40 unipolar, 0x00 REF_SEL_000_AIN0_AIN1, 0x18 refbuf // //~ const uint8_t custom_v_ctrl = 0x41; // @ v_ctrl=0x41 -- 0x40 unipolar, 0x01 REF_SEL_001_REF1P_REF1N //~ const uint8_t custom_v_ctrl = 0x45; // @ v_ctrl=0x45 -- 0x40 unipolar, 0x05 REF_SEL_101_REF1P_AGND //~ const uint8_t custom_v_ctrl = 0x59; // @ v_ctrl=0x59 -- 0x40 unipolar, 0x01 REF_SEL_001_REF1P_REF1N, 0x18 refbuf // //~ const uint8_t custom_v_ctrl = 0x42; // @ v_ctrl=0x42 -- 0x40 unipolar, 0x02 REF_SEL_010_REF2P_REF2N //~ const uint8_t custom_v_ctrl = 0x46; // @ v_ctrl=0x46 -- 0x40 unipolar, 0x06 REF_SEL_110_REF2P_AGND //~ const uint8_t custom_v_ctrl = 0x22; // @ v_ctrl=0x22 -- 0x20 bipolar offset binary, 0x02 REF_SEL_010_REF2P_REF2N //~ const uint8_t custom_v_ctrl = 0x02; // @ v_ctrl=0x02 -- 0x00 bipolar 2's complement, 0x02 REF_SEL_010_REF2P_REF2N // //~ const uint8_t custom_v_ctrl = 0x44; // @ v_ctrl=0x44 -- 0x40 unipolar, 0x04 REF_SEL_100_AIN0_AGND //~ const uint8_t custom_v_ctrl = 0x47; // @ v_ctrl=0x47 -- 0x40 unipolar, 0x07 REF_SEL_111_AVDD_AGND //~ const uint8_t custom_v_ctrl = 0x27; // @ v_ctrl=0x27 -- 0x20 bipolar offset binary, 0x07 REF_SEL_111_AVDD_AGND //~ const uint8_t custom_v_ctrl = 0x07; // @ v_ctrl=0x07 -- 0x00 bipolar 2's complement, 0x07 REF_SEL_111_AVDD_AGND // ---------- CUSTOMIZED from MAX11410_Hello ---------- #if defined(SPI_ADC_DeviceName) // SPI connected ADC // example code declare SPI interface (GPIO controlled CS) #if defined(TARGET_MAX32625MBED) SPI spi(SPI1_MOSI, SPI1_MISO, SPI1_SCK); // mosi, miso, sclk spi1 TARGET_MAX32625MBED: P1_1 P1_2 P1_0 Arduino 10-pin header D11 D12 D13 DigitalOut spi_cs(SPI1_SS); // TARGET_MAX32625MBED: P1_3 Arduino 10-pin header D10 #elif defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) #warning "TARGET_MAX32625PICO not previously tested; need to define pins..." SPI spi(SPI0_MOSI, SPI0_MISO, SPI0_SCK); // mosi, miso, sclk spi1 TARGET_MAX32625PICO: pin P0_5 P0_6 P0_4 DigitalOut spi_cs(SPI0_SS); // TARGET_MAX32625PICO: pin P0_7 #elif defined(TARGET_MAX32600MBED) SPI spi(SPI2_MOSI, SPI2_MISO, SPI2_SCK); // mosi, miso, sclk spi1 TARGET_MAX32600MBED: Arduino 10-pin header D11 D12 D13 DigitalOut spi_cs(SPI2_SS); // Generic: Arduino 10-pin header D10 #elif defined(TARGET_NUCLEO_F446RE) || defined(TARGET_NUCLEO_F401RE) // TODO1: avoid resource conflict between P5_0, P5_1, P5_2 SPI and DigitalInOut // void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) // // TODO1: NUCLEO_F446RE SPI not working; CS and MOSI data looks OK but no SCLK clock pulses. SPI spi(SPI_MOSI, SPI_MISO, SPI_SCK); // mosi, miso, sclk spi1 TARGET_NUCLEO_F446RE: Arduino 10-pin header D11 D12 D13 DigitalOut spi_cs(SPI_CS); // TARGET_NUCLEO_F446RE: PB_6 Arduino 10-pin header D10 // #else SPI spi(D11, D12, D13); // mosi, miso, sclk spi1 TARGET_MAX32600MBED: Arduino 10-pin header D11 D12 D13 DigitalOut spi_cs(D10); // Generic: Arduino 10-pin header D10 #endif // example code declare GPIO interface pins // example code declare device instance MAX11410 g_MAX11410_device(spi, spi_cs, MAX11410::MAX11410_IC); #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC //-------------------------------------------------- // Option to Datalog Arduino platform analog inputs #ifndef LOG_PLATFORM_AIN #define LOG_PLATFORM_AIN 6 //~ #undef LOG_PLATFORM_AIN #endif #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs //#ifndef NUM_PLATFORM_ANALOG_IN_CHANNELS //#define NUM_PLATFORM_ANALOG_IN_CHANNELS 6 //#endif const int NUM_PLATFORM_ANALOG_IN_CHANNELS = 6; const double adc_full_scale_voltage[NUM_PLATFORM_ANALOG_IN_CHANNELS] = { analogInPin_fullScaleVoltage[0], // 1.2, analogInPin_fullScaleVoltage[1], // 1.2, analogInPin_fullScaleVoltage[2], // 1.2, analogInPin_fullScaleVoltage[3], // 1.2, analogInPin_fullScaleVoltage[4], // 6.0 analogInPin_fullScaleVoltage[5], // 6.0 }; // Platform ADC individual channels 1=LSB, 2=Volt, 0=Disabled typedef enum Platform_AIN_Enable_t { Platform_AIN_Disable = 0, Platform_AIN_Enable_LSB = 1, Platform_AIN_Enable_Volt = 2, } Platform_AIN_Enable_t; uint8_t Platform_Enable_ch[NUM_PLATFORM_ANALOG_IN_CHANNELS] = { Platform_AIN_Enable_Volt, // AIN0 2=Volt Platform_AIN_Enable_Volt, // AIN1 2=Volt Platform_AIN_Enable_Volt, // AIN2 2=Volt Platform_AIN_Enable_Volt, // AIN3 2=Volt Platform_AIN_Enable_Volt, // AIN4 2=Volt Platform_AIN_Enable_Volt, // AIN5 2=Volt }; #ifndef HAS_Platform_AIN_customChannelHeader #define HAS_Platform_AIN_customChannelHeader 1 #endif #if HAS_Platform_AIN_customChannelHeader // Optional custom per-channel header suffix const char* const Platform_AIN_customChannelHeader_ch[NUM_PLATFORM_ANALOG_IN_CHANNELS] = { "=AIN4", // MAX40108: AIN0_1V0_current_ 0.591202*100/3.34 = 17.70065868263473mA "=AIN5", // MAX40108: AIN1_1V0_voltage "WE", // MAX40108: AIN2_WE "CE", // MAX40108: AIN3_CE "*100/3.34=mA", // MAX40108: AIN4_*100/3.34=mA "CELL_VOLTAGE", // MAX40108: AIN5_CELL_VOLTAGE }; #endif // HAS_Platform_AIN_customChannelHeader //-------------------------------------------------- // Option to log platform analog inputs as raw LSB code #ifndef LOG_PLATFORM_ANALOG_IN_LSB #define LOG_PLATFORM_ANALOG_IN_LSB 0 #endif #if LOG_PLATFORM_ANALOG_IN_LSB int Platform_LSB[NUM_PLATFORM_ANALOG_IN_CHANNELS]; #endif //-------------------------------------------------- // Option to use platform analog inputs as Voltage #ifndef LOG_PLATFORM_ANALOG_IN_VOLTS #define LOG_PLATFORM_ANALOG_IN_VOLTS 1 #endif #if LOG_PLATFORM_ANALOG_IN_VOLTS double Platform_Voltage[NUM_PLATFORM_ANALOG_IN_CHANNELS]; #endif #endif // defined(LOG_PLATFORM_AIN) //-------------------------------------------------- // Option to use Command forwarding to Auxiliary serial port // Command forwarding to Auxiliary serial port TX/RX // Command forwarding to AUX serial TX/RX cmdLine_AUXserial // Command forwarding to DAPLINK serial TX/RX cmdLine_DAPLINKserial // prefer cmdLine_AUXserial if available, else cmdLine_DAPLINKserial; else we don't have this feature #ifndef USE_AUX_SERIAL_CMD_FORWARDING #define USE_AUX_SERIAL_CMD_FORWARDING 1 #endif // USE_AUX_SERIAL_CMD_FORWARDING #if USE_AUX_SERIAL_CMD_FORWARDING // Command forwarding to Auxiliary serial port TX/RX #257 -- global parameters const size_t RX_STRING_BUF_SIZE = 1000; int g_auxSerialCom_baud = 9600; //!< baud rate Auxiliary serial port // transmit command string by AUX TX #if 0 int g_auxSerialCom_tx_wait_echo = 0; //!< TX wait for each character echo? int g_auxSerialCom_tx_char_delay_ms = 0; //!< TX delay after each char? int g_auxSerialCom_tx_line_delay_ms = 0; //!< TX delay after each CR/LF? #endif // capture received string from AUX RX Timer g_auxSerialCom_Timer; int g_auxSerialCom_Timer_begin_message_ms = 0; //!< start of message int g_auxSerialCom_Timer_begin_rx_idle_ms = 0; //!< recent RX character timestamp int g_auxSerialCom_message_ms = 10000; //!< maximum RX message total response time int g_auxSerialCom_rx_idle_ms = 500; //!< maximum RX message idle time between characters int g_auxSerialCom_rx_max_count = RX_STRING_BUF_SIZE-1; //!< maximum RX message total length const int aux_serial_cmd_forwarding_rx_eot_not_used = 'x'; int g_auxSerialCom_rx_eot = aux_serial_cmd_forwarding_rx_eot_not_used; //!< capture RX until match end of text char //~ int g_auxSerialCom_rx_eot = 0; //!< capture RX until match end of text string? #endif // USE_AUX_SERIAL_CMD_FORWARDING #if USE_AUX_SERIAL_CMD_FORWARDING // TODO WIP Command forwarding to Auxiliary serial port TX/RX #257 // prefer cmdLine_AUXserial if available, else cmdLine_DAPLINKserial; else we don't have this feature # if HAS_AUX_SERIAL // TODO WIP Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 # elif HAS_DAPLINK_SERIAL // TODO WIP Command forwarding to DAPLINK serial TX/RX cmdLine_DAPLINKserial #257 # else // neither HAS_AUX_SERIAL HAS_DAPLINK_SERIAL #warning "USE_AUX_SERIAL_CMD_FORWARDING should not be enabled without HAS_AUX_SERIAL or HAS_DAPLINK_SERIAL" # endif // HAS_AUX_SERIAL HAS_DAPLINK_SERIAL # if HAS_AUX_SERIAL // TODO WIP Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL // TODO WIP Command forwarding to DAPLINK serial TX/RX cmdLine_DAPLINKserial #257 # endif // HAS_DAPLINK_SERIAL #endif // USE_AUX_SERIAL_CMD_FORWARDING // CODE GENERATOR: example code for ADC: serial port declaration //-------------------------------------------------- // Declare the Serial driver // default baud rate settings are 9600 8N1 // install device driver from http://developer.mbed.org/media/downloads/drivers/mbedWinSerial_16466.exe // see docs https://docs.mbed.com/docs/mbed-os-handbook/en/5.5/getting_started/what_need/ //-------------------------------------------------- #if defined(TARGET_MAX32630) //Serial UART0serial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32630FTHR: P0_1,P0_0 (Bluetooth PAN1326B) //Serial UART1serial(UART1_TX,UART1_RX); // tx,rx UART1 MAX32630FTHR: P2_1,P2_0 (DAPLINK) //Serial UART2serial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32630FTHR: P3_1,P3_0 (J1.15,J1.14) //Serial UART3serial(UART3_TX,UART3_RX); // tx,rx UART3 MAX32630FTHR: P5_4,P5_3 (J3.7,J3.8) // // TX/RX auxiliary UART port cmdLine_AUXserial AUXserial Serial AUXserial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32630FTHR: P3_1,P3_0 (J1.15,J1.14) //Serial J3AUXserial(UART3_TX,UART3_RX); // tx,rx UART3 MAX32630FTHR: P5_4,P5_3 (J3.7,J3.8) //Serial BTAUXserial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32630FTHR: P0_1,P0_0 (Bluetooth PAN1326B) #define HAS_AUX_SERIAL 1 // // Hardware serial port over DAPLink // The default baud rate for the DapLink UART is 9600 Serial DAPLINKserial(P2_1,P2_0); // tx,rx UART1 MAX32630FTHR: P2_1,P2_0 (DAPLINK) #define HAS_DAPLINK_SERIAL 1 // // Virtual serial port over USB #include "USBSerial.h" // The baud rate does not affect the virtual USBSerial UART. USBSerial serial; //-------------------------------------------------- #elif defined(TARGET_MAX32625MBED) //Serial UART0serial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32625MBED: P0_1,P0_0 (Arduino D1,D0) //Serial UART1serial(UART1_TX,UART1_RX); // tx,rx UART1 MAX32625MBED: P2_1,P2_0 (DAPLINK) //Serial UART2serial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32625MBED: P3_1,P3_0 (J15-LEDgreen,LEDred) // // Hardware serial port over DAPLink // The default baud rate for the DapLink UART is 9600 Serial DAPLINKserial(P2_1,P2_0); // tx,rx UART1 MAX32625MBED: P2_1,P2_0 (DAPLINK) #define HAS_DAPLINK_SERIAL 1 // // Virtual serial port over USB #include "USBSerial.h" // The baud rate does not affect the virtual USBSerial UART. USBSerial serial; //-------------------------------------------------- #elif defined(TARGET_MAX32625PICO) //Serial UART0serial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32625PICO: P0_1,P0_0 (pin 19/20) //Serial UART1serial(UART1_TX,UART1_RX); // tx,rx UART1 MAX32625PICO: P2_1,P2_0 (underside?) //Serial UART2serial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32625PICO: P3_1,P3_0 (DAPLINK) // // TX/RX auxiliary UART port cmdLine_AUXserial AUXserial Serial AUXserial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32625PICO: P0_1,P0_0 (pin 19/20) #define HAS_AUX_SERIAL 1 // // Hardware serial port over DAPLink Serial DAPLINKserial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32625PICO: P3_1,P3_0 (DAPLINK) #define HAS_DAPLINK_SERIAL 1 // // Virtual serial port over USB #include "USBSerial.h" // The baud rate does not affect the virtual USBSerial UART. USBSerial serial; //-------------------------------------------------- #elif defined(TARGET_MAX40108DEMOP2U9) //Serial UART0serial(UART0_TX,UART0_RX); // tx,rx UART0 MAX40108DEMOP2U9: P0_1,P0_0 (J90.1/J90.0 to console) //Serial UART1serial(UART1_TX,UART1_RX); // tx,rx UART1 MAX40108DEMOP2U9: P2_1,P2_0 (DAPLINK) //Serial UART2serial(UART2_TX,UART2_RX); // tx,rx UART2 MAX40108DEMOP2U9: P3_1,P3_0 (unavailable) // // TX/RX auxiliary UART port cmdLine_AUXserial AUXserial is used as main serial port in MAX40108 Demo board Serial serial(UART0_TX,UART0_RX); // tx,rx UART0 MAX40108DEMOP2U9: P0_1,P0_0 (J90.1/J90.0 to console) // #define HAS_AUX_SERIAL 1 // // Hardware serial port over DAPLink // connection to external MAX32625PICO(DAPLINK) needed TX/RX swap in firmware. // MAX32625PICO(DAPLINK) drives DAPLINK.8, listens on DAPLINK.6. // See AN6350 MAX32625 Users Guide 7.5.2.3.1 TX and RX Pin Mapping for UART 1 -- Mapping Option B //Serial DAPLINKserial(UART1_TX,UART1_RX); // tx,rx UART1 MAX40108DEMOP2U9: P2_1,P2_0 (DAPLINK) Mapping Option A (normal) Serial DAPLINKserial(UART1_RX,UART1_TX); // tx,rx UART1 MAX40108DEMOP2U9: P2_1,P2_0 (DAPLINK) Mapping Option B (TX/RX-swap) #define HAS_DAPLINK_SERIAL 1 // // Serial AUXserial(UART1_TX,UART1_RX); // tx,rx UART2 MAX40108DEMOP2U9: P3_1,P3_0 (unavailable) // #define HAS_AUX_SERIAL 1 // // Virtual serial port over USB // #include "USBSerial.h" // The baud rate does not affect the virtual USBSerial UART. //USBSerial serial; //-------------------------------------------------- #elif defined(TARGET_MAX32620FTHR) #warning "TARGET_MAX32620FTHR not previously tested; need to define serial pins..." //Serial UART0serial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32620FTHR: P0_1,P0_0 (PMOD0.2,PMOD0.3) //Serial UART1serial(UART1_TX,UART1_RX); // tx,rx UART1 MAX32620FTHR: P2_1,P2_0 (DAPLINK) //Serial UART2serial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32620FTHR: P3_1,P3_0 (J1.15,J1.14) //Serial UART3serial(UART3_TX,UART3_RX); // tx,rx UART3 MAX32620FTHR: P5_4,P5_3 (J2.7,J2.8) // // TX/RX auxiliary UART port cmdLine_AUXserial AUXserial Serial serial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32620FTHR: P3_1,P3_0 (J1.15,J1.14) //Serial AUXserial(UART2_TX,UART2_RX); // tx,rx UART2 MAX32620FTHR: P3_1,P3_0 (J1.15,J1.14) Serial AUXserial(UART3_TX,UART3_RX); // tx,rx UART3 MAX32620FTHR: P5_4,P5_3 (J2.7,J2.8) //Serial PMOD0AUXserial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32620FTHR: P0_1,P0_0 (PMOD0.2,PMOD0.3) #define HAS_AUX_SERIAL 1 // // Hardware serial port over DAPLink // The default baud rate for the DapLink UART is 9600 Serial DAPLINKserial(USBTX, USBRX); // tx,rx MAX32620FTHR: P2_1,P2_0 //Serial DAPLINKserial(STDIO_UART_TX, STDIO_UART_RX); // tx, rx #define HAS_DAPLINK_SERIAL 1 // // Virtual serial port over USB // #include "USBSerial.h" // The baud rate does not affect the virtual USBSerial UART. //USBSerial serial; // MAX32620FTHR: USBSerial crash?? #warning "TARGET_MAX32620FTHR not previously tested; USBSerial crash?" //-------------------------------------------------- #elif defined(TARGET_MAX32600) //Serial UART0serial(UART0_TX,UART0_RX); // tx,rx UART0 MAX32600MBED: P1_1,P1_0 (Arduino D1,D0)(DAPLINK) //Serial UART1serial(UART1_TX,UART1_RX); // tx,rx UART2 MAX32625MBED: P1_3,P1_2 (Arduino D3,D2) //Serial UART2serial(UART2_TX,UART2_RX); // tx,rx UART1 MAX32625MBED: P7_3,P7_2 ( ?? ) // // Hardware serial port over DAPLink // The default baud rate for the DapLink UART is 9600 Serial DAPLINKserial(P1_1,P1_0); // tx,rx UART0 MAX32600MBED: P1_1,P1_0 (Arduino D1,D0)(DAPLINK) #define HAS_DAPLINK_SERIAL 1 // // Virtual serial port over USB #include "USBSerial.h" // The baud rate does not affect the virtual USBSerial UART. USBSerial serial; //-------------------------------------------------- #elif defined(TARGET_NUCLEO_F446RE) || defined(TARGET_NUCLEO_F401RE) Serial serial(SERIAL_TX, SERIAL_RX); // tx, rx //-------------------------------------------------- #else #if defined(SERIAL_TX) #warning "target not previously tested; guess serial pins are SERIAL_TX, SERIAL_RX..." Serial serial(SERIAL_TX, SERIAL_RX); // tx, rx #elif defined(USBTX) #warning "target not previously tested; guess serial pins are USBTX, USBRX..." Serial serial(USBTX, USBRX); // tx, rx #elif defined(UART_TX) #warning "target not previously tested; guess serial pins are UART_TX, UART_RX..." Serial serial(UART_TX, UART_RX); // tx, rx #else #warning "target not previously tested; need to define serial pins..." #endif #endif // #include "CmdLine.h" # if HAS_AUX_SERIAL // TX/RX auxiliary UART port cmdLine_AUXserial AUXserial CmdLine cmdLine_AUXserial(AUXserial, "AUXserial"); uint8_t Datalogger_enable_AUXserial = { #if USE_AUX_SERIAL_CMD_FORWARDING // Command forwarding to Auxiliary serial port; // don't accept commands from Auxiliary serial port false #else // USE_AUX_SERIAL_CMD_FORWARDING true #endif // USE_AUX_SERIAL_CMD_FORWARDING }; # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL CmdLine cmdLine_DAPLINKserial(DAPLINKserial, "DAPLINK"); uint8_t Datalogger_enable_DAPLINKserial = true; # endif // HAS_DAPLINK_SERIAL CmdLine cmdLine(serial, "serial"); uint8_t Datalogger_enable_serial = true; // CODE GENERATOR: example code for ADC: serial port declaration (end) //-------------------------------------------------- // command_table: list of commands to perform on button press #ifndef USE_DATALOGGER_CommandTable #define USE_DATALOGGER_CommandTable 1 //~ #undef USE_DATALOGGER_CommandTable #endif #if USE_DATALOGGER_CommandTable // Run_command_table(onButton1_command_table) const int COMMAND_TABLE_ROW_MAX = 10; const int COMMAND_TABLE_COL_MAX = 40; #endif // USE_DATALOGGER_CommandTable // #if USE_DATALOGGER_CommandTable // Run_command_table(onButton1_command_table) #if HAS_BUTTON1_DEMO_INTERRUPT // command_table: list of commands to perform on button press char onButton1_command_table_00[COMMAND_TABLE_COL_MAX] = "# Button1 command table"; char onButton1_command_table_01[COMMAND_TABLE_COL_MAX] = "%L91"; char onButton1_command_table_02[COMMAND_TABLE_COL_MAX] = "%H92"; char onButton1_command_table_03[COMMAND_TABLE_COL_MAX] = "%L93"; char onButton1_command_table_04[COMMAND_TABLE_COL_MAX] = "%H91"; char onButton1_command_table_05[COMMAND_TABLE_COL_MAX] = "%L92"; char onButton1_command_table_06[COMMAND_TABLE_COL_MAX] = "%H93"; char onButton1_command_table_07[COMMAND_TABLE_COL_MAX] = "LR"; char onButton1_command_table_08[COMMAND_TABLE_COL_MAX] = ""; char onButton1_command_table_09[COMMAND_TABLE_COL_MAX] = ""; static char* onButton1_command_table[COMMAND_TABLE_ROW_MAX] = { onButton1_command_table_00, onButton1_command_table_01, onButton1_command_table_02, onButton1_command_table_03, onButton1_command_table_04, onButton1_command_table_05, onButton1_command_table_06, onButton1_command_table_07, onButton1_command_table_08, onButton1_command_table_09, }; #endif // HAS_BUTTON1_DEMO_INTERRUPT #if HAS_BUTTON2_DEMO_INTERRUPT // command_table: list of commands to perform on button press char onButton2_command_table_00[COMMAND_TABLE_COL_MAX] = "# Button2 command table"; char onButton2_command_table_01[COMMAND_TABLE_COL_MAX] = "%H91"; char onButton2_command_table_02[COMMAND_TABLE_COL_MAX] = "%H92"; char onButton2_command_table_03[COMMAND_TABLE_COL_MAX] = "%L93"; char onButton2_command_table_04[COMMAND_TABLE_COL_MAX] = ""; char onButton2_command_table_05[COMMAND_TABLE_COL_MAX] = ""; char onButton2_command_table_06[COMMAND_TABLE_COL_MAX] = ""; char onButton2_command_table_07[COMMAND_TABLE_COL_MAX] = ""; char onButton2_command_table_08[COMMAND_TABLE_COL_MAX] = ""; char onButton2_command_table_09[COMMAND_TABLE_COL_MAX] = ""; static char* onButton2_command_table[COMMAND_TABLE_ROW_MAX] = { onButton2_command_table_00, onButton2_command_table_01, onButton2_command_table_02, onButton2_command_table_03, onButton2_command_table_04, onButton2_command_table_05, onButton2_command_table_06, onButton2_command_table_07, onButton2_command_table_08, onButton2_command_table_09, }; #endif // HAS_BUTTON2_DEMO_INTERRUPT #if HAS_BUTTON3_DEMO_INTERRUPT // command_table: list of commands to perform on button press char onButton3_command_table_00[COMMAND_TABLE_COL_MAX] = "# Button3 command table"; char onButton3_command_table_01[COMMAND_TABLE_COL_MAX] = "%L91"; char onButton3_command_table_02[COMMAND_TABLE_COL_MAX] = "%L92"; char onButton3_command_table_03[COMMAND_TABLE_COL_MAX] = "%H93"; char onButton3_command_table_04[COMMAND_TABLE_COL_MAX] = ""; char onButton3_command_table_05[COMMAND_TABLE_COL_MAX] = ""; char onButton3_command_table_06[COMMAND_TABLE_COL_MAX] = ""; char onButton3_command_table_07[COMMAND_TABLE_COL_MAX] = ""; char onButton3_command_table_08[COMMAND_TABLE_COL_MAX] = ""; char onButton3_command_table_09[COMMAND_TABLE_COL_MAX] = ""; static char* onButton3_command_table[COMMAND_TABLE_ROW_MAX] = { onButton3_command_table_00, onButton3_command_table_01, onButton3_command_table_02, onButton3_command_table_03, onButton3_command_table_04, onButton3_command_table_05, onButton3_command_table_06, onButton3_command_table_07, onButton3_command_table_08, onButton3_command_table_09, }; #endif // HAS_BUTTON3_DEMO_INTERRUPT #endif // USE_DATALOGGER_CommandTable //-------------------------------------------------- #if USE_DATALOGGER_CommandTable void Run_command_table(char* command_table[]) { // command_table: perform list of commands for (int lineIndex = 0; lineIndex < COMMAND_TABLE_ROW_MAX; lineIndex++) { if (command_table[lineIndex] == NULL) { break; } if (command_table[lineIndex][0] == '\0') { break; } cmdLine.clear(); //~ char* strIndex = command_table[lineIndex]; for (char* strIndex = command_table[lineIndex]; *strIndex != '\0'; strIndex++) { cmdLine.append(*strIndex); } cmdLine.append('\r'); // append \r invokes onEOLcommandParser to handle command } } #endif // USE_DATALOGGER_CommandTable //-------------------------------------------------- // When user presses button BUTTON1, perform actions #if HAS_BUTTON1_DEMO_INTERRUPT void onButton1FallingEdge(void) { //~ void SelfTest(CmdLine & cmdLine); //~ SelfTest(cmdLine_serial); // #if USE_DATALOGGER_CommandTable // Run_command_table(onButton1_command_table) // command_table: list of commands to perform on button press // command_table: perform list of commands Run_command_table(onButton1_command_table); #endif // USE_DATALOGGER_CommandTable } #endif // HAS_BUTTON1_DEMO_INTERRUPT //-------------------------------------------------- // When user presses button BUTTON2, perform actions #if HAS_BUTTON2_DEMO_INTERRUPT void onButton2FallingEdge(void) { // TBD demo configuration // TODO diagnostic LED // led1 = LED_OFF; led2 = LED_OFF; led3 = LED_ON; // diagnostic rbg led BLUE // #if USE_DATALOGGER_CommandTable // Run_command_table(onButton1_command_table) // command_table: list of commands to perform on button press // command_table: perform list of commands Run_command_table(onButton2_command_table); #endif // USE_DATALOGGER_CommandTable } #endif // HAS_BUTTON2_DEMO_INTERRUPT //-------------------------------------------------- // When user presses button BUTTON2, perform actions #if HAS_BUTTON3_DEMO_INTERRUPT void onButton3FallingEdge(void) { #if USE_DATALOGGER_CommandTable // Run_command_table(onButton1_command_table) // command_table: list of commands to perform on button press // command_table: perform list of commands Run_command_table(onButton3_command_table); #endif // USE_DATALOGGER_CommandTable } #endif // HAS_BUTTON3_DEMO_INTERRUPT #if USE_CMDLINE_MENUS // support CmdLine command menus //-------------------------------------------------- inline void print_command_prompt() { //~ Serial.println(F(">")); cmdLine.serial().printf("\r\n> "); } #endif // USE_CMDLINE_MENUS support CmdLine command menus #if USE_CMDLINE_MENUS // support CmdLine command menus //-------------------------------------------------- void main_menu_status(CmdLine & cmdLine) { cmdLine.serial().printf("\r\nMain menu"); #if APPLICATION_MAX5715 // main_menu_status banner cmdLine.serial().printf(" MAX5715 12-bit 4-ch SPI VOUT DAC"); #elif APPLICATION_MAX11131 // main_menu_status banner cmdLine.serial().printf(" MAX11131 12-bit 3MSps 16-ch ADC"); #elif APPLICATION_MAX5171 // main_menu_status banner cmdLine.serial().printf(" MAX5171 14-bit Force/Sense VOUT DAC"); #elif APPLICATION_MAX11410 // main_menu_status banner cmdLine.serial().printf(" MAX11410 24-bit 1.9ksps Delta-Sigma ADC"); #elif APPLICATION_MAX12345 // main_menu_status banner cmdLine.serial().printf(" MAX12345"); #elif MAX40108_DEMO // main_menu_status banner cmdLine.serial().printf(" MAX40108_U%d", MAX40108_DEMO); #else //cmdLine.serial().printf(" "); #endif //cmdLine.serial().printf(" %s", TARGET_NAME); if (cmdLine.nameStr()) { cmdLine.serial().printf(" [%s]", cmdLine.nameStr()); } #if HAS_BUTTON1_DEMO_INTERRUPT cmdLine.serial().printf(" [Button1]"); #endif #if HAS_BUTTON2_DEMO_INTERRUPT cmdLine.serial().printf(" [Button2]"); #endif #if HAS_BUTTON3_DEMO_INTERRUPT cmdLine.serial().printf(" [Button3]"); #endif #if HAS_BUTTON1_DEMO // print BUTTON1 status cmdLine.serial().printf("\r\n BUTTON1 = %d", button1.read()); #endif #if HAS_BUTTON2_DEMO // print BUTTON2 status cmdLine.serial().printf("\r\n BUTTON2 = %d", button2.read()); #endif #if HAS_BUTTON3_DEMO // print BUTTON3 status cmdLine.serial().printf("\r\n BUTTON3 = %d", button3.read()); #endif cmdLine.serial().printf("\r\n ? -- help"); } #endif // USE_CMDLINE_MENUS support CmdLine command menus //-------------------------------------------------- #ifndef USE_DATALOGGER_TRIGGER_HELP_BRIEF #define USE_DATALOGGER_TRIGGER_HELP_BRIEF 1 //~ #undef USE_DATALOGGER_TRIGGER_HELP_BRIEF #endif // USE_DATALOGGER_TRIGGER_HELP_BRIEF #if USE_CMDLINE_MENUS // support CmdLine command menus //-------------------------------------------------- void main_menu_help(CmdLine & cmdLine) { // ? -- help //~ cmdLine.serial().printf("\r\nMenu:"); // cmdLine.serial().printf("\r\n # -- lines beginning with # are comments"); #if defined(SPI_ADC_DeviceName) // SPI connected ADC cmdLine.serial().printf("\r\n ! -- Init"); #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #if USE_SELFTEST cmdLine.serial().printf("\r\n . -- SelfTest"); #endif // USE_SELFTEST #if USE_STAR_REG_READWRITE // * command read/write reg *reg? *reg=value // CODE GENERATOR: help menu if has_register_write_command: *regname? -- read register; *regname=regvalue -- write register cmdLine.serial().printf("\r\n * -- read core registers\r\n *regname? -- read register\r\n *regname=regvalue -- write register"); // cmdLine.serial().printf("\r\n 01 23 45 67 89 ab cd ef -- write and read raw hex codes"); #endif // USE_STAR_REG_READWRITE // #if USE_AUX_SERIAL_CMD_FORWARDING // Command forwarding to Auxiliary serial port TX/RX #257 -- main_menu_help //~ cmdLine.serial().printf("\r\n > -- auxiliary UART port"); // prefer cmdLine_AUXserial if available, else cmdLine_DAPLINKserial; else we don't have this feature # if HAS_AUX_SERIAL // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 if (cmdLine_AUXserial.nameStr()) { cmdLine.serial().printf("\r\n > -- auxiliary UART port [%s]", cmdLine_AUXserial.nameStr()); } # elif HAS_DAPLINK_SERIAL // Command forwarding to DAPLINK serial TX/RX cmdLine_DAPLINKserial #257 if (cmdLine_DAPLINKserial.nameStr()) { cmdLine.serial().printf("\r\n > -- auxiliary UART port [%s]", cmdLine_DAPLINKserial.nameStr()); } # endif // HAS_AUX_SERIAL HAS_DAPLINK_SERIAL # if HAS_AUX_SERIAL || HAS_DAPLINK_SERIAL // WIP Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 cmdLine.serial().printf("\r\n >xyzzy -- Forward command/data 'xyzzy' to aux TX/RX"); cmdLine.serial().printf("\r\n >>xyzzy -- Forward 'xyzzy' to aux TX/RX, no key=value parsing"); cmdLine.serial().printf("\r\n >>>xyzzy -- Forward '>xyzzy' to aux TX/RX, no key=value parsing"); #if 0 cmdLine.serial().printf("\r\n >tx_wait_echo=%d -- configure TX wait for each character echo", g_auxSerialCom_tx_wait_echo); cmdLine.serial().printf("\r\n >tx_char_delay_ms=%d -- configure TX delay after each char", g_auxSerialCom_tx_char_delay_ms); cmdLine.serial().printf("\r\n >tx_line_delay_ms=%d -- configure TX delay after each CR/LF", g_auxSerialCom_tx_line_delay_ms); #endif #if 1 // HAS_AUX_SERIAL_HELP_BRIEF cmdLine.serial().printf("\r\n >baud=%d message_ms=%d rx_idle_ms=%d rx_max_count=%d rx_eot=%d", g_auxSerialCom_baud, g_auxSerialCom_message_ms, g_auxSerialCom_rx_idle_ms, g_auxSerialCom_rx_max_count, g_auxSerialCom_rx_eot); #else // HAS_AUX_SERIAL_HELP_BRIEF cmdLine.serial().printf("\r\n >baud=%d -- configure aux TX/RX port", g_auxSerialCom_baud); cmdLine.serial().printf("\r\n >message_ms=%d -- maximum RX message total response time", g_auxSerialCom_message_ms); cmdLine.serial().printf("\r\n >rx_idle_ms=%d -- maximum RX message idle time between characters", g_auxSerialCom_rx_idle_ms); cmdLine.serial().printf("\r\n >rx_max_count=%d -- maximum RX message total length", g_auxSerialCom_rx_max_count); cmdLine.serial().printf("\r\n >rx_eot=%d -- capture RX until match end of text char (unless %d)", g_auxSerialCom_rx_eot, aux_serial_cmd_forwarding_rx_eot_not_used); #endif // HAS_AUX_SERIAL_HELP_BRIEF # endif // HAS_AUX_SERIAL #endif // USE_AUX_SERIAL_CMD_FORWARDING // #if USE_DATALOGGER_TRIGGER // support Datalog trigger #if USE_DATALOGGER_TRIGGER_HELP_BRIEF // Datalog trigger menu // brief toplevel heading for datalog help L // L -- detailed help for datalog commands cmdLine.serial().printf("\r\n L -- halt the datalogger; show more commands"); // set Datalogger_Trigger to trigger_Halt or trigger_FreeRun // Datalogger_Trigger = trigger_Halt // halt the datalogger; continue accepting commands // cmdLine.serial().print(F("\r\n L -- halt the datalogger; continue accepting commands")); // // Datalogger_Trigger = trigger_FreeRun // free run as fast as possible "always-on mode" cmdLine.serial().printf("\r\n LR -- Datalog free run as fast as possible"); // cmdLine.serial().printf("\r\n LT count=%d base=%dms -- Datalog timer", g_timer_interval_count, g_timer_interval_msec); // trigger_Timer #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions //~ cmdLine.serial().printf("\r\n L@ -- configures Datalogger_action_table; show more commands"); #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions #else // USE_DATALOGGER_TRIGGER_HELP_BRIEF ----------------------------------------------- // TODO Datalog trigger menu // set Datalogger_Trigger to trigger_Halt or trigger_FreeRun // Datalogger_Trigger = trigger_Halt // halt the datalogger; continue accepting commands // cmdLine.serial().print(F("\r\n L -- halt the datalogger; continue accepting commands")); // // Datalogger_Trigger = trigger_FreeRun // free run as fast as possible "always-on mode" cmdLine.serial().printf("\r\n LR -- Datalog free run as fast as possible"); // // Datalogger_Trigger = trigger_Timer // timer (configure interval) "intermittent-sleep-mode" //~ cmdLine.serial().printf("\r\n LT -- Datalog timer"); // trigger_Timer cmdLine.serial().printf("\r\n LT count=%d base=%dms -- Datalog timer", g_timer_interval_count, g_timer_interval_msec); // trigger_Timer // // TODO: Datalogger_Trigger = trigger_PlatformDigitalInput // platform digital input (configure digital input pin reference) //~ cmdLine.serial().printf("\r\n LI -- Datalog _______"); // trigger_PlatformDigitalInput // TODO: cmdLine.serial().printf("\r\n LIH3 -- Datalog when input high D3"); // trigger_PlatformDigitalInput // TODO: cmdLine.serial().printf("\r\n LIL6 -- Datalog when input low D6"); // trigger_PlatformDigitalInput // #if USE_DATALOGGER_SPIDeviceRegRead // TODO: Datalogger_Trigger = trigger_SPIDeviceRegRead // SPI device register read (configure regaddr, mask value, match value) //~ cmdLine.serial().printf("\r\n L$ -- Datalog _______"); // trigger_SPIDeviceRegRead cmdLine.serial().printf("\r\n L$ count=10 base=500ms addr=xxx data=xxx mask=xxx -- Datalog when SPI read of address matches mask"); // trigger_SPIDeviceRegRead #endif // USE_DATALOGGER_SPIDeviceRegRead // #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions cmdLine.serial().printf("\r\n L@ -- configures Datalogger_action_table; show more commands"); #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions // #if defined(SPI_ADC_DeviceName) // SPI connected ADC // LS<channel ID><verb>: Configure SPI_AIN channels // channel ID: 0,1,2,... or - for all channels // verb: D for disable, V for Voltage, L for LSB cmdLine.serial().printf("\r\n LS-D -- Datalog SPI ADC channel '-'(all) Disable"); cmdLine.serial().printf("\r\n LS-V -- Datalog SPI ADC channel '-'(all) Volt"); cmdLine.serial().printf("\r\n LS-L -- Datalog SPI ADC channel '-'(all) LSB"); cmdLine.serial().printf("\r\n LS2D -- Datalog SPI ADC channel channel 2 Disable"); cmdLine.serial().printf("\r\n LS3V -- Datalog SPI ADC channel channel 3 Volt"); cmdLine.serial().printf("\r\n LS4L -- Datalog SPI ADC channel channel 4 LSB"); // // MAX11410 verb for configuring SPI_AIN_Cfg_v_filter_ch[channel_index] // cmdLine.serial().print(F("\r\n LS-CF34 -- Datalog SPI ADC channel channel 5 v_filter 0x34")); cmdLine.serial().printf("\r\n LS-CF34 -- Datalog SPI ADC channel '-'(all) v_filter 0x34"); // // MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] // cmdLine.serial().print(F("\r\n LS-CC42 -- Datalog SPI ADC channel '-'(all) v_ctrl 0x42")); cmdLine.serial().printf("\r\n LS-CC42 -- Datalog SPI ADC channel '-'(all) v_ctrl 0x42"); // // MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] // cmdLine.serial().print(F("\r\n LS5___ -- Datalog SPI ADC channel channel 5 v_ctrl")); // MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] cmdLine.serial().printf("\r\n LS5CU -- Datalog SPI ADC channel channel 5 v_ctrl Unipolar"); // ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) ? "BIPOLAR" : "Unipolar" cmdLine.serial().printf("\r\n LS5CB -- Datalog SPI ADC channel channel 5 v_ctrl Bipolar"); // ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) ? "BIPOLAR" : "Unipolar" // // MAX11410 verb for configuring SPI_AIN_Cfg_v_pga_ch[channel_index] // cmdLine.serial().print(F("\r\n LS5CP00 -- Datalog SPI ADC channel channel 5 v_pga 0x00")); cmdLine.serial().printf("\r\n LS-CP00 -- Datalog SPI ADC channel '-'(all) v_pga 0x00"); // #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs // LA<channel ID><verb>: Configure Platform_AIN channels // channel ID: 0,1,2,... or - for all channels // verb: D for disable, V for Voltage, L for LSB cmdLine.serial().printf("\r\n LA-D -- Datalog Platform-AIN all-channel Disable"); #if LOG_PLATFORM_ANALOG_IN_VOLTS cmdLine.serial().printf("\r\n LA-V -- Datalog Platform-AIN all-channel Volt"); #endif // LOG_PLATFORM_ANALOG_IN_VOLTS #if LOG_PLATFORM_ANALOG_IN_LSB cmdLine.serial().printf("\r\n LA-L -- Datalog Platform-AIN all-channel LSB"); #endif // LOG_PLATFORM_ANALOG_IN_LSB