p kj
/
LPC824-BalanceCar
Microduino
Fork of BalanceCar by
helper_3dmath.h@0:a4d8f5b3c546, 2016-06-04 (annotated)
- Committer:
- lixianyu
- Date:
- Sat Jun 04 03:16:52 2016 +0000
- Revision:
- 0:a4d8f5b3c546
- Child:
- 1:620da20b810b
Pass compile!!
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
lixianyu | 0:a4d8f5b3c546 | 1 | // I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class, 3D math helper |
lixianyu | 0:a4d8f5b3c546 | 2 | // 6/5/2012 by Jeff Rowberg <jeff@rowberg.net> |
lixianyu | 0:a4d8f5b3c546 | 3 | // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib |
lixianyu | 0:a4d8f5b3c546 | 4 | // |
lixianyu | 0:a4d8f5b3c546 | 5 | // Changelog: |
lixianyu | 0:a4d8f5b3c546 | 6 | // 2012-06-05 - add 3D math helper file to DMP6 example sketch |
lixianyu | 0:a4d8f5b3c546 | 7 | |
lixianyu | 0:a4d8f5b3c546 | 8 | /* ============================================ |
lixianyu | 0:a4d8f5b3c546 | 9 | I2Cdev device library code is placed under the MIT license |
lixianyu | 0:a4d8f5b3c546 | 10 | Copyright (c) 2012 Jeff Rowberg |
lixianyu | 0:a4d8f5b3c546 | 11 | |
lixianyu | 0:a4d8f5b3c546 | 12 | Permission is hereby granted, free of charge, to any person obtaining a copy |
lixianyu | 0:a4d8f5b3c546 | 13 | of this software and associated documentation files (the "Software"), to deal |
lixianyu | 0:a4d8f5b3c546 | 14 | in the Software without restriction, including without limitation the rights |
lixianyu | 0:a4d8f5b3c546 | 15 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
lixianyu | 0:a4d8f5b3c546 | 16 | copies of the Software, and to permit persons to whom the Software is |
lixianyu | 0:a4d8f5b3c546 | 17 | furnished to do so, subject to the following conditions: |
lixianyu | 0:a4d8f5b3c546 | 18 | |
lixianyu | 0:a4d8f5b3c546 | 19 | The above copyright notice and this permission notice shall be included in |
lixianyu | 0:a4d8f5b3c546 | 20 | all copies or substantial portions of the Software. |
lixianyu | 0:a4d8f5b3c546 | 21 | |
lixianyu | 0:a4d8f5b3c546 | 22 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
lixianyu | 0:a4d8f5b3c546 | 23 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
lixianyu | 0:a4d8f5b3c546 | 24 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
lixianyu | 0:a4d8f5b3c546 | 25 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
lixianyu | 0:a4d8f5b3c546 | 26 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
lixianyu | 0:a4d8f5b3c546 | 27 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
lixianyu | 0:a4d8f5b3c546 | 28 | THE SOFTWARE. |
lixianyu | 0:a4d8f5b3c546 | 29 | =============================================== |
