ss

Dependencies:   mbed

Fork of Assignment2 by judo ~

PaceHeart.cpp

Committer:
Judorunner
Date:
2016-11-14
Revision:
6:9b8fee13549c
Parent:
5:45d58f8a5912
Child:
7:6dc42e1a2a81

File content as of revision 6:9b8fee13549c:

#include "PaceHeart.h"
#include "mbed.h"
#include "Hardware.h"
using namespace std;



PaceHeart::PaceHeart(){
    
    p_pacingState = 0;
    p_pacingMode = 0;
    int p_hysteresis = 0;
    int p_hysteresisInterval = 300;
    double p_lowrateInterval = 1000.0;
    double p_uprateInterval = 500.0; //upper rate limit
//Ventricle
    double p_vPaceAmp = 3500.0;
    double p_vPaceWidth = 0.4;
    int p_VRP = 320;
//Atrium (change defaults)
    double p_aPaceAmp = 3500.0;
    double p_aPaceWidth = 0.4;
    int p_ARP = 320;
}

PaceHeart::PaceHeart(int mode){
    p_pacingState = 0;
    p_pacingMode = mode;
    double p_lowrateInterval = 1000.0; //30-50->5 50-90->1 90-175->5 ppm
    double p_uprateInterval = 2000.0; //upper rate limit 50-175->5 ppm
    double p_maxSensorRate = 2000.0; //50-175->5 ppm
    
//Ventricle
    double p_vPaceAmp = 3750.0; //3750 can change to 0, 1250, 2500, 3750, 5000
    double p_vPaceWidth = 0.4; //0.05->no change 0.1-1.9 0.1

    int p_activityThresh = 4; //1-7 print out string with level ie. Med
    int p_reactionTime = 30; //10-50->10 seconds
    int p_responseFactor = 8; //1-16->1
    int p_recoveryTime = 5; //2-16->1 minutes
}
int PaceHeart::get_p_pacingState()
{
    return p_pacingState;
}
int PaceHeart::get_p_pacingMode()
{
    return p_pacingMode;
}
int PaceHeart::get_p_hysteresis()
{
    return p_hysteresis;
}
void PaceHeart::set_p_hysteresis(int x)
{
    p_hysteresis = x;
    return;
}
int PaceHeart::get_p_hysteresisInterval()
{
    return p_hysteresisInterval;
}
void PaceHeart::set_p_hysteresisInterval(int x)
{
    p_hysteresisInterval = x;
    return;
}
double PaceHeart::get_p_lowrateInterval()
{
    return p_lowrateInterval;
}
void PaceHeart::set_p_lowrateInterval(double x)
{
    if (p_pacingmode == 1) {
            
        if (x >= 500 && x < 833.33) {
            p_lowrateInterval = x+83.33; 
        }
        else if (x >= 833.33 && x < 1000) {
            p_lowrateInterval = x+16.67; 
        }
        else if (x >= 1000 && x < 1500) {
            p_lowrateInterval = x-16.67; 
        }
        else if (x >= 1500 && x < 2916.67) {
            p_lowrateInterval = x-83.33; 
        }
    }
    else {
        p_lowrateInterval = x;
    }
    return;
}
double PaceHeart::get_p_uprateInterval()
{
    return p_uprateInterval;
}
void PaceHeart::set_p_uprateInterval(double x)
{
    if (p_pacingmode == 1) {
        if (x >= 833.33 && x < 2000) {
            p_uprateInterval = x+83.33;
        }
        else if (x >= 2000 && x <= 2916.67) {
            p_uprateInterval = x-83.33;
        }
    }
    else {
        p_uprateInterval = x;
    }
    return;
}
double PaceHeart::get_p_maxSensorRate(){
    return 
}
void PaceHeart::set_p_maxSensorRate(double x)
{
    if (p_pacingmode == 1) {
        if (x >= 833.33 && x < 2000) {
            p_maxSensorRate = x+83.33;
        }
        else if (x >= 2000 && x <= 2916.67) {
            p_maxSensorRate = x-83.33;
        }
    }
    else {
        p_maxSensorRate = x;
    }
    return;
}
//Ventricle
double PaceHeart::get_p_vPaceAmp()
{
    return p_vPaceAmp;
}
void PaceHeart::set_p_vPaceAmp(double x)
{
    p_vPaceAmp = x;
    return;
}
 
double PaceHeart::get_p_vPaceWidth()
{
    return p_vPaceWidth;
}
void PaceHeart::set_p_vPaceWidth(double x)
{
    p_vPaceWidth = x;
    return;
}
 
int PaceHeart::get_p_VRP()
{
    return p_VRP;
}
void PaceHeart::set_p_VRP(int x)
{
    p_VRP = x;
    return;
}
//Atrium
double PaceHeart::get_p_aPaceAmp()
{
    return p_aPaceAmp;
}
void PaceHeart::set_p_aPaceAmp(double x)
{
    p_aPaceAmp = x;
    return;
}
 
double PaceHeart::get_p_aPaceWidth()
{
    return p_aPaceWidth;
}
void PaceHeart::set_p_aPaceWidth(double x)
{
    p_aPaceWidth = x;
    return;
}
 
int PaceHeart::get_p_ARP()
{
    return p_ARP;
}
void PaceHeart::set_p_ARP(int x)
{
    p_ARP = x;
    return;
}



void PaceHeart::pace_A(double amp, double wid,int pin)
{   
    output_pin_A = !output_pin_A ;
    wait(1);
   
    
   
    return;
}

void PaceHeart::pace_A()
{
    double amplitude = get_p_aPaceAmp();
    double width = get_p_aPaceWidth();
    // int output_pin = hardware.get_output_pin; //include the hardware module
    pace_A(amplitude,width,output_pin_A);
    return;
}


void PaceHeart::pace_V(double amp, double wid, int pin)
{
    output_pin_V = !output_pin_V ;
    wait(2);
   
    return;
}

void PaceHeart::pace_V()
{
    double amplitude = get_p_vPaceAmp();
    double width = get_p_vPaceWidth();
    // int output_pin = hardware.get_output_pin; //include the hardware module
    pace_V(amplitude,width,output_pin_V);
    return;
}


void PaceHeart::pace(int mode)
{
    switch(mode){
    case 1:  //AOO
           pace_A();
    case 2:  //VOO
           pace_V();
    }
    return;
}

void PaceHeart::pace()
{
    int mode = get_p_pacingMode();
    pace(mode);
    return;
}
int PaceHeart::get_p_activityThresh()
{
    return p_activityThresh;
}
int PaceHeart::get_p_reactionTime()
{
    return p_reactionTime;
}
int PaceHeart::get_p_responseFactor()
{
    return p_responseFactor;
}
int PaceHeart::get_p_recoveryTime()
{
    return p_recoveryTime;
}
void PaceHeart::set_p_activityThresh(int x)
{
    p_activityThresh=x;
    return;
}
void PaceHeart::set_p_reactionTime(int x)
{
    p_reactionTime=x;
    return;
}
void PaceHeart::set_p_responseFactor(int x)
{
    p_responseFactor=x;
    return;
}
void PaceHeart::set_p_recoveryTime(int x)
{
    p_recoveryTime=x;
    return;
}