cmdLine.serial().printf("\r\n LA2D -- Datalog Platform-AIN channel 2 Disable"); #if LOG_PLATFORM_ANALOG_IN_VOLTS cmdLine.serial().printf("\r\n LA3V -- Datalog Platform-AIN channel 3 Volt"); #endif // LOG_PLATFORM_ANALOG_IN_VOLTS #if LOG_PLATFORM_ANALOG_IN_LSB cmdLine.serial().printf("\r\n LA4L -- Datalog Platform-AIN channel 4 LSB"); #endif // LOG_PLATFORM_ANALOG_IN_LSB #endif // defined(LOG_PLATFORM_AIN) #endif // USE_DATALOGGER_TRIGGER_HELP_BRIEF ----------------------------------------------- #endif // USE_DATALOGGER_TRIGGER support Datalog trigger #if USE_DATALOGGER_TRIGGER_HELP_BRIEF #else // USE_DATALOGGER_TRIGGER_HELP_BRIEF ----------------------------------------------- # if HAS_AUX_SERIAL cmdLine.serial().printf("\r\n L>A -- Datalogger_enable_AUXserial %s", (Datalogger_enable_AUXserial?"disable":"enable")); # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL cmdLine.serial().printf("\r\n L>D -- Datalogger_enable_DAPLINKserial %s", (Datalogger_enable_DAPLINKserial?"disable":"enable")); # endif // HAS_DAPLINK_SERIAL cmdLine.serial().printf("\r\n L>S -- Datalogger_enable_serial %s", (Datalogger_enable_serial?"disable":"enable")); #endif // USE_DATALOGGER_TRIGGER_HELP_BRIEF ----------------------------------------------- // //cmdLine.serial().print(F("\r\n ! -- Initial Configuration")); // // % standardize diagnostic commands // %Hpin -- digital output high // %Lpin -- digital output low // %?pin -- digital input // %A %Apin -- analog input // %Ppin df=xx -- pwm output // %Wpin -- measure high pulsewidth input in usec // %wpin -- measure low pulsewidth input in usec // %I... -- I2C diagnostics // %IP -- I2C probe // %IC scl=100khz ADDR=? -- I2C configure // %IW ADDR=? cmd=? data,data,data -- write // %IR ADDR=? RD=? -- read // %I^ cmd=? -- i2c_smbus_read_word_data // %S... -- SPI diagnostics // %SC sclk=1Mhz -- SPI configure // %SW -- write (write and read) // %SR -- read (alias for %SW because SPI always write and read) // A-Z,a-z,0-9 reserved for application use // //-------------------------------------------------- #if USE_DATALOGGER_CommandTable // command_table: list of commands to perform on button press // TODO: %B1 submenu for Button1 // TODO: future: %B2 submenu for Button2 // TODO: future: %B3 submenu for Button3 // TODO: %B1@ view command table, similar to L@ for action table // TODO: %B1@+ command add new row (if there is room to add) (ignore one space before command) // TODO: %B1@-nnn delete row number nnn (if list is not empty) // TODO: %B1@-~~~ clear entire command table // TODO: %B1@nnn command replace row number nnn (ignore one space before command) // TODO: %B1@! disable button response but keep command table contents // TODO: %B1@@ enable button response // TODO: %B1! trigger onButton1FallingEdge() immediately (for test development) cmdLine.serial().printf("\r\n %%B1! trigger Button1; %%B1@ -- view/edit command table"); #endif // USE_DATALOGGER_CommandTable //-------------------------------------------------- #if HAS_digitalInOuts // %Hpin -- digital output high // %Lpin -- digital output low // %?pin -- digital input cmdLine.serial().printf("\r\n %%Hn {pin:"); list_digitalInOutPins(cmdLine.serial()); cmdLine.serial().printf("} -- High Output"); cmdLine.serial().printf("\r\n %%Ln {pin:"); list_digitalInOutPins(cmdLine.serial()); cmdLine.serial().printf("} -- Low Output"); cmdLine.serial().printf("\r\n %%?n {pin:"); list_digitalInOutPins(cmdLine.serial()); cmdLine.serial().printf("} -- Input"); #endif #if HAS_analogIns // Menu A) analogRead A0..7 // %A %Apin -- analog input // analogRead(pinIndex) // analog input pins A0, A1, A2, A3, A4, A5; float voltage = analogRead(A0) * (5.0 / 1023.0) cmdLine.serial().printf("\r\n %%A -- analogRead"); #endif #if HAS_SPI2_MAX541 // TODO1: MAX541 max541(spi2_max541, spi2_max541_cs); cmdLine.serial().printf("\r\n %%D -- DAC output MAX541 (SPI2)"); #endif #if HAS_I2C // SUPPORT_I2C // TODO: support I2C HAS_I2C // SUPPORT_I2C // VERIFY: I2C utility commands SUPPORT_I2C // VERIFY: report g_I2C_SCL_Hz = (F_CPU / ((TWBR * 2) + 16)) from last Wire_Sr.setClock(I2C_SCL_Hz); // %I... -- I2C diagnostics // %IP -- I2C probe // %IC scl=100khz ADDR=? -- I2C configure // %IW byte byte ... byte RD=? ADDR=0x -- write // %IR ADDR=? RD=? -- read // %I^ cmd=? -- i2c_smbus_read_word_data //g_I2C_SCL_Hz = (F_CPU / ((TWBR * 2) + 16)); // 'F_CPU' 'TWBR' not declared in this scope cmdLine.serial().printf("\r\n %%IC ADDR=0x%2.2x=(0x%2.2x>>1) SCL=%d=%1.3fkHz -- I2C config", g_I2C_deviceAddress7, (g_I2C_deviceAddress7 << 1), g_I2C_SCL_Hz, (g_I2C_SCL_Hz / 1000.)); cmdLine.serial().printf("\r\n %%IW byte byte ... byte RD=? ADDR=0x%2.2x -- I2C write/read", g_I2C_deviceAddress7); // #if SUPPORT_I2C // Menu ^ cmd=?) i2c_smbus_read_word_data cmdLine.serial().printf("\r\n %%I^ cmd=? -- i2c_smbus_read_word_data"); // test low-level I2C i2c_smbus_read_word_data #endif // SUPPORT_I2C //cmdLine.serial().printf(" H) Hunt for attached I2C devices"); cmdLine.serial().printf("\r\n %%IP -- I2C Probe for attached devices"); // cmdLine.serial().printf(" s) search i2c address"); #endif // SUPPORT_I2C #if HAS_SPI // SUPPORT_SPI // TODO: support SPI HAS_SPI // SUPPORT_SPI // SPI test command S (mosiData)+ // %S... -- SPI diagnostics // %SC sclk=1Mhz -- SPI configure // %SW -- write (write and read) // %SR -- read (alias for %SW because SPI always write and read) // spi.format(8,0); // int bits_must_be_8, int mode=0_3 CPOL=0,CPHA=0 rising edge (initial default) // spi.format(8,1); // int bits_must_be_8, int mode=0_3 CPOL=0,CPHA=1 falling edge (initial default) // spi.format(8,2); // int bits_must_be_8, int mode=0_3 CPOL=1,CPHA=0 falling edge (initial default) // spi.format(8,3); // int bits_must_be_8, int mode=0_3 CPOL=1,CPHA=1 rising edge (initial default) // spi.frequency(1000000); // int SCLK_Hz=1000000 = 1MHz (initial default) // mode | POL PHA // -----+-------- // 0 | 0 0 // 1 | 0 1 // 2 | 1 0 // 3 | 1 1 //cmdLine.serial().printf(" S) SPI mosi,mosi,...mosi hex bytes SCLK=1000000 CPOL=0 CPHA=0"); // fixed: mbed-os-5.11: [Warning] format '%d' expects argument of type 'int', but argument 3 has type 'uint32_t {aka long unsigned int}' [-Wformat=] cmdLine.serial().printf("\r\n %%SC SCLK=%ld=%1.3fMHz CPOL=%d CPHA=%d -- SPI config", g_SPI_SCLK_Hz, (g_SPI_SCLK_Hz / 1000000.), ((g_SPI_dataMode & SPI_MODE2) ? 1 : 0), ((g_SPI_dataMode & SPI_MODE1) ? 1 : 0)); cmdLine.serial().printf("\r\n %%SD -- SPI diagnostic messages "); if (g_MAX11410_device.onSPIprint) { cmdLine.serial().printf("hide"); } else { cmdLine.serial().printf("show"); } cmdLine.serial().printf("\r\n %%SW mosi,mosi,...mosi -- SPI write hex bytes"); // VERIFY: parse new SPI settings parse_strCommandArgs() SCLK=1000000 CPOL=0 CPHA=0 #endif // SUPPORT_SPI // // Application-specific commands (help text) here // #if APPLICATION_ArduinoPinsMonitor cmdLine.serial().printf("\r\n A-Z,a-z,0-9 -- reserved for application use"); // ArduinoPinsMonitor #endif // APPLICATION_ArduinoPinsMonitor // //~ extern void MAX11410_menu_help(CmdLine & cmdLine); // defined in Test_Menu_MAX11410.cpp\n //~ MAX11410_menu_help(cmdLine); } #endif // USE_CMDLINE_MENUS support CmdLine command menus #if USE_CMDLINE_MENUS // support CmdLine command menus //-------------------------------------------------- void pinsMonitor_submenu_onEOLcommandParser(CmdLine& cmdLine) { // % diagnostic commands submenu // %Hpin -- digital output high // %Lpin -- digital output low // %?pin -- digital input // %A %Apin -- analog input // %Ppin df=xx -- pwm output // %Wpin -- measure high pulsewidth input in usec // %wpin -- measure low pulsewidth input in usec // %I... -- I2C diagnostics // %IP -- I2C probe // %IC scl=100khz ADDR=? -- I2C configure // %IW byte byte ... byte RD=? ADDR=0x -- write // %IR ADDR=? RD=? -- read // %I^ cmd=? -- i2c_smbus_read_word_data // %S... -- SPI diagnostics // %SC sclk=1Mhz -- SPI configure // %SW -- write (write and read) // %SR -- read (alias for %SW because SPI always write and read) // A-Z,a-z,0-9 reserved for application use // char strPinIndex[3]; strPinIndex[0] = cmdLine[2]; strPinIndex[1] = cmdLine[3]; strPinIndex[2] = '\0'; int pinIndex = strtoul(strPinIndex, NULL, 10); // strtol(str, NULL, 10): get decimal value //cmdLine.serial().printf(" pinIndex=%d ", pinIndex); // // get next character switch (cmdLine[1]) { //-------------------------------------------------- #if USE_DATALOGGER_CommandTable // Run_command_table(onButton1_command_table) // command_table: list of commands to perform on button press case 'B': case 'b': { int command_table_button_index = 1; // %B1 submenu for Button1 // future: %B2 submenu for Button2 // future: %B3 submenu for Button3 #if HAS_BUTTON1_DEMO_INTERRUPT // cmdLine[2] == '1' selects onButton1_command_table char** command_table = onButton1_command_table; #endif switch(cmdLine[2]) { default: case '1': case 'A': case 'a': case '!': #if HAS_BUTTON1_DEMO_INTERRUPT command_table_button_index = 1; command_table = onButton1_command_table; #endif break; case '2': case 'B': case 'b': case '@': #if HAS_BUTTON2_DEMO_INTERRUPT command_table_button_index = 2; command_table = onButton2_command_table; #endif break; case '3': case 'C': case 'c': case '#': #if HAS_BUTTON3_DEMO_INTERRUPT command_table_button_index = 3; command_table = onButton3_command_table; #endif break; } // switch(cmdLine[3]) { case '@': { // %B1@ view/edit command table, similar to L@ for action table int editRowIndex = 0; int command_table_row_count = 0; for (int lineIndex = 0; lineIndex < COMMAND_TABLE_ROW_MAX; lineIndex++) { if (command_table[lineIndex] == NULL) { break; } if (command_table[lineIndex][0] == '\0') { break; } command_table_row_count = lineIndex+1; } // // ignore extra spaces before the command // find argIndex such that cmdLine[argIndex] is the start of the second word int argIndex; for (argIndex = 5; cmdLine[argIndex] != '\0'; argIndex++) { if (cmdLine[argIndex] == ' ') break; } for (; cmdLine[argIndex] != '\0'; argIndex++) { if (cmdLine[argIndex] != ' ') break; } // // Edit the contents of command_table switch (cmdLine[4]) // %B1@... -- Edit the contents of command_table { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': // %B1@nnn command replace row number nnn // edit row data if (command_table_row_count > 0) { // if Datalogger_action_table_row_count == 0 then the table is empty // get row number to edit from cmdLine[4] editRowIndex = atoi(cmdLine.str()+4); if ((editRowIndex >= 0) && (editRowIndex < command_table_row_count)) { // avoid replacing with null because that would truncate the table if (*(cmdLine.str()+argIndex)=='\0') { cmdLine.serial().printf("\r\n cannot replace row %d with nothing", editRowIndex); } else { // update row cmdLine.serial().printf("\r\n replace row %d with \"%s\"", editRowIndex, cmdLine.str()+argIndex); strncpy(command_table[editRowIndex], cmdLine.str()+argIndex, COMMAND_TABLE_COL_MAX-1); command_table[editRowIndex][COMMAND_TABLE_COL_MAX-1]='\0'; // null character at end of line } } } break; case '+': // %B1@+ command add new row (if there is room to add) // add a new row at end of table if (command_table_row_count < COMMAND_TABLE_ROW_MAX) { // if command_table_row_count => COMMAND_TABLE_ROW_MAX then the table is full editRowIndex = command_table_row_count; // avoid replacing with null because that would truncate the table if (*(cmdLine.str()+argIndex)=='\0') { cmdLine.serial().printf("\r\n cannot add new row %d containing nothing", editRowIndex); } else { command_table_row_count++; cmdLine.serial().printf("\r\n add new row %d containing \"%s\"", editRowIndex, cmdLine.str()+argIndex); strncpy(command_table[editRowIndex], cmdLine.str()+argIndex, COMMAND_TABLE_COL_MAX-1); command_table[editRowIndex][COMMAND_TABLE_COL_MAX-1]='\0'; // null character at end of line command_table[command_table_row_count][0]='\0'; // empty string marks end of command_table } } break; case '-': // %B1@-nnn delete row number nnn (if list is not empty) // delete row from table if (command_table_row_count > 0) { // if command_table_row_count == 0 then the table is empty if ((cmdLine[5] == '~') && (cmdLine[6] == '~') && (cmdLine[7] == '~')) { // %B1@-~~~ clear entire command table cmdLine.serial().printf("\r\n clear entire command table"); command_table_row_count = 0; command_table[command_table_row_count][0]='\0'; // empty string marks end of command_table break; } else { // %B1@-nnn delete row number nnn (if list is not empty) editRowIndex = atoi(cmdLine.str()+5); if ((editRowIndex >= 0) && (editRowIndex < command_table_row_count)) { cmdLine.serial().printf("\r\n delete row %d", editRowIndex); // delete row editRowIndex from Datalogger_action_table for (int i = editRowIndex; i < (command_table_row_count-1); i++) { // copy row i+1 into row i cmdLine.serial().printf("\r\n copy row %d into row %d: \"%s\"", i+1, i, command_table[i+1]); strncpy(command_table[i], command_table[i+1], COMMAND_TABLE_COL_MAX-1); command_table[i][COMMAND_TABLE_COL_MAX-1]='\0'; // null character at end of line } command_table_row_count--; command_table[command_table_row_count][0]='\0'; // empty string marks end of command_table } } } break; case '!': // pause the entire action table // TODO: %B1@! disable button response but keep command table contents //~ Datalogger_action_table_enabled = false; break; case '@': // enable the entire action table // TODO: %B1@@ enable button response //~ Datalogger_action_table_enabled = true; break; } // // Print the contents of command_table for (int lineIndex = 0; lineIndex < COMMAND_TABLE_ROW_MAX; lineIndex++) { if (command_table[lineIndex] == NULL) { break; } if (command_table[lineIndex][0] == '\0') { break; } command_table_row_count = lineIndex+1; cmdLine.serial().printf("\r\n %%B%1d@%d %s", command_table_button_index, lineIndex, command_table[lineIndex]); } cmdLine.serial().printf("\r\n command_table_row_count = %d", command_table_row_count); cmdLine.serial().printf("\r\nCommand table editing commands:"); if (command_table_row_count < COMMAND_TABLE_ROW_MAX) { // if command_table_row_count => COMMAND_TABLE_ROW_MAX then the table is full cmdLine.serial().printf("\r\n %%B%1d@+ command -- add new row %d at end of table", command_table_button_index, command_table_row_count); } if (command_table_row_count > 0) { // if command_table_row_count == 0 then the table is empty cmdLine.serial().printf("\r\n %%B%1d@%d command -- replace row %d", command_table_button_index, command_table_row_count-1, command_table_row_count-1); cmdLine.serial().printf("\r\n %%B%1d@-%d -- delete row %d", command_table_button_index, command_table_row_count-1, command_table_row_count-1); cmdLine.serial().printf("\r\n %%B%1d@-~~~ -- delete all rows", command_table_button_index); cmdLine.serial().printf("\r\n %%B%1d@! -- pause entire command table", command_table_button_index); cmdLine.serial().printf("\r\n %%B%1d@@ -- enable command table", command_table_button_index); } // } // case '@' -- %B1@ view/edit command table break; case '!': // TODO: %B1! trigger onButton1FallingEdge() immediately (for test development) Run_command_table(command_table); break; } } break; #endif // USE_DATALOGGER_CommandTable //-------------------------------------------------- #if HAS_digitalInOuts case 'H': case 'h': { // %Hpin -- digital output high #if ARDUINO_STYLE pinMode(pinIndex, OUTPUT); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 digitalWrite(pinIndex, HIGH); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 #else DigitalInOut& digitalInOutPin = find_digitalInOutPin(pinIndex); digitalInOutPin.output(); digitalInOutPin.write(1); #endif cmdLine.serial().printf(" digitalInOutPin %d Output High ", pinIndex); } break; case 'L': case 'l': { // %Lpin -- digital output low #if ARDUINO_STYLE pinMode(pinIndex, OUTPUT); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 digitalWrite(pinIndex, LOW); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 #else DigitalInOut& digitalInOutPin = find_digitalInOutPin(pinIndex); digitalInOutPin.output(); digitalInOutPin.write(0); #endif cmdLine.serial().printf(" digitalInOutPin %d Output Low ", pinIndex); } break; case '?': { // %?pin -- digital input #if ARDUINO_STYLE pinMode(pinIndex, INPUT); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 #else DigitalInOut& digitalInOutPin = find_digitalInOutPin(pinIndex); digitalInOutPin.input(); #endif serial.printf(" digitalInOutPin %d Input ", pinIndex); #if ARDUINO_STYLE int value = digitalRead(pinIndex); #else int value = digitalInOutPin.read(); #endif cmdLine.serial().printf("%d ", value); } break; #endif // #if HAS_analogIns case 'A': case 'a': { // %A %Apin -- analog input #if analogIn4_IS_HIGH_RANGE_OF_analogIn0 // Platform board uses AIN4,AIN5,.. as high range of AIN0,AIN1,.. for (int pinIndex = 0; pinIndex < 2; pinIndex++) { int cPinIndex = '0' + pinIndex; AnalogIn& analogInPin = find_analogInPin(cPinIndex); float adc_full_scale_voltage = analogInPin_fullScaleVoltage[pinIndex]; float normValue_0_1 = analogInPin.read(); // int pinIndexH = pinIndex + 4; int cPinIndexH = '0' + pinIndexH; AnalogIn& analogInPinH = find_analogInPin(cPinIndexH); float