lixianyu | 0:a4d8f5b3c546 | 30 | */ |
lixianyu | 0:a4d8f5b3c546 | 31 | |
lixianyu | 0:a4d8f5b3c546 | 32 | #ifndef _HELPER_3DMATH_H_ |
lixianyu | 0:a4d8f5b3c546 | 33 | #define _HELPER_3DMATH_H_ |
lixianyu | 0:a4d8f5b3c546 | 34 | #include <math.h> |
lixianyu | 0:a4d8f5b3c546 | 35 | class Quaternion { |
lixianyu | 0:a4d8f5b3c546 | 36 | public: |
lixianyu | 0:a4d8f5b3c546 | 37 | float w; |
lixianyu | 0:a4d8f5b3c546 | 38 | float x; |
lixianyu | 0:a4d8f5b3c546 | 39 | float y; |
lixianyu | 0:a4d8f5b3c546 | 40 | float z; |
lixianyu | 0:a4d8f5b3c546 | 41 | |
lixianyu | 0:a4d8f5b3c546 | 42 | Quaternion() { |
lixianyu | 0:a4d8f5b3c546 | 43 | w = 1.0f; |
lixianyu | 0:a4d8f5b3c546 | 44 | x = 0.0f; |
lixianyu | 0:a4d8f5b3c546 | 45 | y = 0.0f; |
lixianyu | 0:a4d8f5b3c546 | 46 | z = 0.0f; |
lixianyu | 0:a4d8f5b3c546 | 47 | } |
lixianyu | 0:a4d8f5b3c546 | 48 | |
lixianyu | 0:a4d8f5b3c546 | 49 | Quaternion(float nw, float nx, float ny, float nz) { |
lixianyu | 0:a4d8f5b3c546 | 50 | w = nw; |
lixianyu | 0:a4d8f5b3c546 | 51 | x = nx; |
lixianyu | 0:a4d8f5b3c546 | 52 | y = ny; |
lixianyu | 0:a4d8f5b3c546 | 53 | z = nz; |
lixianyu | 0:a4d8f5b3c546 | 54 | } |
lixianyu | 0:a4d8f5b3c546 | 55 | |
lixianyu | 0:a4d8f5b3c546 | 56 | Quaternion getProduct(Quaternion q) { |
lixianyu | 0:a4d8f5b3c546 | 57 | // Quaternion multiplication is defined by: |
lixianyu | 0:a4d8f5b3c546 | 58 | // (Q1 * Q2).w = (w1w2 - x1x2 - y1y2 - z1z2) |
lixianyu | 0:a4d8f5b3c546 | 59 | // (Q1 * Q2).x = (w1x2 + x1w2 + y1z2 - z1y2) |
lixianyu | 0:a4d8f5b3c546 | 60 | // (Q1 * Q2).y = (w1y2 - x1z2 + y1w2 + z1x2) |
lixianyu | 0:a4d8f5b3c546 | 61 | // (Q1 * Q2).z = (w1z2 + x1y2 - y1x2 + z1w2 |
lixianyu | 0:a4d8f5b3c546 | 62 | return Quaternion( |
lixianyu | 0:a4d8f5b3c546 | 63 | w*q.w - x*q.x - y*q.y - z*q.z, // new w |
lixianyu | 0:a4d8f5b3c546 | 64 | w*q.x + x*q.w + y*q.z - z*q.y, // new x |
lixianyu | 0:a4d8f5b3c546 | 65 | w*q.y - x*q.z + y*q.w + z*q.x, // new y |
lixianyu | 0:a4d8f5b3c546 | 66 | w*q.z + x*q.y - y*q.x + z*q.w); // new z |
lixianyu | 0:a4d8f5b3c546 | 67 | } |
lixianyu | 0:a4d8f5b3c546 | 68 | |
lixianyu | 0:a4d8f5b3c546 | 69 | Quaternion getConjugate() { |
lixianyu | 0:a4d8f5b3c546 | 70 | return Quaternion(w, -x, -y, -z); |
lixianyu | 0:a4d8f5b3c546 | 71 | } |
lixianyu | 0:a4d8f5b3c546 | 72 | |
lixianyu | 0:a4d8f5b3c546 | 73 | float getMagnitude() { |
lixianyu | 0:a4d8f5b3c546 | 74 | return sqrt(w*w + x*x + y*y + z*z); |
lixianyu | 0:a4d8f5b3c546 | 75 | } |
lixianyu | 0:a4d8f5b3c546 | 76 | |
lixianyu | 0:a4d8f5b3c546 | 77 | void normalize() { |
lixianyu | 0:a4d8f5b3c546 | 78 | float m = getMagnitude(); |