adc_full_scale_voltageH = analogInPin_fullScaleVoltage[pinIndexH]; float normValueH_0_1 = analogInPinH.read(); // cmdLine.serial().printf("AIN%c = %7.3f%% = %1.3fV AIN%c = %7.3f%% = %1.3fV \r\n", cPinIndex, normValue_0_1 * 100.0, normValue_0_1 * adc_full_scale_voltage, cPinIndexH, normValueH_0_1 * 100.0, normValueH_0_1 * adc_full_scale_voltageH ); } for (int pinIndex = 2; pinIndex < 4; pinIndex++) { int cPinIndex = '0' + pinIndex; AnalogIn& analogInPin = find_analogInPin(cPinIndex); float adc_full_scale_voltage = analogInPin_fullScaleVoltage[pinIndex]; float normValue_0_1 = analogInPin.read(); // cmdLine.serial().printf("AIN%c = %7.3f%% = %1.3fV\r\n", cPinIndex, normValue_0_1 * 100.0, normValue_0_1 * adc_full_scale_voltage ); } #else // analogIn4_IS_HIGH_RANGE_OF_analogIn0 // Platform board uses simple analog inputs // assume standard Arduino analog inputs A0-A5 for (int pinIndex = 0; pinIndex < 6; pinIndex++) { int cPinIndex = '0' + pinIndex; AnalogIn& analogInPin = find_analogInPin(cPinIndex); float adc_full_scale_voltage = analogInPin_fullScaleVoltage[pinIndex]; float normValue_0_1 = analogInPin.read(); // cmdLine.serial().printf("AIN%c = %7.3f%% = %1.3fV\r\n", cPinIndex, normValue_0_1 * 100.0, normValue_0_1 * adc_full_scale_voltage ); } #endif // analogIn4_IS_HIGH_RANGE_OF_analogIn0 } break; #endif // #if HAS_SPI2_MAX541 case 'D': case 'd': { // %D -- DAC output MAX541 (SPI2) -- need cmdLine.parse_float(voltageV) // MAX541 max541(spi2_max541, spi2_max541_cs); float voltageV = max541.Get_Voltage(); // if (cmdLine[2] == '+') { // // %D+ // voltageV = voltageV * 1.25f; // if (voltageV >= max541.VRef) voltageV = max541.VRef; // SelfTest_MAX541_Voltage(cmdLine, max541, voltageV); // } // else if (cmdLine[2] == '-') { // // %D- // voltageV = voltageV * 0.75f; // if (voltageV < 0.1f) voltageV = 0.1f; // SelfTest_MAX541_Voltage(cmdLine, max541, voltageV); // } if (cmdLine.parse_float("V", voltageV)) { // %D V=1.234 -- set voltage max541.Set_Voltage(voltageV); } else if (cmdLine.parse_float("TEST", voltageV)) { // %D TEST=1.234 -- set voltage and compare with AIN0 SelfTest_MAX541_Voltage(cmdLine, max541, voltageV); } else if (cmdLine.parse_float("CAL", voltageV)) { // %D CAL=1.234 -- calibrate VRef and compare with AIN0 max541.Set_Code(0x8000); // we don't know the fullscale voltage yet, so set code to midscale double max541_midscale_V = analogInPin_fullScaleVoltage[4] * analogIn4.read(); // TARGET_MAX32630 J1.5 AIN_4 = AIN0 / 5.0 fullscale is 6.0V const int average_count = 100; const double average_K = 0.25; for (int count = 0; count < average_count; count++) { double measurement_V = analogInPin_fullScaleVoltage[4] * analogIn4.read(); // TARGET_MAX32630 J1.5 AIN_4 = AIN0 / 5.0 fullscale is 6.0V max541_midscale_V = ((1 - average_K) * max541_midscale_V) + (average_K * measurement_V); } max541.VRef = 2.0 * max541_midscale_V; cmdLine.serial().printf( "\r\n MAX541 midscale = %1.3fV, so fullscale = %1.3fV", max541_midscale_V, max541.VRef); // Detect whether MAX541 is really connected to MAX32625MBED.AIN0/AIN4 voltageV = 1.0f; SelfTest_MAX541_Voltage(cmdLine, max541, voltageV); } else { // %D -- print MAX541 DAC status cmdLine.serial().printf("MAX541 code=0x%4.4x = %1.3fV VRef=%1.3fV\r\n", max541.Get_Code(), max541.Get_Voltage(), max541.VRef); } } break; #endif // #if HAS_I2C // SUPPORT_I2C case 'I': case 'i': // %I... -- I2C diagnostics // %IP -- I2C probe // %IC scl=100khz ADDR=? -- I2C configure // %IW byte byte ... byte RD=? ADDR=0x -- write // %IR ADDR=? RD=? -- read // %I^ cmd=? -- i2c_smbus_read_word_data // get next character // TODO: parse cmdLine arg (ADDR=\d+)? --> g_I2C_deviceAddress7 cmdLine.parse_byte_hex("ADDR", g_I2C_deviceAddress7); // TODO: parse cmdLine arg (RD=\d)? --> g_I2C_read_count g_I2C_read_count = 0; // read count must be reset every command cmdLine.parse_byte_dec("RD", g_I2C_read_count); // TODO: parse cmdLine arg (CMD=\d)? --> g_I2C_command_regAddress cmdLine.parse_byte_hex("CMD", g_I2C_command_regAddress); switch (cmdLine[2]) { case 'P': case 'p': { // %IP -- I2C probe HuntAttachedI2CDevices(cmdLine, 0x03, 0x77); } break; case 'C': case 'c': { bool isUpdatedI2CConfig = false; // %IC scl=100khz ADDR=? -- I2C configure // parse cmdLine arg (SCL=\d+(kHZ|MHZ)?)? --> g_I2C_SCL_Hz if (cmdLine.parse_frequency_Hz("SCL", g_I2C_SCL_Hz)) { isUpdatedI2CConfig = true; // TODO1: validate g_I2C_SCL_Hz against system clock frequency F_CPU if (g_I2C_SCL_Hz > limit_max_I2C_SCL_Hz) { g_I2C_SCL_Hz = limit_max_I2C_SCL_Hz; } if (g_I2C_SCL_Hz < limit_min_I2C_SCL_Hz) { g_I2C_SCL_Hz = limit_min_I2C_SCL_Hz; } } if (isUpdatedI2CConfig) { // declare in narrower scope: MAX32625MBED I2C i2cMaster(...) I2C i2cMaster(I2C0_SDA, I2C0_SCL); // sda scl TARGET_MAX32635MBED: P1_6, P1_7 Arduino 10-pin header i2cMaster.frequency(g_I2C_SCL_Hz); i2cMaster.start(); i2cMaster.stop(); i2cMaster.frequency(g_I2C_SCL_Hz); cmdLine.serial().printf( "\r\n %%IC ADDR=0x%2.2x=(0x%2.2x>>1) SCL=%d=%1.3fkHz -- I2C config", g_I2C_deviceAddress7, (g_I2C_deviceAddress7 << 1), g_I2C_SCL_Hz, (g_I2C_SCL_Hz / 1000.)); i2cMaster.start(); i2cMaster.stop(); } } break; case 'W': case 'w': { // declare in narrower scope: MAX32625MBED I2C i2cMaster(...) I2C i2cMaster(I2C0_SDA, I2C0_SCL); // sda scl TARGET_MAX32635MBED: P1_6, P1_7 Arduino 10-pin header i2cMaster.frequency(g_I2C_SCL_Hz); // %IW byte byte ... byte RD=? ADDR=0x -- write // parse cmdLine byte list --> int byteCount; int mosiData[MAX_SPI_BYTE_COUNT]; #define MAX_I2C_BYTE_COUNT 32 size_t byteCount = byteCount; static char mosiData[MAX_I2C_BYTE_COUNT]; static char misoData[MAX_I2C_BYTE_COUNT]; if (cmdLine.parse_byteCount_byteList_hex(byteCount, mosiData, MAX_I2C_BYTE_COUNT)) { // hex dump mosiData[0..byteCount-1] cmdLine.serial().printf( "\r\nADDR=0x%2.2x=(0x%2.2x>>1) byteCount:%d RD=%d\r\nI2C MOSI->", g_I2C_deviceAddress7, (g_I2C_deviceAddress7 << 1), byteCount, g_I2C_read_count); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } // // TODO: i2c transfer //const int addr7bit = 0x48; // 7 bit I2C address //const int addr8bit = 0x48 << 1; // 8bit I2C address, 0x90 // /* int */ i2cMaster.read (int addr8bit, char *data, int length, bool repeated=false) // Read from an I2C slave. // /* int */ i2cMaster.read (int ack) // Read a single byte from the I2C bus. // /* int */ i2cMaster.write (int addr8bit, const char *data, int length, bool repeated=false) // Write to an I2C slave. // /* int */ i2cMaster.write (int data) // Write single byte out on the I2C bus. // /* void */ i2cMaster.start (void) // Creates a start condition on the I2C bus. // /* void */ i2cMaster.stop (void) // Creates a stop condition on the I2C bus. // /* int */ i2cMaster.transfer (int addr8bit, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, const event_callback_t &callback, int event=I2C_EVENT_TRANSFER_COMPLETE, bool repeated=false) // Start nonblocking I2C transfer. More... // /* void */ i2cMaster.abort_transfer () // Abort the ongoing I2C transfer. More... const int addr8bit = g_I2C_deviceAddress7 << 1; // 8bit I2C address, 0x90 unsigned int misoLength = 0; bool repeated = (g_I2C_read_count > 0); // int writeStatus = i2cMaster.write (addr8bit, mosiData, byteCount, repeated); switch (writeStatus) { case 0: cmdLine.serial().printf(" ack "); break; case 1: cmdLine.serial().printf(" nack "); break; default: cmdLine.serial().printf(" {writeStatus 0x%2.2X} ", writeStatus); } if (repeated) { int readStatus = i2cMaster.read (addr8bit, misoData, g_I2C_read_count, false); switch (readStatus) { case 1: cmdLine.serial().printf(" nack "); break; case 0: cmdLine.serial().printf(" ack "); break; default: cmdLine.serial().printf(" {readStatus 0x%2.2X} ", readStatus); } } // if (misoLength > 0) { // hex dump misoData[0..byteCount-1] cmdLine.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < g_I2C_read_count; byteIndex++) { cmdLine.serial().printf(" 0x%2.2X", misoData[byteIndex]); } } cmdLine.serial().printf(" "); } } break; case 'R': case 'r': { // declare in narrower scope: MAX32625MBED I2C i2cMaster(...) I2C i2cMaster(I2C0_SDA, I2C0_SCL); // sda scl TARGET_MAX32635MBED: P1_6, P1_7 Arduino 10-pin header i2cMaster.frequency(g_I2C_SCL_Hz); // %IR ADDR=? RD=? -- read // TODO: i2c transfer //const int addr7bit = 0x48; // 7 bit I2C address //const int addr8bit = 0x48 << 1; // 8bit I2C address, 0x90 // /* int */ i2cMaster.read (int addr8bit, char *data, int length, bool repeated=false) // Read from an I2C slave. // /* int */ i2cMaster.read (int ack) // Read a single byte from the I2C bus. // /* int */ i2cMaster.write (int addr8bit, const char *data, int length, bool repeated=false) // Write to an I2C slave. // /* int */ i2cMaster.write (int data) // Write single byte out on the I2C bus. // /* void */ i2cMaster.start (void) // Creates a start condition on the I2C bus. // /* void */ i2cMaster.stop (void) // Creates a stop condition on the I2C bus. // /* int */ i2cMaster.transfer (int addr8bit, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, const event_callback_t &callback, int event=I2C_EVENT_TRANSFER_COMPLETE, bool repeated=false) // Start nonblocking I2C transfer. More... // /* void */ i2cMaster.abort_transfer () // Abort the ongoing I2C transfer. More... } break; case '^': { // declare in narrower scope: MAX32625MBED I2C i2cMaster(...) I2C i2cMaster(I2C0_SDA, I2C0_SCL); // sda scl TARGET_MAX32635MBED: P1_6, P1_7 Arduino 10-pin header i2cMaster.frequency(g_I2C_SCL_Hz); // %I^ cmd=? -- i2c_smbus_read_word_data // TODO: i2c transfer //const int addr7bit = 0x48; // 7 bit I2C address //const int addr8bit = 0x48 << 1; // 8bit I2C address, 0x90 // /* int */ i2cMaster.read (int addr8bit, char *data, int length, bool repeated=false) // Read from an I2C slave. // /* int */ i2cMaster.read (int ack) // Read a single byte from the I2C bus. // /* int */ i2cMaster.write (int addr8bit, const char *data, int length, bool repeated=false) // Write to an I2C slave. // /* int */ i2cMaster.write (int data) // Write single byte out on the I2C bus. // /* void */ i2cMaster.start (void) // Creates a start condition on the I2C bus. // /* void */ i2cMaster.stop (void) // Creates a stop condition on the I2C bus. // /* int */ i2cMaster.transfer (int addr8bit, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, const event_callback_t &callback, int event=I2C_EVENT_TRANSFER_COMPLETE, bool repeated=false) // Start nonblocking I2C transfer. More... // /* void */ i2cMaster.abort_transfer () // Abort the ongoing I2C transfer. More... } break; } // switch(cmdLine[2]) break; #endif // #if HAS_SPI // SUPPORT_SPI case 'S': case 's': { // %S... -- SPI diagnostics // %SC sclk=1Mhz -- SPI configure // %SW -- write (write and read) // %SR -- read (alias for %SW because SPI always write and read) // // Process arguments SCLK=\d+(kHZ|MHZ) CPOL=\d CPHA=\d bool isUpdatedSPIConfig = false; // parse cmdLine arg (CPOL=\d)? --> g_SPI_dataMode | SPI_MODE2 // parse cmdLine arg (CPHA=\d)? --> g_SPI_dataMode | SPI_MODE1 if (cmdLine.parse_flag("CPOL", g_SPI_dataMode, SPI_MODE2)) { isUpdatedSPIConfig = true; } if (cmdLine.parse_flag("CPHA", g_SPI_dataMode, SPI_MODE1)) { isUpdatedSPIConfig = true; } if (cmdLine.parse_flag("CS", g_SPI_cs_state, 1)) { isUpdatedSPIConfig = true; } // parse cmdLine arg (SCLK=\d+(kHZ|MHZ)?)? --> g_SPI_SCLK_Hz if (cmdLine.parse_frequency_Hz("SCLK", g_SPI_SCLK_Hz)) { isUpdatedSPIConfig = true; // TODO1: validate g_SPI_SCLK_Hz against system clock frequency F_CPU if (g_SPI_SCLK_Hz > limit_max_SPI_SCLK_Hz) { g_SPI_SCLK_Hz = limit_max_SPI_SCLK_Hz; } if (g_SPI_SCLK_Hz < limit_min_SPI_SCLK_Hz) { g_SPI_SCLK_Hz = limit_min_SPI_SCLK_Hz; } } // Update SPI configuration if (isUpdatedSPIConfig) { // %SC sclk=1Mhz -- SPI configure spi_cs = g_SPI_cs_state; spi.format(8,g_SPI_dataMode); // int bits_must_be_8, int mode=0_3 CPOL=0,CPHA=0 #if APPLICATION_MAX5715 g_MAX5715_device.spi_frequency(g_SPI_SCLK_Hz); #elif APPLICATION_MAX11131 g_MAX11131_device.spi_frequency(g_SPI_SCLK_Hz); #elif APPLICATION_MAX5171 g_MAX5171_device.spi_frequency(g_SPI_SCLK_Hz); #elif APPLICATION_MAX11410 g_MAX11410_device.spi_frequency(g_SPI_SCLK_Hz); #elif APPLICATION_MAX12345 g_MAX12345_device.spi_frequency(g_SPI_SCLK_Hz); #else spi.frequency(g_SPI_SCLK_Hz); // int SCLK_Hz=1000000 = 1MHz (initial default) #endif // double ideal_divisor = ((double)SystemCoreClock) / g_SPI_SCLK_Hz; int actual_divisor = (int)(ideal_divisor + 0.0); // frequency divisor truncate double actual_SCLK_Hz = SystemCoreClock / actual_divisor; // // fixed: mbed-os-5.11: [Warning] format '%d' expects argument of type 'int', but argument 6 has type 'uint32_t {aka long unsigned int}' [-Wformat=] cmdLine.serial().printf( "\r\n %%SC CPOL=%d CPHA=%d CS=%d SCLK=%ld=%1.3fMHz (%1.1fMHz/%1.2f = actual %1.3fMHz) -- SPI config", ((g_SPI_dataMode & SPI_MODE2) ? 1 : 0), ((g_SPI_dataMode & SPI_MODE1) ? 1 : 0), g_SPI_cs_state, g_SPI_SCLK_Hz, (g_SPI_SCLK_Hz / 1000000.), ((double)(SystemCoreClock / 1000000.)), ideal_divisor, (actual_SCLK_Hz / 1000000.) ); } // get next character switch (cmdLine[2]) { case 'C': case 's': // %SC sclk=1Mhz -- SPI configure break; case 'D': case 'd': // %SD -- SPI diagnostic messages enable if (g_MAX5719_device.onSPIprint) { g_MAX5719_device.onSPIprint = NULL; // no g_MAX5719_device.loop_limit property; device_has_property(Device, 'loop_limit') != None is false } else { void onSPIprint_handler(size_t byteCount, uint8_t mosiData[], uint8_t misoData[]); g_MAX5719_device.onSPIprint = onSPIprint_handler; // no g_MAX5719_device.loop_limit property; device_has_property(Device, 'loop_limit') is false } break; case 'W': case 'R': case 'w': case 'r': { // %SW -- write (write and read) // %SR -- read (alias for %SW because SPI always write and read) // parse cmdLine byte list --> int byteCount; int mosiData[MAX_SPI_BYTE_COUNT]; #define MAX_SPI_BYTE_COUNT 32 size_t byteCount = byteCount; static char mosiData[MAX_SPI_BYTE_COUNT]; static char misoData[MAX_SPI_BYTE_COUNT]; if (cmdLine.parse_byteCount_byteList_hex(byteCount, mosiData, MAX_SPI_BYTE_COUNT)) { // hex dump mosiData[0..byteCount-1] cmdLine.serial().printf("\r\nSPI"); if (byteCount > 7) { cmdLine.serial().printf(" byteCount:%d", byteCount); } cmdLine.serial().printf(" MOSI->"); for (unsigned int byteIndex = 0; byteIndex < byteCount; byteIndex++) { cmdLine.serial().printf(" 0x%2.2X", mosiData[byteIndex]); } spi_cs = 0; unsigned int numBytesTransferred = spi.write(mosiData, byteCount, misoData, byteCount); spi_cs = 1; // hex dump misoData[0..byteCount-1] cmdLine.serial().printf(" MISO<-"); for (unsigned int byteIndex = 0; byteIndex < numBytesTransferred; byteIndex++) { cmdLine.serial().printf(" 0x%2.2X", misoData[byteIndex]); } cmdLine.serial().printf(" "); } } break; } // switch(cmdLine[2]) } // case 'S': // %S... -- SPI diagnostics break; #endif // // A-Z,a-z,0-9 reserved for application use } // switch(cmdLine[1]) } // end void pinsMonitor_submenu_onEOLcommandParser(CmdLine & cmdLine) #endif // USE_CMDLINE_MENUS support CmdLine command menus #if USE_CMDLINE_MENUS // support CmdLine command menus //-------------------------------------------------- void main_menu_onEOLcommandParser(CmdLine& cmdLine) { // process command line cmdLine.serial().printf("\r\nCmdLine buf:\"%s\"\r\n", cmdLine.str()); #if USE_DATALOGGER_TRIGGER // support Datalog trigger // If datalog is free running, halt on any possible received command if (Datalogger_Trigger != trigger_Halt) { Datalogger_Trigger = trigger_Halt; cmdLine.serial().printf("Datalog stopped by USB command input\r\n"); cmdLine.serial().printf("Restart datalog by sending LR\r\n"); } #endif // USE_DATALOGGER_TRIGGER support Datalog trigger // DIAGNOSTIC: print line buffer //~ cmdLine.serial().printf("\r\nmain_menu_onEOLcommandParser: ~%s~\r\n", cmdLine.str()); // switch (cmdLine[0]) { case '?': main_menu_status(cmdLine); main_menu_help(cmdLine); // print command prompt //cmdLine.serial().printf("\r\n>"); break; case '\r': case '\n': // ignore blank line case '\0': // ignore empty line case '#': // ignore comment line // # -- lines beginning with # are comments main_menu_status(cmdLine); //~ main_menu_help(cmdLine); // print command prompt //cmdLine.serial().printf("\r\n>"); break; #if ECHO_EOF_ON_EOL case '\x04': // Unicode (U+0004) EOT END OF TRANSMISSION = CTRL+D as EOF end of file cmdLine.serial().printf("\x04"); // immediately echo EOF for test scripting diagnostic_led_EOF(); break; case '\x1a': // Unicode (U+001A) SUB SUBSTITUTE = CTRL+Z as EOF end of file cmdLine.serial().printf("\x1a"); // immediately echo EOF for test scripting diagnostic_led_EOF(); break; #endif #if defined(SPI_ADC_DeviceName) // SPI connected ADC case '!': // device init { cmdLine.serial().printf("Init"); // call function Init uint8_t result = g_MAX11410_device.Init(); // cmdLine.serial().printf(" =%d\r\n", result); cmdLine.serial().printf(" =%d\r\n", result); #if USE_CUSTOM_REG_INIT // custom_reg_init_addr[], custom_reg_init_data[], custom_reg_init_count // in command '!' device init, apply list of custom register writes after init // custom_reg_init_addr[], custom_reg_init_data[], custom_reg_init_count for (unsigned int index = 0; index < custom_reg_init_count; index++) { uint8_t regAddress = custom_reg_init_addr[index]; uint32_t regData = custom_reg_init_data[index]; cmdLine.serial().printf("*%s=0x%06.6x", g_MAX11410_device.RegName((MAX11410::MAX11410_CMD_enum_t)regAddress), regData ); g_MAX11410_device.RegWrite((MAX11410::MAX11410_CMD_enum_t)regAddress, regData); } #endif // USE_CUSTOM_REG_INIT g_MAX11410_device.v_filter = SPI_AIN_Cfg_v_filter_ch[0]; g_MAX11410_device.v_ctrl = SPI_AIN_Cfg_v_ctrl_ch[0]; g_MAX11410_device.v_pga = SPI_AIN_Cfg_v_pga_ch[0]; } break; #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #if USE_SELFTEST case '.': { // . -- SelfTest cmdLine.serial().printf("SelfTest()"); SelfTest(cmdLine); } break; #endif // USE_SELFTEST #if 1 // APPLICATION_ArduinoPinsMonitor case '%': { pinsMonitor_submenu_onEOLcommandParser(cmdLine); } break; // case '%' #endif // APPLICATION_ArduinoPinsMonitor #if USE_STAR_REG_READWRITE // * command read/write reg *reg? *reg=value // reuse the Serial_Tester command *regName=regValue // CODE GENERATOR: generate * command read/write reg *reg? *reg=value case '*': { // if buffer starts with a regName: // for each reg value (0..n) if(cmdLine.has_keyword(device.regName(r))): // cmdLine.serial().printf(" scan RegName...\r\n"); } break; #endif // USE_STAR_REG_READWRITE // * command read/write reg *reg? *reg=value // #if 1 // USE_AUX_SERIAL_CMD_FORWARDING && (HAS_AUX_SERIAL || HAS_DAPLINK_SERIAL) // TODO WIP Command forwarding to Auxiliary serial port TX/RX #257 -- main_menu_onEOLcommandParser case '>': { // prefer cmdLine_AUXserial if available, else cmdLine_DAPLINKserial; else we don't have this feature # if HAS_AUX_SERIAL // TODO WIP Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 CmdLine& cmdLine_AuxSerial = cmdLine_AUXserial; Serial& AuxSerial = AUXserial; # elif HAS_DAPLINK_SERIAL // TODO WIP Command forwarding to DAPLINK serial TX/RX cmdLine_DAPLINKserial #257 CmdLine& cmdLine_AuxSerial = cmdLine_DAPLINKserial; Serial& AuxSerial = DAPLINKserial; # else // neither HAS_AUX_SERIAL HAS_DAPLINK_SERIAL #warning "USE_AUX_SERIAL_CMD_FORWARDING should not be enabled without HAS_AUX_SERIAL or HAS_DAPLINK_SERIAL" # endif // HAS_AUX_SERIAL HAS_DAPLINK_SERIAL // // >> suppress key=value parsing bool suppress_parsing = (cmdLine[1] == '>'); if (suppress_parsing == false) { // int g_auxSerialCom_baud = 9600; //!< baud rate Auxiliary serial port if (cmdLine.parse_int_dec("baud", g_auxSerialCom_baud)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- baud rate cmdLine_AuxSerial.serial().printf("\r\n*** New Baud Rate %d ***\r\n", g_auxSerialCom_baud); AuxSerial.baud(g_auxSerialCom_baud); cmdLine_AuxSerial.serial().printf("\r\n*** Baud Rate was set to %d ***\r\n", g_auxSerialCom_baud); } #if 0 // int g_auxSerialCom_tx_wait_echo = 0; //!< TX wait for each character echo? if (cmdLine.parse_int_dec("tx_wait_echo", g_auxSerialCom_tx_wait_echo)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- tx_wait_echo //~ cmdLine_AuxSerial.serial().printf("\r\n*** tx_wait_echo was set to %d ***\r\n", g_auxSerialCom_tx_wait_echo); cmdLine.serial().printf("\r\n tx_wait_echo=%d", g_auxSerialCom_tx_wait_echo); } // int g_auxSerialCom_tx_char_delay_ms = 0; //!< TX delay after each char? if (cmdLine.parse_int_dec("tx_char_delay_ms", g_auxSerialCom_tx_char_delay_ms)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- tx_char_delay_ms //~ cmdLine_AuxSerial.serial().printf("\r\n*** tx_char_delay_ms was set to %d ***\r\n", g_auxSerialCom_tx_char_delay_ms); cmdLine.serial().printf("\r\n tx_char_delay_ms=%dms", g_auxSerialCom_tx_char_delay_ms); } // int g_auxSerialCom_tx_line_delay_ms = 0; //!< TX delay after each CR/LF? if (cmdLine.parse_int_dec("tx_line_delay_ms", g_auxSerialCom_tx_line_delay_ms)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- tx_line_delay_ms //~ cmdLine_AuxSerial.serial().printf("\r\n*** tx_line_delay_ms was set to %d ***\r\n", g_auxSerialCom_tx_line_delay_ms); cmdLine.serial().printf("\r\n tx_line_delay_ms=%dms", g_auxSerialCom_tx_line_delay_ms); } #endif // int g_auxSerialCom_message_ms = 0; //!< capture RX until response timeout? if (cmdLine.parse_int_dec("message_ms", g_auxSerialCom_message_ms)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- message_ms //~ cmdLine_AuxSerial.serial().printf("\r\n*** message_ms was set to %d ***\r\n", g_auxSerialCom_message_ms); cmdLine.serial().printf("\r\n message_ms timeout %dms", g_auxSerialCom_message_ms); } // int g_auxSerialCom_rx_idle_ms = 0; //!< capture RX until idle timeout? if (cmdLine.parse_int_dec("rx_idle_ms", g_auxSerialCom_rx_idle_ms)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- rx_idle_ms //~ cmdLine_AuxSerial.serial().printf("\r\n*** rx_idle_ms was set to %d ***\r\n", g_auxSerialCom_rx_idle_ms); cmdLine.serial().printf("\r\n rx_idle_ms timeout %dms", g_auxSerialCom_rx_idle_ms); } // int g_auxSerialCom_rx_max_count = 0; //!< capture RX until max character count? if (cmdLine.parse_int_dec("rx_max_count", g_auxSerialCom_rx_max_count)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- rx_max_count //~ cmdLine_AuxSerial.serial().printf("\r\n*** rx_max_count was set to %d ***\r\n", g_auxSerialCom_rx_max_count); cmdLine.serial().printf("\r\n rx_max_count %d bytes", g_auxSerialCom_rx_max_count); } // int g_auxSerialCom_rx_eot = 0; //!< capture RX until match end of text char? if (cmdLine.parse_int_dec("rx_eot", g_auxSerialCom_rx_eot)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- rx_eot //~ cmdLine_AUXserial.serial().printf("\r\n*** rx_eot was set to %d ***\r\n", g_auxSerialCom_rx_eot); cmdLine.serial().printf("\r\n rx_eot %d", g_auxSerialCom_rx_eot); } } // Command forwarding to AUX serial TX/RX cmdLine_AuxSerial #257 -- send outgoing_string char* outgoing_string = (char*)cmdLine.str(); // > use key=value parsing // >> suppress key=value parsing if (suppress_parsing) { cmdLine.serial().printf("\r\n suppress_parsing outgoing_string=\"%s\"", outgoing_string); outgoing_string++; // skip the first '>' outgoing_string++; // skip the second '>' } else { // TODO: after parsing, key=value pairs should be deleted, but outgoing_string=">xyzzy abc=def" cmdLine.serial().printf("\r\n after parsing, outgoing_string=\"%s\"", outgoing_string); outgoing_string++; // skip the first '>' } static char rx_string_buf[RX_STRING_BUF_SIZE]; unsigned int rx_string_length = 0; cmdLine.serial().printf("\r\n >%s\r\n <", outgoing_string); rx_string_buf[0] = '\0'; rx_string_length = 0; // // int g_auxSerialCom_tx_wait_echo = 0; //!< TX wait for each character echo? // int g_auxSerialCom_tx_char_delay_ms = 0; //!< TX delay after each char? // int g_auxSerialCom_tx_line_delay_ms = 0; //!< TX delay after each CR/LF? // // int g_auxSerialCom_Timer_begin_message_ms = 0; //!< start of message // int g_auxSerialCom_Timer_begin_rx_idle_ms = 0; //!< recent RX character timestamp // int g_auxSerialCom_message_ms = 10000; //!< maximum RX message total response time // int g_auxSerialCom_rx_idle_ms = 2000; //!< maximum RX message idle time between characters // int g_auxSerialCom_rx_max_count = RX_STRING_BUF_SIZE-1; //!< maximum RX message total length // int g_auxSerialCom_rx_eot = '\r'; //!< capture RX until match end of text char //~ cmdLine_AuxSerial.serial().printf("\r\n*** TODO forward %s ***\r\n", outgoing_string); // // TODO: send whole string or send character-by-character? cmdLine_AuxSerial.serial().printf("%s", outgoing_string); cmdLine_AuxSerial.serial().printf("\r\n"); g_auxSerialCom_Timer.start(); g_auxSerialCom_Timer_begin_message_ms = g_auxSerialCom_Timer.read_ms(); // start of message g_auxSerialCom_Timer_begin_rx_idle_ms = g_auxSerialCom_Timer.read_ms(); // recent RX character timestamp while (rx_string_length < (RX_STRING_BUF_SIZE-1)) { if ((g_auxSerialCom_Timer.read_ms() - g_auxSerialCom_Timer_begin_message_ms) > g_auxSerialCom_message_ms) { cmdLine.serial().printf("\r\n message_ms timeout %dms", g_auxSerialCom_message_ms); break; } if ((g_auxSerialCom_Timer.read_ms() - g_auxSerialCom_Timer_begin_rx_idle_ms) > g_auxSerialCom_rx_idle_ms) { cmdLine.serial().printf("\r\n rx_idle_ms timeout %dms", g_auxSerialCom_rx_idle_ms); break; } if (rx_string_length >= g_auxSerialCom_rx_max_count) { cmdLine.serial().printf("\r\n rx_max_count %d bytes", g_auxSerialCom_rx_max_count); break; } if (AuxSerial.readable()) { g_auxSerialCom_Timer_begin_rx_idle_ms = g_auxSerialCom_Timer.read_ms(); // recent RX character timestamp char ch = AuxSerial.getc(); rx_string_buf[rx_string_length++] = ch; rx_string_buf[rx_string_length] = '\0'; // null terminate buffer cmdLine.serial().printf("%s", &(rx_string_buf[rx_string_length-1]) ); // immediate character echo if (g_auxSerialCom_rx_eot != aux_serial_cmd_forwarding_rx_eot_not_used) { if (ch == g_auxSerialCom_rx_eot) { cmdLine.serial().printf("\r\n rx_eot %d", g_auxSerialCom_rx_eot); break; } } } } // end while (rx_string_length < (RX_STRING_BUF_SIZE-1)) #if 1 // print summary. is this needed? we already print aux rx as it is received. rx_string_buf[rx_string_length] = '\0'; // null terminate buffer cmdLine.serial().printf("\r\n >%s", outgoing_string); cmdLine.serial().printf("\r\n <%s\r\n", rx_string_buf); #endif // } break; // case '>' #endif // USE_AUX_SERIAL_CMD_FORWARDING // #if USE_DATALOGGER_TRIGGER // support Datalog trigger // TODO Datalog trigger menu // set Datalogger_Trigger to trigger_Halt or trigger_FreeRun // Datalogger_Trigger = trigger_Halt // halt the datalogger; continue accepting commands // Datalogger_Trigger = trigger_FreeRun // free run as fast as possible case 'L': case 'l': { // halt the datalogger; continue accepting commands Datalogger_Trigger = trigger_Halt; switch (cmdLine[1]) { // LT%1.0fs -- Datalog timer sleep=%1.3f seconds g_timer_interval_msec case 'T': case 't': { // timer (configure interval) "intermittent-sleep-mode" Datalogger_Trigger = trigger_Timer; Datalogger_Need_PrintHeader = true; g_timer_interval_counter = 0; // TODO: get g_timer_interval_msec from cmdLine // g_timer_interval_msec = 500; // g_timer_interval_count = 10; if (cmdLine.parse_int_dec("count", g_timer_interval_count)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- message_ms //~ cmdLine_AuxSerial.serial().printf("\r\n*** message_ms was set to %d ***\r\n", g_auxSerialCom_message_ms); cmdLine.serial().printf("\r\n g_timer_interval_count=%d", g_timer_interval_count); } if (cmdLine.parse_int_dec("base", g_timer_interval_msec)) { // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- message_ms //~ cmdLine_AuxSerial.serial().printf("\r\n*** message_ms was set to %d ***\r\n", g_auxSerialCom_message_ms); cmdLine.serial().printf("\r\n g_timer_interval_msec=%d", g_timer_interval_msec); } return; // instead of break; avoid falling through to print_command_prompt(); } break; // LIH3 -- Datalog when input high D3 // LIL6 -- Datalog when input low D6 case 'I': case 'i': { // TODO: switch cmdLine[2] configure High or Low, configure input pin } break; #if USE_DATALOGGER_SPIDeviceRegRead // L$ count=10 base=500ms addr=xxx data=xxx mask=xxx -- Datalog when SPI read of address matches mask case '$': { // TODO: scan cmdLine for regAddr, dataMask, testValue } break; #endif // USE_DATALOGGER_SPIDeviceRegRead #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions // L@ -- configures Datalogger_action_table case '@': { // L@ -- configures Datalogger_action_table int editRowIndex = 0; int edit_action = (int)action_noop; int edit_digitalOutPin = 0; int edit_condition = (int)condition_always; int edit_condition_channel = 0; double edit_condition_threshold = 0; // if (cmdLine.parse_int_dec("act", edit_action)) { //~ cmdLine.serial().printf("\r\n act=%d", edit_action); } if (cmdLine.parse_int_dec("pin", edit_digitalOutPin)) { //~ cmdLine.serial().printf("\r\n pin=%d", edit_digitalOutPin); } if (cmdLine.parse_int_dec("if", edit_condition)) { //~ cmdLine.serial().printf("\r\n if=%d", edit_condition); } if (cmdLine.parse_int_dec("ch", edit_condition_channel)) { //~ cmdLine.serial().printf("\r\n ch=%d", edit_condition_channel); } if (cmdLine.parse_double("x", edit_condition_threshold)) { //~ cmdLine.serial().printf("\r\n x=%d", edit_condition_threshold); } // // Edit the contents of Datalogger_action_table switch (cmdLine[2]) // L@... -- Edit the contents of Datalogger_action_table { // LT%1.0fs -- Datalog timer sleep=%1.3f seconds g_timer_interval_msec case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': // edit row data if (Datalogger_action_table_row_count > 0) { // if Datalogger_action_table_row_count == 0 then the table is empty // get row number to edit from cmdLine[2] editRowIndex = atoi(cmdLine.str()+2); // default is no change edit_action = Datalogger_action_table[editRowIndex].action; edit_digitalOutPin = Datalogger_action_table[editRowIndex].digitalOutPin; edit_condition = Datalogger_action_table[editRowIndex].condition; edit_condition_channel = Datalogger_action_table[editRowIndex].condition_channel; edit_condition_threshold = Datalogger_action_table[editRowIndex].condition_threshold; // scan cmdLine[2] for key=value of what fields to change if (cmdLine.parse_int_dec("act", edit_action)) { //~ cmdLine.serial().printf("\r\n act=%d", edit_action); } if (cmdLine.parse_int_dec("pin", edit_digitalOutPin)) { //~ cmdLine.serial().printf("\r\n pin=%d", edit_digitalOutPin); } if (cmdLine.parse_int_dec("if", edit_condition)) { //~ cmdLine.serial().printf("\r\n if=%d", edit_condition); } if (cmdLine.parse_int_dec("ch", edit_condition_channel)) { //~ cmdLine.serial().printf("\r\n ch=%d", edit_condition_channel); } if (cmdLine.parse_double("x", edit_condition_threshold)) { //~ cmdLine.serial().printf("\r\n x=%d", edit_condition_threshold); } // update row Datalogger_action_table[editRowIndex].action = (action_type_enum_t)edit_action; Datalogger_action_table[editRowIndex].digitalOutPin = edit_digitalOutPin; Datalogger_action_table[editRowIndex].condition = (action_condition_enum_t)edit_condition; Datalogger_action_table[editRowIndex].condition_channel = edit_condition_channel; Datalogger_action_table[editRowIndex].condition_threshold = edit_condition_threshold; } break; case '+': // add a new row at end of table if (Datalogger_action_table_row_count < ACTION_TABLE_ROW_MAX) { // if Datalogger_action_table_row_count => ACTION_TABLE_ROW_MAX then the table is full editRowIndex = Datalogger_action_table_row_count; Datalogger_action_table_row_count++; Datalogger_action_table[editRowIndex].action = (action_type_enum_t)edit_action; Datalogger_action_table[editRowIndex].digitalOutPin = edit_digitalOutPin; Datalogger_action_table[editRowIndex].condition = (action_condition_enum_t)edit_condition; Datalogger_action_table[editRowIndex].condition_channel = edit_condition_channel; Datalogger_action_table[editRowIndex].condition_threshold = edit_condition_threshold; } break; case '-': // delete row from table if (Datalogger_action_table_row_count > 0) { // if Datalogger_action_table_row_count == 0 then the table is empty if ((cmdLine[3] == '~') && (cmdLine[4] == '~') && (cmdLine[5] == '~')) { // L@-~~~ -- delete all rows from table Datalogger_action_table_row_count = 0; break; } editRowIndex = atoi(cmdLine.str()+3); // delete row editRowIndex from Datalogger_action_table for (int i = editRowIndex; i < (Datalogger_action_table_row_count-1); i++) { // copy row i+1 into row i Datalogger_action_table[i].action = Datalogger_action_table[i+1].action; Datalogger_action_table[i].digitalOutPin = Datalogger_action_table[i+1].digitalOutPin; Datalogger_action_table[i].condition = Datalogger_action_table[i+1].condition; Datalogger_action_table[i].condition_channel = Datalogger_action_table[i+1].condition_channel; Datalogger_action_table[i].condition_threshold = Datalogger_action_table[i+1].condition_threshold; } Datalogger_action_table_row_count--; } break; case '!': // pause the entire action table Datalogger_action_table_enabled = false; break; case '@': // enable the entire action table Datalogger_action_table_enabled = true; break; } // // Print the contents of Datalogger_action_table if (Datalogger_action_table_enabled) { cmdLine.serial().printf("Action table enabled; L@! to pause"); } else { cmdLine.serial().printf("Action table paused; L@@ to enable"); } //~ cmdLine.serial().printf("\r\n Datalogger_action_table_row_count=%d", Datalogger_action_table_row_count); for (int i = 0; i < Datalogger_action_table_row_count; i++) { cmdLine.serial().printf("\r\n L@%d", i); cmdLine.serial().printf(" act=%d", Datalogger_action_table[i].action); switch(Datalogger_action_table[i].action) { case action_digitalOutLow: case action_digitalOutHigh: cmdLine.serial().printf(" pin=%d", Datalogger_action_table[i].digitalOutPin); break; default: case action_noop: case action_trigger_Halt: case action_trigger_FreeRun: case action_trigger_Timer: case action_trigger_PlatformDigitalInput: case action_trigger_SPIDeviceRegRead: break; } switch(Datalogger_action_table[i].condition) { case condition_always: break; default: case condition_if_An_gt_threshold: case condition_if_An_lt_threshold: case condition_if_An_eq_threshold: case condition_if_An_ge_threshold: case condition_if_An_le_threshold: case condition_if_An_ne_threshold: case condition_if_AINn_gt_threshold: case condition_if_AINn_lt_threshold: case condition_if_AINn_eq_threshold: case condition_if_AINn_ge_threshold: case condition_if_AINn_le_threshold: case condition_if_AINn_ne_threshold: cmdLine.serial().printf(" if=%d", Datalogger_action_table[i].condition); cmdLine.serial().printf(" ch=%d", Datalogger_action_table[i].condition_channel); cmdLine.serial().printf(" x=%f", Datalogger_action_table[i].condition_threshold); break; } cmdLine.serial().printf(" -- "); switch(Datalogger_action_table[i].action) { case action_noop: cmdLine.serial().printf("No_Operation"); break; case action_digitalOutLow: cmdLine.serial().printf("digitalOutLow"); cmdLine.serial().printf(" D%d", Datalogger_action_table[i].digitalOutPin); break; case action_digitalOutHigh: cmdLine.serial().printf("digitalOutHigh"); cmdLine.serial().printf(" D%d", Datalogger_action_table[i].digitalOutPin); break; case action_trigger_Halt: cmdLine.serial().printf("trigger_Halt"); break; case action_trigger_FreeRun: cmdLine.serial().printf("trigger_FreeRun"); break; case action_trigger_Timer: cmdLine.serial().printf("trigger_Timer"); // print configuration for trigger_Timer cmdLine.serial().printf("(%d x %dmsec)", g_timer_interval_count, g_timer_interval_msec); break; case action_trigger_PlatformDigitalInput: cmdLine.serial().printf("trigger_PlatformDigitalInput"); // TODO: print configuration for trigger_PlatformDigitalInput //~ cmdLine.serial().printf("(%d)", g_config_PlatformDigitalInput); break; case action_trigger_SPIDeviceRegRead: cmdLine.serial().printf("trigger_SPIDeviceRegRead"); // TODO: print configuration for trigger_SPIDeviceRegRead //~ cmdLine.serial().printf("(%d)", g_config_SPIDeviceRegRead); break; } // switch(Datalogger_action_table[i].action) //~ cmdLine.serial().printf(" condition %d", Datalogger_action_table[i].condition); switch(Datalogger_action_table[i].condition) { case condition_always: cmdLine.serial().printf(" always"); break; case condition_if_An_gt_threshold: cmdLine.serial().printf(" if A%d > %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_An_lt_threshold: cmdLine.serial().printf(" if A%d < %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_An_eq_threshold: cmdLine.serial().printf(" if A%d == %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_An_ge_threshold: cmdLine.serial().printf(" if A%d >= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_An_le_threshold: cmdLine.serial().printf(" if A%d <= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_An_ne_threshold: cmdLine.serial().printf(" if A%d != %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_AINn_gt_threshold: cmdLine.serial().printf(" if AIN%d > %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_AINn_lt_threshold: cmdLine.serial().printf(" if AIN%d < %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_AINn_eq_threshold: cmdLine.serial().printf(" if AIN%d == %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_AINn_ge_threshold: cmdLine.serial().printf(" if AIN%d >= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_AINn_le_threshold: cmdLine.serial().printf(" if AIN%d <= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; case condition_if_AINn_ne_threshold: cmdLine.serial().printf(" if AIN%d != %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); break; } // switch(Datalogger_action_table[i].condition) } // for ...Datalogger_action_table_row_count // Print the contents of Datalogger_action_table cmdLine.serial().printf("\r\nAction table editing commands:"); if (Datalogger_action_table_row_count < ACTION_TABLE_ROW_MAX) { // if Datalogger_action_table_row_count => ACTION_TABLE_ROW_MAX then the table is full cmdLine.serial().printf("\r\n L@+ act=4 if=1 ch=5 x=12345 -- add new entry at end of table"); } if (Datalogger_action_table_row_count > 0) { // if Datalogger_action_table_row_count == 0 then the table is empty cmdLine.serial().printf("\r\n L@%d act=4 if=1 ch=5 x=12345 -- edit row %d", Datalogger_action_table_row_count-1, Datalogger_action_table_row_count-1); cmdLine.serial().printf("\r\n L@-%d -- delete row %d", Datalogger_action_table_row_count-1, Datalogger_action_table_row_count-1); cmdLine.serial().printf("\r\n L@-~~~ -- delete all rows"); cmdLine.serial().printf("\r\n L@! -- pause entire action table"); cmdLine.serial().printf("\r\n L@@ -- enable action table"); } // } // case L@ -- configures Datalogger_action_table break; #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions // LR -- Datalog free run as fast as possible case 'R': case 'r': // free run as fast as possible Datalogger_Trigger = trigger_FreeRun; Datalogger_Need_PrintHeader = true; return; // instead of break; avoid falling through to print_command_prompt(); #if defined(SPI_ADC_DeviceName) // SPI connected ADC // LS<channel ID><verb>: Configure SPI_AIN channels // channel ID: 0,1,2,... or - for all channels // verb: D for disable, V for Voltage, L for LSB case 'S': case 's': { for (int channel_index = 0; channel_index < NUM_DUT_ANALOG_IN_CHANNELS; channel_index++) { if ((cmdLine[2] == '-' /* all channels */) || (cmdLine[2] == '0'+channel_index) ) { // it's me // test cmdLine[3] to determine action // Platform_Enable_ch[channel_index] = Platform_AIN_xxxxx; switch (cmdLine[3]) { case 'D': case 'd': SPI_AIN_Enable_ch[channel_index] = SPI_AIN_Disable; break; case 'L': case 'l': SPI_AIN_Enable_ch[channel_index] = SPI_AIN_Enable_LSB; break; case 'V': case 'v': SPI_AIN_Enable_ch[channel_index] = SPI_AIN_Enable_Volt; break; // // // TODO: MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] case 'C': case 'c': { uint8_t hexValue = 0; hexValue = hexValueOfChar(cmdLine[5]) * 0x10 + hexValueOfChar(cmdLine[6]); switch (cmdLine[4]) { // // MAX11410 verb for configuring SPI_AIN_Cfg_v_filter_ch[channel_index] // cmdLine.serial().print(F("\r\n LS-CF34 -- Datalog SPI ADC channel '-'(all) v_filter 0x34")); case 'F': case 'f': SPI_AIN_Cfg_v_filter_ch[channel_index] = hexValue; break; // // MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] // cmdLine.serial().print(F("\r\n LS-CC42 -- Datalog SPI ADC channel '-'(all) v_ctrl 0x42")); case 'C': case 'c': SPI_AIN_Cfg_v_ctrl_ch[channel_index] = hexValue; break; // // MAX11410 verb for configuring SPI_AIN_Cfg_v_pga_ch[channel_index] // cmdLine.serial().print(F("\r\n LS-CP00 -- Datalog SPI ADC channel '-'(all) v_pga 0x00")); case 'P': case 'p': SPI_AIN_Cfg_v_pga_ch[channel_index] = hexValue; break; // // cmdLine.serial().print(F("\r\n LS5CU -- Datalog SPI ADC channel channel 5 v_ctrl Unipolar")); // ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) ? "BIPOLAR" : "Unipolar" case 'U': case 'u': SPI_AIN_Cfg_v_ctrl_ch[channel_index] = SPI_AIN_Cfg_v_ctrl_ch[channel_index] | 0x40; break; // // cmdLine.serial().print(F("\r\n LS5CB -- Datalog SPI ADC channel channel 5 v_ctrl Bipolar")); // ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) ? "BIPOLAR" : "Unipolar" case 'B': case 'b': SPI_AIN_Cfg_v_ctrl_ch[channel_index] = SPI_AIN_Cfg_v_ctrl_ch[channel_index] &~ 0x40; break; } break; } // // } } // end if cmdLine[2] channel_index } // end for channel_index Datalogger_PrintHeader(); Datalogger_Need_PrintHeader = true; } break; #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs // LA<channel ID><verb>: Configure Platform_AIN channels // channel ID: 0,1,2,... or - for all channels // verb: D for disable, V for Voltage, L for LSB case 'A': case 'a': { // all-channel: loop through all valid channel_index, test cmdLine[2] 'is it me'? // for channel_index loop through 0..NUM_DUT_ANALOG_IN_CHANNELS // if ((cmdLine[2] == '-' /* all channels */) // || (cmdLine[2] == '0'+channel_index) // ) { // // it's me // // test cmdLine[3] to determine action // // Platform_Enable_ch[channel_index] = Platform_AIN_xxxxx; // } end if cmdLine[2] channel_index // } end for channel_index for (int channel_index = 0; channel_index < NUM_PLATFORM_ANALOG_IN_CHANNELS; channel_index++) { if ((cmdLine[2] == '-' /* all channels */) || (cmdLine[2] == '0'+channel_index) ) { // it's me // test cmdLine[3] to determine action // Platform_Enable_ch[channel_index] = Platform_AIN_xxxxx; switch (cmdLine[3]) { case 'D': case 'd': Platform_Enable_ch[channel_index] = Platform_AIN_Disable; break; #if LOG_PLATFORM_ANALOG_IN_LSB case 'L': case 'l': Platform_Enable_ch[channel_index] = Platform_AIN_Enable_LSB; break; #endif // LOG_PLATFORM_ANALOG_IN_LSB #if LOG_PLATFORM_ANALOG_IN_VOLTS case 'V': case 'v': Platform_Enable_ch[channel_index] = Platform_AIN_Enable_Volt; break; #endif // LOG_PLATFORM_ANALOG_IN_VOLTS } } // end if cmdLine[2] channel_index } // end for channel_index // Datalogger_PrintHeader(cmdLine); if (Datalogger_enable_serial) { Datalogger_PrintHeader(cmdLine); } # if HAS_AUX_SERIAL if (Datalogger_enable_AUXserial) { Datalogger_PrintHeader(cmdLine_AUXserial); } # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL if (Datalogger_enable_DAPLINKserial) { Datalogger_PrintHeader(cmdLine_DAPLINKserial); } # endif // HAS_DAPLINK_SERIAL Datalogger_Need_PrintHeader = true; } break; #endif // defined(LOG_PLATFORM_AIN) case '>': // L>A -- Datalogger_enable_AUXserial // L>D -- Datalogger_enable_DAPLINKserial // L>S -- Datalogger_enable_serial switch (cmdLine[2]) { # if HAS_AUX_SERIAL case 'A': case 'a': Datalogger_enable_AUXserial = !Datalogger_enable_AUXserial; Datalogger_Need_PrintHeader = true; break; # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL case 'D': case 'd': Datalogger_enable_DAPLINKserial = !Datalogger_enable_DAPLINKserial; Datalogger_Need_PrintHeader = true; break; # endif // HAS_DAPLINK_SERIAL case 'S': case 's': Datalogger_enable_serial = !Datalogger_enable_serial; Datalogger_Need_PrintHeader = true; break; } break; // case '>' L>S serial enable toggle default: // TODO: L -- detailed help for datalog commands // #if USE_DATALOGGER_TRIGGER // support Datalog trigger #if 1 // USE_DATALOGGER_TRIGGER_HELP_BRIEF // Datalogger_Trigger = trigger_FreeRun // free run as fast as possible "always-on mode" cmdLine.serial().printf("\r\n LR -- Datalog free run as fast as possible"); // // Datalogger_Trigger = trigger_Timer // timer (configure interval) "intermittent-sleep-mode" //~ cmdLine.serial().printf("\r\n LT -- Datalog timer"); // trigger_Timer cmdLine.serial().printf("\r\n LT count=%d base=%dms -- Datalog timer", g_timer_interval_count, g_timer_interval_msec); // trigger_Timer // // TODO: Datalogger_Trigger = trigger_PlatformDigitalInput // platform digital input (configure digital input pin reference) //~ cmdLine.serial().printf("\r\n LI -- Datalog _______"); // trigger_PlatformDigitalInput // TODO: cmdLine.serial().printf("\r\n LIH3 -- Datalog when input high D3"); // trigger_PlatformDigitalInput // TODO: cmdLine.serial().printf("\r\n LIL6 -- Datalog when input low D6"); // trigger_PlatformDigitalInput // #if USE_DATALOGGER_SPIDeviceRegRead // TODO: Datalogger_Trigger = trigger_SPIDeviceRegRead // SPI device register read (configure regaddr, mask value, match value) //~ cmdLine.serial().printf("\r\n L$ -- Datalog _______"); // trigger_SPIDeviceRegRead cmdLine.serial().printf("\r\n L$ count=10 base=500ms addr=xxx data=xxx mask=xxx -- Datalog when SPI read of address matches mask"); // trigger_SPIDeviceRegRead #endif // USE_DATALOGGER_SPIDeviceRegRead // #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions cmdLine.serial().printf("\r\n L@ -- configures Datalogger_action_table; show more commands"); #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions // // #if defined(SPI_ADC_DeviceName) // SPI connected ADC // LS<channel ID><verb>: Configure SPI_AIN channels // channel ID: 0,1,2,... or - for all channels // verb: D for disable, V for Voltage, L for LSB cmdLine.serial().printf("\r\n LS-D -- Datalog SPI ADC channel '-'(all) Disable"); cmdLine.serial().printf("\r\n LS-V -- Datalog SPI ADC channel '-'(all) Volt"); cmdLine.serial().printf("\r\n LS-L -- Datalog SPI ADC channel '-'(all) LSB"); cmdLine.serial().printf("\r\n LS2D -- Datalog SPI ADC channel channel 2 Disable"); cmdLine.serial().printf("\r\n LS3V -- Datalog SPI ADC channel channel 3 Volt"); cmdLine.serial().printf("\r\n LS4L -- Datalog SPI ADC channel channel 4 LSB"); // // MAX11410 verb for configuring SPI_AIN_Cfg_v_filter_ch[channel_index] // cmdLine.serial().print(F("\r\n LS-CF34 -- Datalog SPI ADC channel channel 5 v_filter 0x34")); cmdLine.serial().printf("\r\n LS-CF34 -- Datalog SPI ADC channel '-'(all) v_filter 0x34"); // // MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] // cmdLine.serial().print(F("\r\n LS-CC42 -- Datalog SPI ADC channel '-'(all) v_ctrl 0x42")); cmdLine.serial().printf("\r\n LS-CC42 -- Datalog SPI ADC channel '-'(all) v_ctrl 0x42"); // // MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] // cmdLine.serial().print(F("\r\n LS5___ -- Datalog SPI ADC channel channel 5 v_ctrl")); // MAX11410 verb for configuring SPI_AIN_Cfg_v_ctrl_ch[channel_index] cmdLine.serial().printf("\r\n LS5CU -- Datalog SPI ADC channel channel 5 v_ctrl Unipolar"); // ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) ? "BIPOLAR" : "Unipolar" cmdLine.serial().printf("\r\n LS5CB -- Datalog SPI ADC channel channel 5 v_ctrl Bipolar"); // ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) ? "BIPOLAR" : "Unipolar" // // MAX11410 verb for configuring SPI_AIN_Cfg_v_pga_ch[channel_index] // cmdLine.serial().print(F("\r\n LS5CP00 -- Datalog SPI ADC channel channel 5 v_pga 0x00")); cmdLine.serial().printf("\r\n LS-CP00 -- Datalog SPI ADC channel '-'(all) v_pga 0x00"); // #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs // LA<channel ID><verb>: Configure Platform_AIN channels // channel ID: 0,1,2,... or - for all channels // verb: D for disable, V for Voltage, L for LSB cmdLine.serial().printf("\r\n LA-D -- Datalog Platform-AIN all-channel Disable"); #if LOG_PLATFORM_ANALOG_IN_VOLTS cmdLine.serial().printf("\r\n LA-V -- Datalog Platform-AIN all-channel Volt"); #endif // LOG_PLATFORM_ANALOG_IN_VOLTS #if LOG_PLATFORM_ANALOG_IN_LSB cmdLine.serial().printf("\r\n LA-L -- Datalog Platform-AIN all-channel LSB"); #endif // LOG_PLATFORM_ANALOG_IN_LSB cmdLine.serial().printf("\r\n LA2D -- Datalog Platform-AIN channel 2 Disable"); #if LOG_PLATFORM_ANALOG_IN_VOLTS cmdLine.serial().printf("\r\n LA3V -- Datalog Platform-AIN channel 3 Volt"); #endif // LOG_PLATFORM_ANALOG_IN_VOLTS #if LOG_PLATFORM_ANALOG_IN_LSB cmdLine.serial().printf("\r\n LA4L -- Datalog Platform-AIN channel 4 LSB"); #endif // LOG_PLATFORM_ANALOG_IN_LSB #endif // defined(LOG_PLATFORM_AIN) #endif // USE_DATALOGGER_TRIGGER support Datalog trigger # if HAS_AUX_SERIAL cmdLine.serial().printf("\r\n L>A -- Datalogger_enable_AUXserial %s", (Datalogger_enable_AUXserial?"disable":"enable")); # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL cmdLine.serial().printf("\r\n L>D -- Datalogger_enable_DAPLINKserial %s", (Datalogger_enable_DAPLINKserial?"disable":"enable")); # endif // HAS_DAPLINK_SERIAL cmdLine.serial().printf("\r\n L>S -- Datalogger_enable_serial %s", (Datalogger_enable_serial?"disable":"enable")); // #else // USE_DATALOGGER_TRIGGER_HELP_BRIEF #endif // USE_DATALOGGER_TRIGGER_HELP_BRIEF break; } // switch (cmdLine[1]) inside case 'L' } break; // case 'L' #endif // USE_DATALOGGER_TRIGGER support Datalog trigger // // Application-specific commands here // alphanumeric command codes A-Z,a-z,0-9 reserved for application use // #if APPLICATION_ArduinoPinsMonitor #endif // APPLICATION_ArduinoPinsMonitor // // TODO1: add new commands here // default: #if APPLICATION_MAX5715 // main_menu_onEOLcommandParser print command prompt extern bool MAX5715_menu_onEOLcommandParser(CmdLine & cmdLine); // defined in Test_Menu_MAX5715.cpp if (!MAX5715_menu_onEOLcommandParser(cmdLine)) #elif APPLICATION_MAX11131 // main_menu_onEOLcommandParser print command prompt extern bool MAX11131_menu_onEOLcommandParser(CmdLine & cmdLine); // defined in Test_Menu_MAX11131.cpp if (!MAX11131_menu_onEOLcommandParser(cmdLine)) #elif APPLICATION_MAX5171 // main_menu_onEOLcommandParser print command prompt extern bool MAX5171_menu_onEOLcommandParser(CmdLine & cmdLine); // defined in Test_Menu_MAX5171.cpp if (!MAX5171_menu_onEOLcommandParser(cmdLine)) #elif APPLICATION_MAX11410 // main_menu_onEOLcommandParser print command prompt extern bool MAX11410_menu_onEOLcommandParser(CmdLine & cmdLine); // defined in Test_Menu_MAX11410.cpp if (!MAX11410_menu_onEOLcommandParser(cmdLine)) #elif APPLICATION_MAX12345 // main_menu_onEOLcommandParser print command prompt extern bool MAX12345_menu_onEOLcommandParser(CmdLine & cmdLine); // defined in Test_Menu_MAX12345.cpp if (!MAX12345_menu_onEOLcommandParser(cmdLine)) #else if (0) // not_handled_by_device_submenu #endif { cmdLine.serial().printf("\r\n unknown command "); //~ cmdLine.serial().printf("\r\n unknown command 0x%2.2x \"%s\"\r\n", cmdLine.str()[0], cmdLine.str()); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\r\n unknown command 0x%2.2x \"%s\"\r\n", cmdLine.str()[0], cmdLine.str()); # endif // HAS_DAPLINK_SERIAL } } // switch (cmdLine[0]) // // print command prompt // print_command_prompt(); cmdLine.serial().printf("\r\n> "); } #endif // USE_CMDLINE_MENUS support CmdLine command menus //-------------------------------------------------- // print column header banner for csv data columns void Datalogger_PrintHeader(CmdLine& cmdLine) { // column header banner for csv data columns int field_index = 0; #if defined(SPI_ADC_DeviceName) // SPI connected ADC for (int channel_index = 0; channel_index < NUM_DUT_ANALOG_IN_CHANNELS; channel_index++) { if (SPI_AIN_Enable_ch[channel_index] == SPI_AIN_Disable) { continue; } // comma between fields if (field_index > 0) { cmdLine.serial().printf(","); } field_index++; // AIN_index column header prefix #if SPI_ADC_DeviceName == MAX11410 // SPI connected ADC // MAX11410 v_ctrl bipolar configuration or unipolar? if ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) { cmdLine.serial().printf("\"AIN%d-%d_BIP", channel_index, channel_index+1); } else { cmdLine.serial().printf("\"AIN%d", channel_index); } #else // SPI_ADC_DeviceName == MAX11410 // SPI connected ADC cmdLine.serial().printf("\"AIN%d", channel_index); #endif // SPI_ADC_DeviceName == MAX11410 // SPI connected ADC if (SPI_AIN_Enable_ch[channel_index] == SPI_AIN_Enable_LSB) { // _LSB column header suffix cmdLine.serial().printf("_LSB"); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("_LSB"); # endif // HAS_DAPLINK_SERIAL } else if (SPI_AIN_Enable_ch[channel_index] == SPI_AIN_Enable_Volt) { // _V column header suffix cmdLine.serial().printf("_V"); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("_V"); # endif // HAS_DAPLINK_SERIAL } #if HAS_SPI_AIN_customChannelHeader // Optional custom per-channel header suffix // Optional custom per-channel header suffix if (SPI_AIN_customChannelHeader_ch[channel_index] && SPI_AIN_customChannelHeader_ch[channel_index][0]) { // not a null pointer, and not an empty string cmdLine.serial().printf("_%s", SPI_AIN_customChannelHeader_ch[channel_index]); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("_%s", SPI_AIN_customChannelHeader_ch[channel_index]); # endif // HAS_DAPLINK_SERIAL } else { // no custom channel name for this channel //~ cmdLine.serial().printf("~"); # if HAS_DAPLINK_SERIAL //~ cmdLine_DAPLINKserial.serial().printf("~"); # endif // HAS_DAPLINK_SERIAL } #endif // HAS_SPI_AIN_customChannelHeader // close quote cmdLine.serial().printf("\""); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\""); # endif // HAS_DAPLINK_SERIAL } #if VERIFY_PART_ID_IN_LOOP // PART_ID field: Device ID Validation cmdLine.serial().printf(",\"PART_ID\""); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf(",\"PART_ID\""); # endif // HAS_DAPLINK_SERIAL #endif // VERIFY_PART_ID_IN_LOOP #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs for (int channel_index = 0; channel_index < NUM_PLATFORM_ANALOG_IN_CHANNELS; channel_index++) { if (Platform_Enable_ch[channel_index] == Platform_AIN_Disable) { continue; } // comma between fields if (field_index > 0) { cmdLine.serial().printf(","); } field_index++; // AIN_index column header prefix cmdLine.serial().printf("\"A%d", channel_index); if (Platform_Enable_ch[channel_index] == Platform_AIN_Enable_LSB) { // _LSB column header suffix cmdLine.serial().printf("_LSB"); } if (Platform_Enable_ch[channel_index] == Platform_AIN_Enable_Volt) { // _V column header suffix cmdLine.serial().printf("_V"); } #if HAS_Platform_AIN_customChannelHeader // Optional custom per-channel header suffix // Optional custom per-channel header suffix if (Platform_AIN_customChannelHeader_ch[channel_index] && Platform_AIN_customChannelHeader_ch[channel_index][0]) { // not a null pointer, and not an empty string cmdLine.serial().printf("_%s", Platform_AIN_customChannelHeader_ch[channel_index]); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("_%s", Platform_AIN_customChannelHeader_ch[channel_index]); # endif // HAS_DAPLINK_SERIAL } else { // no custom channel name for this channel //~ cmdLine.serial().printf("~"); # if HAS_DAPLINK_SERIAL //~ cmdLine_DAPLINKserial.serial().printf("~"); # endif // HAS_DAPLINK_SERIAL } #endif // HAS_Platform_AIN_customChannelHeader // close quote cmdLine.serial().printf("\""); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\""); # endif // HAS_DAPLINK_SERIAL } #endif // defined(LOG_PLATFORM_AIN) // end of column header line cmdLine.serial().printf("\r\n"); # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\r\n"); # endif // HAS_DAPLINK_SERIAL } // void Datalogger_PrintHeader() //-------------------------------------------------- void Datalogger_AcquireRow() { // CODE GENERATOR: example code: has no member function ScanStandardExternalClock // CODE GENERATOR: example code: has no member function ReadAINcode // CODE GENERATOR: example code: member function Read_All_Voltages #if defined(SPI_ADC_DeviceName) // SPI connected ADC // Measure ADC channels in sequence from AIN0 to channelNumber_0_9. // @param[in] g_MAX11410_device.channelNumber_0_15: AIN Channel Number // @param[in] g_MAX11410_device.PowerManagement_0_2: 0=Normal, 1=AutoShutdown, 2=AutoStandby // @param[in] g_MAX11410_device.chan_id_0_1: ADC_MODE_CONTROL.CHAN_ID //~ int channelId_0_9 = NUM_DUT_ANALOG_IN_CHANNELS-1+1; //g_MAX11410_device.channelNumber_0_15 = channelId_0_9; //g_MAX11410_device.PowerManagement_0_2 = 0; //g_MAX11410_device.chan_id_0_1 = 1; //---------------------------------------- // scan AIN0..AIN9 // #if 1 g_MAX11410_device.v_filter = SPI_AIN_Cfg_v_filter_ch[0]; g_MAX11410_device.v_ctrl = SPI_AIN_Cfg_v_ctrl_ch[0]; g_MAX11410_device.v_pga = SPI_AIN_Cfg_v_pga_ch[0]; // // diagnostic GPIO pulse on MAX11410 GP1 pin (0xc3 = logic 0, 0xc4 = logic 1) g_MAX11410_device.RegWrite(MAX11410::CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc3); // GP1 = 0 // int field_index = 0; for (int channel_index = 0; channel_index < NUM_DUT_ANALOG_IN_CHANNELS; channel_index++) { if (SPI_AIN_Enable_ch[channel_index] == SPI_AIN_Disable) { continue; } field_index++; g_MAX11410_device.v_filter = SPI_AIN_Cfg_v_filter_ch[channel_index]; g_MAX11410_device.v_ctrl = SPI_AIN_Cfg_v_ctrl_ch[channel_index]; g_MAX11410_device.v_pga = SPI_AIN_Cfg_v_pga_ch[channel_index]; // // WIP SampleRate_of_FILTER_CONV_START() MAX11410EMC-FW slow ODR 10Sps #262 // adjust the MAX11410.loop_limit value if the sample rate is set to a value slower than 20sps // SampleRate_of_FILTER_CONV_START(uint8_t FILTER_RegValue, uint8_t CONV_START_RegValue) double SampleRate = g_MAX11410_device.SampleRate_of_FILTER_CONV_START(g_MAX11410_device.v_filter, MAX11410::MAX11410_CONV_TYPE_enum_t::CONV_TYPE_01_Continuous); if (SampleRate < 20.0) { g_MAX11410_device.loop_limit = 32767; // TODO: is this timeout long enough for the slow output data rates? } // // diagnostic GPIO pulse on MAX11410 GP0 pin (0xc3 = logic 0, 0xc4 = logic 1) g_MAX11410_device.RegWrite(MAX11410::CMD_r000_0100_dddd_xddd_GP0_CTRL, 0xc3); // GP0 = 0 // #if SPI_ADC_DeviceName == MAX11410 // SPI connected ADC // MAX11410 v_ctrl bipolar configuration or unipolar? if ((SPI_AIN_Cfg_v_ctrl_ch[channel_index] & 0x40) == 0) { const MAX11410::MAX11410_AINP_SEL_enum_t ainp = (MAX11410::MAX11410_AINP_SEL_enum_t)(channel_index); const MAX11410::MAX11410_AINN_SEL_enum_t ainn = (MAX11410::MAX11410_AINN_SEL_enum_t)(channel_index^1); SPI_AIN_Voltage[channel_index] = g_MAX11410_device.Measure_Voltage(ainp, ainn); // @post AINcode[ainp]: measurement result LSB code } else { const MAX11410::MAX11410_AINP_SEL_enum_t ainp = (MAX11410::MAX11410_AINP_SEL_enum_t)(channel_index); const MAX11410::MAX11410_AINN_SEL_enum_t ainn = MAX11410::AINN_SEL_1010_GND; SPI_AIN_Voltage[channel_index] = g_MAX11410_device.Measure_Voltage(ainp, ainn); // @post AINcode[ainp]: measurement result LSB code } #endif // SPI_ADC_DeviceName == MAX11410 // SPI connected ADC // // diagnostic GPIO pulse on MAX11410 GP0 pin (0xc3 = logic 0, 0xc4 = logic 1) g_MAX11410_device.RegWrite(MAX11410::CMD_r000_0100_dddd_xddd_GP0_CTRL, 0xc4); // GP0 = 1 // } // diagnostic GPIO pulse on MAX11410 GP1 pin (0xc3 = logic 0, 0xc4 = logic 1) g_MAX11410_device.RegWrite(MAX11410::CMD_r000_0101_dddd_xddd_GP1_CTRL, 0xc4); // GP1 = 1 #else g_MAX11410_device.Read_All_Voltages(); #endif #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs // mbed // Platform board uses simple analog inputs #if LOG_PLATFORM_ANALOG_IN_LSB Platform_LSB[0] = analogIn0.read(); Platform_LSB[1] = analogIn1.read(); Platform_LSB[2] = analogIn2.read(); Platform_LSB[3] = analogIn3.read(); Platform_LSB[4] = analogIn4.read(); Platform_LSB[5] = analogIn5.read(); #endif #if LOG_PLATFORM_ANALOG_IN_VOLTS Platform_Voltage[0] = analogIn0.read() * adc_full_scale_voltage[0]; Platform_Voltage[1] = analogIn1.read() * adc_full_scale_voltage[1]; Platform_Voltage[2] = analogIn2.read() * adc_full_scale_voltage[2]; Platform_Voltage[3] = analogIn3.read() * adc_full_scale_voltage[3]; Platform_Voltage[4] = analogIn4.read() * adc_full_scale_voltage[4]; Platform_Voltage[5] = analogIn5.read() * adc_full_scale_voltage[5]; #endif #endif // defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs #if VERIFY_PART_ID_IN_LOOP // PART_ID field: Device ID Validation const uint32_t part_id_expect = 0x000F02; uint32_t part_id_readback; g_MAX11410_device.RegRead(MAX11410::CMD_r001_0001_xxxx_xxxx_xxxx_xxxx_xxxx_xddd_PART_ID, &part_id_readback); #endif // VERIFY_PART_ID_IN_LOOP } // void Datalogger_AcquireRow() #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions //-------------------------------------------------- // TODO: Datalogger_RunActionTable() between Datalogger_AcquireRow() and Datalogger_PrintRow() void Datalogger_RunActionTable() { if (Datalogger_action_table_enabled == false) { return; } // TODO: verbose Datalogger_RunActionTable() emit a csv column ,"Action" // TODO: assert Datalogger_action_table_row_count < ACTION_TABLE_ROW_MAX // for Datalogger_action_table[0..Datalogger_action_table_row_count] for (int i = 0; i < Datalogger_action_table_row_count; i++) { // skip if Datalogger_action_table[i].action == action_noop if (Datalogger_action_table[i].action == action_noop) { continue; } // TODO: test Datalogger_action_table[i].condition "if=" // TODO: Could the .condition field also distinguish Platform ADC from SPI ADC? // That way we keep both sets of ADC channels in separate lists // if=0 -- always // if=1,2,3,4,5,6 -- Platform_Voltage[ch] > < == >= <= != threshold // if=7,8,9,10,11,12 -- SPI_AIN_Voltage[ch] > < == >= <= != threshold // also, are we comparing code or voltage? // TODO: selected Datalogger_action_table[i].condition_channel // Datalogger could have both platform ADC and external SPI ADC channels // if SPI_ADC_DeviceName // NUM_DUT_ANALOG_IN_CHANNELS // SPI_AIN_Enable_ch[] // SPI_AIN_customChannelHeader_ch[] // SPI_AIN_Voltage[] // if LOG_PLATFORM_AIN // NUM_PLATFORM_ANALOG_IN_CHANNELS // analogInPin_fullScaleVoltage[] // Platform_Enable_ch[] // Platform_AIN_customChannelHeader_ch[] // Platform_Voltage[] // TODO: selected Datalogger_action_table[i].condition_threshold switch(Datalogger_action_table[i].condition) { case condition_always: //~ cmdLine.serial().printf(" always"); break; case condition_if_An_gt_threshold: //~ cmdLine.serial().printf(" if A%d > %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs if (!(Platform_Voltage[Datalogger_action_table[i].condition_channel] > Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(LOG_PLATFORM_AIN) break; case condition_if_An_lt_threshold: //~ cmdLine.serial().printf(" if A%d < %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs if (!(Platform_Voltage[Datalogger_action_table[i].condition_channel] < Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(LOG_PLATFORM_AIN) break; case condition_if_An_eq_threshold: //~ cmdLine.serial().printf(" if A%d == %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs if (!(Platform_Voltage[Datalogger_action_table[i].condition_channel] == Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(LOG_PLATFORM_AIN) break; case condition_if_An_ge_threshold: //~ cmdLine.serial().printf(" if A%d >= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs if (!(Platform_Voltage[Datalogger_action_table[i].condition_channel] >= Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(LOG_PLATFORM_AIN) break; case condition_if_An_le_threshold: //~ cmdLine.serial().printf(" if A%d <= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs if (!(Platform_Voltage[Datalogger_action_table[i].condition_channel] <= Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(LOG_PLATFORM_AIN) break; case condition_if_An_ne_threshold: //~ cmdLine.serial().printf(" if A%d != %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs #endif // defined(LOG_PLATFORM_AIN) if (!(Platform_Voltage[Datalogger_action_table[i].condition_channel] != Datalogger_action_table[i].condition_threshold)) { continue; } break; case condition_if_AINn_gt_threshold: //~ cmdLine.serial().printf(" if AIN%d > %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (!(SPI_AIN_Voltage[Datalogger_action_table[i].condition_channel] > Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC break; case condition_if_AINn_lt_threshold: //~ cmdLine.serial().printf(" if AIN%d < %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (!(SPI_AIN_Voltage[Datalogger_action_table[i].condition_channel] < Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC break; case condition_if_AINn_eq_threshold: //~ cmdLine.serial().printf(" if AIN%d == %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (!(SPI_AIN_Voltage[Datalogger_action_table[i].condition_channel] == Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC break; case condition_if_AINn_ge_threshold: //~ cmdLine.serial().printf(" if AIN%d >= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (!(SPI_AIN_Voltage[Datalogger_action_table[i].condition_channel] >= Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC break; case condition_if_AINn_le_threshold: //~ cmdLine.serial().printf(" if AIN%d <= %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (!(SPI_AIN_Voltage[Datalogger_action_table[i].condition_channel] <= Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC break; case condition_if_AINn_ne_threshold: //~ cmdLine.serial().printf(" if AIN%d != %f", Datalogger_action_table[i].condition_channel, Datalogger_action_table[i].condition_threshold); #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (!(SPI_AIN_Voltage[Datalogger_action_table[i].condition_channel] != Datalogger_action_table[i].condition_threshold)) { continue; } #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC break; } // switch(Datalogger_action_table[i].condition) // selected Datalogger_action_table[i].digitalOutPin // perform selected Datalogger_action_table[i].action switch(Datalogger_action_table[i].action) { case action_noop: //~ cmdLine.serial().printf("No_Operation"); break; case action_digitalOutLow: { //~ cmdLine.serial().printf("digitalOutLow"); //~ cmdLine.serial().printf(" D%d", Datalogger_action_table[i].digitalOutPin); // perform action digitalOutLow int pinIndex = Datalogger_action_table[i].digitalOutPin; #if ARDUINO_STYLE pinMode(pinIndex, OUTPUT); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 digitalWrite(pinIndex, LOW); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 #else DigitalInOut& digitalInOutPin = find_digitalInOutPin(pinIndex); digitalInOutPin.output(); digitalInOutPin.write(0); #endif } break; case action_digitalOutHigh: { //~ cmdLine.serial().printf("digitalOutHigh"); //~ cmdLine.serial().printf(" D%d", Datalogger_action_table[i].digitalOutPin); // perform action digitalOutHigh int pinIndex = Datalogger_action_table[i].digitalOutPin; #if ARDUINO_STYLE pinMode(pinIndex, OUTPUT); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 digitalWrite(pinIndex, HIGH); // digital pins 0, 1, 2, .. 13, analog input pins A0, A1, .. A5 #else DigitalInOut& digitalInOutPin = find_digitalInOutPin(pinIndex); digitalInOutPin.output(); digitalInOutPin.write(1); #endif } break; case action_trigger_Halt: //~ cmdLine.serial().printf("trigger_Halt"); // perform action trigger_Halt Datalogger_Trigger = trigger_Halt; //~ Datalogger_Need_PrintHeader = true; break; case action_trigger_FreeRun: //~ cmdLine.serial().printf("trigger_FreeRun"); // perform action trigger_FreeRun Datalogger_Trigger = trigger_FreeRun; //~ Datalogger_Need_PrintHeader = true; break; case action_trigger_Timer: //~ cmdLine.serial().printf("trigger_Timer"); //~ // print configuration for trigger_Timer //~ cmdLine.serial().printf("(%d x %dmsec)", g_timer_interval_count, g_timer_interval_msec); // perform action trigger_Timer Datalogger_Trigger = trigger_Timer; //~ Datalogger_Need_PrintHeader = true; break; case action_trigger_PlatformDigitalInput: //~ cmdLine.serial().printf("trigger_PlatformDigitalInput"); //~ // TODO: print configuration for trigger_PlatformDigitalInput //~ cmdLine.serial().printf("(%d)", g_config_PlatformDigitalInput); // TODO: perform action action_trigger_PlatformDigitalInput Datalogger_Trigger = trigger_PlatformDigitalInput; //~ Datalogger_Need_PrintHeader = true; break; case action_trigger_SPIDeviceRegRead: //~ cmdLine.serial().printf("trigger_SPIDeviceRegRead"); //~ // TODO: print configuration for trigger_SPIDeviceRegRead //~ cmdLine.serial().printf("(%d)", g_config_SPIDeviceRegRead); // TODO: perform action action_trigger_SPIDeviceRegRead Datalogger_Trigger = trigger_SPIDeviceRegRead; //~ Datalogger_Need_PrintHeader = true; break; } // switch(Datalogger_action_table[i].action) // consider next row of action table } // for ...Datalogger_action_table_row_count } #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions //-------------------------------------------------- void Datalogger_PrintRow(CmdLine& cmdLine) { int field_index = 0; #if defined(SPI_ADC_DeviceName) // SPI connected ADC for (int channel_index = 0; channel_index < NUM_DUT_ANALOG_IN_CHANNELS; channel_index++) { if (SPI_AIN_Enable_ch[channel_index] == SPI_AIN_Disable) { continue; } // comma between fields if (field_index > 0) { cmdLine.serial().printf(","); } field_index++; if (SPI_AIN_Enable_ch[channel_index] == Platform_AIN_Enable_LSB) { cmdLine.serial().printf("%d", g_MAX11410_device.AINcode[channel_index]); } if (SPI_AIN_Enable_ch[channel_index] == Platform_AIN_Enable_Volt) { // TODO: report Voltage instead of LSB // Serial.print(SPI_AIN_Voltage[channel_index]); static char strOutLineBuffer[16]; cmdLine.serial().printf("%6.6f", SPI_AIN_Voltage[channel_index]); } } #if VERIFY_PART_ID_IN_LOOP // PART_ID field: Device ID Validation if (part_id_readback != part_id_expect) { cmdLine.serial().printf(",\"FAIL\""); need_reinit = true; #if defined(SPI_ADC_DeviceName) // SPI connected ADC g_MAX11410_device.Init(); g_MAX11410_device.v_filter = SPI_AIN_Cfg_v_filter_ch[0]; g_MAX11410_device.v_ctrl = SPI_AIN_Cfg_v_ctrl_ch[0]; g_MAX11410_device.v_pga = SPI_AIN_Cfg_v_pga_ch[0]; #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC } else { cmdLine.serial().printf(",\"OK\""); } #endif // VERIFY_PART_ID_IN_LOOP #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC #if defined(LOG_PLATFORM_AIN) // Datalog Arduino platform analog inputs for (int channel_index = 0; channel_index < NUM_PLATFORM_ANALOG_IN_CHANNELS; channel_index++) { if (Platform_Enable_ch[channel_index] == Platform_AIN_Disable) { continue; } // comma between fields if (field_index > 0) { cmdLine.serial().printf(","); } field_index++; if (Platform_Enable_ch[channel_index] == Platform_AIN_Enable_LSB) { #if LOG_PLATFORM_ANALOG_IN_LSB cmdLine.serial().printf("%u", Platform_LSB[channel_index]); #endif } if (Platform_Enable_ch[channel_index] == Platform_AIN_Enable_Volt) { #if LOG_PLATFORM_ANALOG_IN_VOLTS // Datalog Volts omit V suffix from numbers #275 // because Excel graphs can't handle numbers that have a suffix. cmdLine.serial().printf("%6.6f", Platform_Voltage[channel_index]); #endif } } #endif // defined(LOG_PLATFORM_AIN) if (need_reinit) { #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (g_MAX11410_device.Init() == 0) { //~ cmdLine.serial().printf(",\"Init() failed\""); } else { //~ cmdLine.serial().printf(",\"Init() success\""); #if USE_CUSTOM_REG_INIT // custom_reg_init_addr[], custom_reg_init_data[], custom_reg_init_count // in Datalogger_PrintRow(), when part_id test fails, // apply list of custom register writes after re-init // custom_reg_init_addr[], custom_reg_init_data[], custom_reg_init_count for (unsigned int index = 0; index < custom_reg_init_count; index++) { uint8_t regAddress = custom_reg_init_addr[index]; uint32_t regData = custom_reg_init_data[index]; cmdLine.serial().printf("*%s=0x%06.6x", g_MAX11410_device.RegName(regAddress), regData); g_MAX11410_device.RegWrite((MAX11410::MAX11410_CMD_enum_t)regAddress, regData); } #endif // USE_CUSTOM_REG_INIT g_MAX11410_device.v_filter = SPI_AIN_Cfg_v_filter_ch[0]; g_MAX11410_device.v_ctrl = SPI_AIN_Cfg_v_ctrl_ch[0]; g_MAX11410_device.v_pga = SPI_AIN_Cfg_v_pga_ch[0]; need_reinit = false; } #else // defined(SPI_ADC_DeviceName) // SPI connected ADC need_reinit = false; #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC } cmdLine.serial().printf("\r\n"); if (need_reinit) { //~ delay(500); // platform_delay_ms 500ms timing delay function } } // void Datalogger_PrintRow() // example code main function int main() { // setup: put your setup code here, to run once #if USE_CMDLINE_MENUS // support CmdLine command menus // Configure serial ports cmdLine.clear(); //~ cmdLine.serial().printf("\r\n cmdLine.serial().printf test\r\n"); cmdLine.onEOLcommandParser = main_menu_onEOLcommandParser; //~ cmdLine.diagnostic_led_EOF = diagnostic_led_EOF; /// CmdLine::set_immediate_handler(char, functionPointer_void_void_on_immediate_0x21); //~ cmdLine.on_immediate_0x21 = on_immediate_0x21; //~ cmdLine.on_immediate_0x7b = on_immediate_0x7b; //~ cmdLine.on_immediate_0x7d = on_immediate_0x7d; # if HAS_DAPLINK_SERIAL #if 0 // HARD CRASH -- USE_AUX_SERIAL_CMD_FORWARDING // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- init aux baud rate g_auxSerialCom_baud // TODO: if g_auxSerialCom_baud is other than the default 9600 baud, // then the auxiliary serial port baud rate should be updated. # if HAS_AUX_SERIAL # else // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- init aux baud rate g_auxSerialCom_baud DAPLINKserial.baud(g_auxSerialCom_baud); # endif #endif // USE_AUX_SERIAL_CMD_FORWARDING cmdLine_DAPLINKserial.clear(); //~ cmdLine_DAPLINKserial.serial().printf("\r\n cmdLine_DAPLINKserial.serial().printf test\r\n"); cmdLine_DAPLINKserial.onEOLcommandParser = main_menu_onEOLcommandParser; //~ cmdLine_DAPLINKserial.on_immediate_0x21 = on_immediate_0x21; //~ cmdLine_DAPLINKserial.on_immediate_0x7b = on_immediate_0x7b; //~ cmdLine_DAPLINKserial.on_immediate_0x7d = on_immediate_0x7d; # endif # if HAS_AUX_SERIAL // TX/RX auxiliary UART port cmdLine_AUXserial AUXserial #if 0 // HARD CRASH -- USE_AUX_SERIAL_CMD_FORWARDING // Command forwarding to AUX serial TX/RX cmdLine_AUXserial #257 -- init aux baud rate g_auxSerialCom_baud // TODO: if g_auxSerialCom_baud is other than the default 9600 baud, // then the auxiliary serial port baud rate should be updated. AUXserial.baud(g_auxSerialCom_baud); #endif // USE_AUX_SERIAL_CMD_FORWARDING cmdLine_AUXserial.clear(); //~ cmdLine_AUXserial.serial().printf("\r\n cmdLine_AUXserial.serial().printf test\r\n"); cmdLine_AUXserial.onEOLcommandParser = main_menu_onEOLcommandParser; //~ cmdLine_AUXserial.on_immediate_0x21 = on_immediate_0x21; //~ cmdLine_AUXserial.on_immediate_0x7b = on_immediate_0x7b; //~ cmdLine_AUXserial.on_immediate_0x7d = on_immediate_0x7d; # endif // HAS_AUX_SERIAL #endif // USE_CMDLINE_MENUS support CmdLine command menus // example code: serial port banner message wait(3); // 3000ms timing delay function, platform-specific #if defined(SPI_ADC_DeviceName) // SPI connected ADC cmdLine.serial().printf("\r\nDataLogger_MAX11410\r\n"); // instead of Hello_MAX11410 #else // defined(SPI_ADC_DeviceName) // SPI connected ADC cmdLine.serial().printf("\r\nInternal_DataLogger\r\n"); // instead of Hello_MAX11410 # if HAS_DAPLINK_SERIAL cmdLine_DAPLINKserial.serial().printf("\r\nInternal_DataLogger\r\n"); // instead of Hello_MAX11410 # endif // HAS_DAPLINK_SERIAL # if HAS_AUX_SERIAL cmdLine_AUXserial.serial().printf("\r\nInternal_DataLogger\r\n"); // instead of Hello_MAX11410 # endif // HAS_AUX_SERIAL #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // CODE GENERATOR: get spi properties from device #if defined(SPI_ADC_DeviceName) // SPI connected ADC if (g_SPI_SCLK_Hz > g_MAX11410_device.get_spi_frequency()) { // Device limits SPI SCLK frequency g_SPI_SCLK_Hz = g_MAX11410_device.get_spi_frequency(); cmdLine.serial().printf("\r\nMAX11410 limits SPI SCLK frequency to %ld Hz\r\n", g_SPI_SCLK_Hz); g_MAX11410_device.Init(); } if (g_MAX11410_device.get_spi_frequency() > g_SPI_SCLK_Hz) { // Platform limits SPI SCLK frequency g_MAX11410_device.spi_frequency(g_SPI_SCLK_Hz); cmdLine.serial().printf("\r\nPlatform limits MAX11410 SPI SCLK frequency to %ld Hz\r\n", g_SPI_SCLK_Hz); g_MAX11410_device.Init(); } // g_SPI_dataMode = g_MAX11410_device.get_spi_dataMode(); while (g_MAX11410_device.Init() == 0) { wait(3); // 3000ms timing delay function, platform-specific cmdLine.serial().printf("\r\nMAX11410 Init failed; retry...\r\n"); } // ---------- CUSTOMIZED from MAX11410_Hello after g_MAX11410_device.Init() ---------- #if defined(SPI_ADC_DeviceName) // SPI connected ADC g_MAX11410_device.v_filter = SPI_AIN_Cfg_v_filter_ch[0]; g_MAX11410_device.v_pga = SPI_AIN_Cfg_v_pga_ch[0]; g_MAX11410_device.v_ctrl = SPI_AIN_Cfg_v_ctrl_ch[0]; #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // ---------- CUSTOMIZED from MAX11410_Hello ---------- #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // CODE GENERATOR: example code: has no member function REF // CODE GENERATOR: example code for ADC: repeat-forever convert and print conversion result, one record per line // CODE GENERATOR: ResolutionBits = 24 // CODE GENERATOR: FScode = 0xffffff // CODE GENERATOR: NumChannels = 10 // CODE GENERATOR: banner before DataLogHelloCppCodeList while(1) #if defined(SPI_ADC_DeviceName) // SPI connected ADC cmdLine.serial().printf("v_filter = 0x%2.2x\r\n", g_MAX11410_device.v_filter); cmdLine.serial().printf("v_pga = 0x%2.2x\r\n", g_MAX11410_device.v_pga); cmdLine.serial().printf("v_ctrl = 0x%2.2x\r\n", g_MAX11410_device.v_ctrl); #endif // defined(SPI_ADC_DeviceName) // SPI connected ADC // column header banner for csv data columns Datalogger_Need_PrintHeader = true; #if USE_LEDS #if defined(TARGET_MAX32630) led1 = LED_ON; led2 = LED_OFF; led3 = LED_OFF; // diagnostic rbg led RED ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_ON; led3 = LED_OFF; // diagnostic rbg led GREEN ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_OFF; led3 = LED_ON; // diagnostic rbg led BLUE ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_ON; led2 = LED_ON; led3 = LED_ON; // diagnostic rbg led RED+GREEN+BLUE=WHITE ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_ON; led3 = LED_ON; // diagnostic rbg led GREEN+BLUE=CYAN ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_ON; led2 = LED_OFF; led3 = LED_ON; // diagnostic rbg led RED+BLUE=MAGENTA ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_ON; led2 = LED_ON; led3 = LED_OFF; // diagnostic rbg led RED+GREEN=YELLOW ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_OFF; led3 = LED_OFF; // diagnostic rbg led BLACK ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); #elif defined(TARGET_MAX32625MBED) || defined(TARGET_MAX32625PICO) || defined(TARGET_MAX40108DEMOP2U9) led1 = LED_ON; led2 = LED_OFF; led3 = LED_OFF; // diagnostic rbg led RED ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_ON; led3 = LED_OFF; // diagnostic rbg led GREEN ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_OFF; led3 = LED_ON; // diagnostic rbg led BLUE ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_ON; led2 = LED_ON; led3 = LED_ON; // diagnostic rbg led RED+GREEN+BLUE=WHITE ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_ON; led3 = LED_ON; // diagnostic rbg led GREEN+BLUE=CYAN ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_ON; led2 = LED_OFF; led3 = LED_ON; // diagnostic rbg led RED+BLUE=MAGENTA ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_ON; led2 = LED_ON; led3 = LED_OFF; // diagnostic rbg led RED+GREEN=YELLOW ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); led1 = LED_OFF; led2 = LED_OFF; led3 = LED_OFF; // diagnostic rbg led BLACK ThisThread::sleep_for(125); // [since mbed-os-5.10] vs Thread::wait(125); #else // not defined(TARGET_LPC1768 etc.) led1 = LED_ON; led2 = LED_OFF; led3 = LED_OFF; led4 = LED_OFF; ThisThread::sleep_for(75); // [since mbed-os-5.10] vs Thread::wait(75); //led1 = LED_ON; led2 = LED_ON; ThisThread::sleep_for(75); // [since mbed-os-5.10] vs Thread::wait(75); led1 = LED_OFF; //led2 = LED_ON; led3 = LED_ON; ThisThread::sleep_for(75); // [since mbed-os-5.10] vs Thread::wait(75); led2 = LED_OFF; //led3 = LED_ON; led4 = LED_ON; ThisThread::sleep_for(75); // [since mbed-os-5.10] vs Thread::wait(75); led3 = LED_OFF; led4 = LED_ON; // #endif // target definition #endif if (led1.is_connected()) { led1 = LED_ON; } if (led2.is_connected()) { led2 = LED_ON; } if (led3.is_connected()) { led3 = LED_ON; } while(1) { // this code repeats forever // this code repeats forever #if HAS_BUTTON1_DEMO_INTERRUPT_POLLING // avoid runtime error on button1 press [mbed-os-5.11] // instead of using InterruptIn, use DigitalIn and poll in main while(1) # if HAS_BUTTON1_DEMO_INTERRUPT static int button1_value_prev = 1; static int button1_value_now = 1; button1_value_prev = button1_value_now; button1_value_now = button1.read(); if ((button1_value_prev - button1_value_now) == 1) { // on button1 falling edge (button1 press) onButton1FallingEdge(); } # endif // HAS_BUTTON1_DEMO_INTERRUPT # if HAS_BUTTON2_DEMO_INTERRUPT static int button2_value_prev = 1; static int button2_value_now = 1; button2_value_prev = button2_value_now; button2_value_now = button2.read(); if ((button2_value_prev - button2_value_now) == 1) { // on button2 falling edge (button2 press) onButton2FallingEdge(); } # endif // HAS_BUTTON2_DEMO_INTERRUPT # if HAS_BUTTON3_DEMO_INTERRUPT static int button3_value_prev = 1; static int button3_value_now = 1; button3_value_prev = button3_value_now; button3_value_now = button3.read(); if ((button3_value_prev - button3_value_now) == 1) { // on button3 falling edge (button3 press) onButton3FallingEdge(); } # endif // HAS_BUTTON3_DEMO_INTERRUPT #endif // HAS_BUTTON1_DEMO_INTERRUPT_POLLING #if USE_CMDLINE_MENUS // support CmdLine command menus // TODO support CmdLine command menus (like on Serial_Tester); help and usual boilerplate #if USE_AUX_SERIAL_CMD_FORWARDING // Command forwarding to Auxiliary serial port; // don't accept commands from Auxiliary serial port #else // USE_AUX_SERIAL_CMD_FORWARDING // Accept commands from Auxiliary serial port # if HAS_AUX_SERIAL if (AUXserial.readable()) { cmdLine_AUXserial.append(AUXserial.getc()); } # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL if (DAPLINKserial.readable()) { cmdLine_DAPLINKserial.append(DAPLINKserial.getc()); } # endif // HAS_DAPLINK_SERIAL #endif // USE_AUX_SERIAL_CMD_FORWARDING if (serial.readable()) { int c = serial.getc(); // instead of getc() or fgetc() cmdLine.append(c); // cmdLine.onEOLcommandParser handler implements menus } // if (Serial.available()) #endif // USE_CMDLINE_MENUS support CmdLine command menus #if USE_DATALOGGER_TRIGGER // support Datalog trigger // TODO Datalog trigger if (Datalogger_Trigger == trigger_Halt) { // halt the datalogger; continue accepting commands continue; } if (Datalogger_Trigger == trigger_FreeRun) { // free run as fast as possible } if (Datalogger_Trigger == trigger_Timer) { // timer (configure interval) // TODO: if Datalogger_Trigger == trigger_Timer sleep(g_timer_interval_msec) // sleep(g_timer_interval_msec); // error: too many arguments to function 'void sleep()' wait_ms(g_timer_interval_msec); // sleep during delay? if (g_timer_interval_counter > 0) { g_timer_interval_counter--; continue; } // if time interval not yet reached, continue (continue accepting commands) g_timer_interval_counter = g_timer_interval_count; } if (Datalogger_Trigger == trigger_PlatformDigitalInput) { // platform digital input (configure digital input pin reference) // TODO: read selected input pin, test value // TODO: if no match, continue (continue accepting commands) } if (Datalogger_Trigger == trigger_SPIDeviceRegRead) { // SPI device register read (configure regaddr, mask value, match value) // TODO: SPI transfer regAddr // TODO: apply dataMask, compare with testValue // TODO: if no match, continue (continue accepting commands) } #endif // USE_DATALOGGER_TRIGGER support Datalog trigger // column header banner for csv data columns if (Datalogger_Need_PrintHeader) { if (Datalogger_enable_serial) { Datalogger_PrintHeader(cmdLine); } # if HAS_AUX_SERIAL if (Datalogger_enable_AUXserial) { Datalogger_PrintHeader(cmdLine_AUXserial); } # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL if (Datalogger_enable_DAPLINKserial) { Datalogger_PrintHeader(cmdLine_DAPLINKserial); } # endif // HAS_DAPLINK_SERIAL Datalogger_Need_PrintHeader = false; } Datalogger_AcquireRow(); #if USE_DATALOGGER_ActionTable // Datalogger_RunActionTable() supported actions // Datalogger_RunActionTable() between Datalogger_AcquireRow() and Datalogger_PrintRow() Datalogger_RunActionTable(); #endif // USE_DATALOGGER_ActionTable Datalogger_RunActionTable() supported actions // wait(3.0); // CODE GENERATOR: print conversion result // Use Arduino Serial Plotter to view output: Tools | Serial Plotter if (Datalogger_enable_serial) { Datalogger_PrintRow(cmdLine); } # if HAS_AUX_SERIAL if (Datalogger_enable_AUXserial) { Datalogger_PrintRow(cmdLine_AUXserial); } # endif // HAS_AUX_SERIAL # if HAS_DAPLINK_SERIAL if (Datalogger_enable_DAPLINKserial) { Datalogger_PrintRow(cmdLine_DAPLINKserial); } # endif // HAS_DAPLINK_SERIAL } // this code repeats forever } //---------- CODE GENERATOR: end DataLogHelloCppCodeList