lixianyu | 0:a4d8f5b3c546 | 79 | w /= m; |
lixianyu | 0:a4d8f5b3c546 | 80 | x /= m; |
lixianyu | 0:a4d8f5b3c546 | 81 | y /= m; |
lixianyu | 0:a4d8f5b3c546 | 82 | z /= m; |
lixianyu | 0:a4d8f5b3c546 | 83 | } |
lixianyu | 0:a4d8f5b3c546 | 84 | |
lixianyu | 0:a4d8f5b3c546 | 85 | Quaternion getNormalized() { |
lixianyu | 0:a4d8f5b3c546 | 86 | Quaternion r(w, x, y, z); |
lixianyu | 0:a4d8f5b3c546 | 87 | r.normalize(); |
lixianyu | 0:a4d8f5b3c546 | 88 | return r; |
lixianyu | 0:a4d8f5b3c546 | 89 | } |
lixianyu | 0:a4d8f5b3c546 | 90 | }; |
lixianyu | 0:a4d8f5b3c546 | 91 | |
lixianyu | 0:a4d8f5b3c546 | 92 | class VectorInt16 { |
lixianyu | 0:a4d8f5b3c546 | 93 | public: |
lixianyu | 0:a4d8f5b3c546 | 94 | int16_t x; |
lixianyu | 0:a4d8f5b3c546 | 95 | int16_t y; |
lixianyu | 0:a4d8f5b3c546 | 96 | int16_t z; |
lixianyu | 0:a4d8f5b3c546 | 97 | |
lixianyu | 0:a4d8f5b3c546 | 98 | VectorInt16() { |
lixianyu | 0:a4d8f5b3c546 | 99 | x = 0; |
lixianyu | 0:a4d8f5b3c546 | 100 | y = 0; |
lixianyu | 0:a4d8f5b3c546 | 101 | z = 0; |
lixianyu | 0:a4d8f5b3c546 | 102 | } |
lixianyu | 0:a4d8f5b3c546 | 103 | |
lixianyu | 0:a4d8f5b3c546 | 104 | VectorInt16(int16_t nx, int16_t ny, int16_t nz) { |
lixianyu | 0:a4d8f5b3c546 | 105 | x = nx; |
lixianyu | 0:a4d8f5b3c546 | 106 | y = ny; |
lixianyu | 0:a4d8f5b3c546 | 107 | z = nz; |
lixianyu | 0:a4d8f5b3c546 | 108 | } |
lixianyu | 0:a4d8f5b3c546 | 109 | |
lixianyu | 0:a4d8f5b3c546 | 110 | float getMagnitude() { |
lixianyu | 0:a4d8f5b3c546 | 111 | //return sqrt((x*x) + (y*y) + (z*z)); |
lixianyu | 0:a4d8f5b3c546 | 112 | return 0; |
lixianyu | 0:a4d8f5b3c546 | 113 | } |
lixianyu | 0:a4d8f5b3c546 | 114 | |
lixianyu | 0:a4d8f5b3c546 | 115 | void normalize() { |
lixianyu | 0:a4d8f5b3c546 | 116 | float m = getMagnitude(); |
lixianyu | 0:a4d8f5b3c546 | 117 | x /= m; |
lixianyu | 0:a4d8f5b3c546 | 118 | y /= m; |
lixianyu | 0:a4d8f5b3c546 | 119 | z /= m; |
lixianyu | 0:a4d8f5b3c546 | 120 | } |
lixianyu | 0:a4d8f5b3c546 | 121 | |
lixianyu | 0:a4d8f5b3c546 | 122 | VectorInt16 getNormalized() { |
lixianyu | 0:a4d8f5b3c546 | 123 | VectorInt16 r(x, y, z); |
lixianyu | 0:a4d8f5b3c546 | 124 | r.normalize(); |
lixianyu | 0:a4d8f5b3c546 | 125 | return r; |
lixianyu | 0:a4d8f5b3c546 | 126 | } |
lixianyu | 0:a4d8f5b3c546 | 127 | |
lixianyu | 0:a4d8f5b3c546 | 128 | void rotate(Quaternion *q) { |
lixianyu | 0:a4d8f5b3c546 | 129 | // http://www.cprogramming.com/tutorial/3d/quaternions.html |
lixianyu | 0:a4d8f5b3c546 | 130 | // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm |
lixianyu | 0:a4d8f5b3c546 | 131 | // http://content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation |
lixianyu | 0:a4d8f5b3c546 | 132 | // ^ or: http://webcache.googleusercontent.com/search?q=cache:xgJAp3bDNhQJ:content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation&hl=en&gl=us&strip=1 |
lixianyu | 0:a4d8f5b3c546 | 133 | |
lixianyu | 0:a4d8f5b3c546 | 134 | // P_out = q * P_in * conj(q) |
lixianyu | 0:a4d8f5b3c546 | 135 | // - P_out is the output vector |
lixianyu | 0:a4d8f5b3c546 | 136 | // - q is the orientation quaternion |
lixianyu | 0:a4d8f5b3c546 | 137 | // - P_in is the input vector (a*aReal) |
lixianyu | 0:a4d8f5b3c546 | 138 | // - conj(q) is the conjugate of the orientation quaternion (q=[w,x,y,z], q*=[w,-x,-y,-z]) |
lixianyu | 0:a4d8f5b3c546 | 139 | Quaternion p(0, x, y, z); |
lixianyu | 0:a4d8f5b3c546 | 140 | |
lixianyu | 0:a4d8f5b3c546 | 141 | // quaternion multiplication: q * p, stored back in p |
lixianyu | 0:a4d8f5b3c546 | 142 | p = q -> getProduct(p); |
lixianyu | 0:a4d8f5b3c546 | 143 | |
lixianyu | 0:a4d8f5b3c546 | 144 | // quaternion multiplication: p * conj(q), stored back in p |
lixianyu | 0:a4d8f5b3c546 | 145 | p = p.getProduct(q -> getConjugate()); |
lixianyu | 0:a4d8f5b3c546 | 146 | |
lixianyu | 0:a4d8f5b3c546 | 147 | // p quaternion is now [0, x', y', z'] |
lixianyu | 0:a4d8f5b3c546 | 148 | x = p.x; |
lixianyu | 0:a4d8f5b3c546 | 149 | y = p.y; |
lixianyu | 0:a4d8f5b3c546 | 150 | z = p.z; |
lixianyu | 0:a4d8f5b3c546 | 151 | } |
lixianyu | 0:a4d8f5b3c546 | 152 | |
lixianyu | 0:a4d8f5b3c546 | 153 | VectorInt16 getRotated(Quaternion *q) { |
lixianyu | 0:a4d8f5b3c546 | 154 | VectorInt16 r(x, y, z); |
lixianyu | 0:a4d8f5b3c546 | 155 | r.rotate(q); |
lixianyu | 0:a4d8f5b3c546 | 156 | return r; |
lixianyu | 0:a4d8f5b3c546 | 157 | } |
lixianyu | 0:a4d8f5b3c546 | 158 | }; |
lixianyu | 0:a4d8f5b3c546 | 159 | |
lixianyu | 0:a4d8f5b3c546 | 160 | class VectorFloat { |
lixianyu | 0:a4d8f5b3c546 | 161 | public: |
lixianyu | 0:a4d8f5b3c546 | 162 | float x; |
lixianyu | 0:a4d8f5b3c546 | 163 | float y; |
lixianyu | 0:a4d8f5b3c546 | 164 | float z; |
lixianyu | 0:a4d8f5b3c546 | 165 | |
lixianyu | 0:a4d8f5b3c546 | 166 | VectorFloat() { |
lixianyu | 0:a4d8f5b3c546 | 167 | x = 0; |
lixianyu | 0:a4d8f5b3c546 | 168 | y = 0; |
lixianyu | 0:a4d8f5b3c546 | 169 | z = 0; |
lixianyu | 0:a4d8f5b3c546 | 170 | } |
lixianyu | 0:a4d8f5b3c546 | 171 | |
lixianyu | 0:a4d8f5b3c546 | 172 | VectorFloat(float nx, float ny, float nz) { |
lixianyu | 0:a4d8f5b3c546 | 173 | x = nx; |
lixianyu | 0:a4d8f5b3c546 | 174 | y = ny; |
lixianyu | 0:a4d8f5b3c546 | 175 | z = nz; |
lixianyu | 0:a4d8f5b3c546 | 176 | } |
lixianyu | 0:a4d8f5b3c546 | 177 | |
lixianyu | 0:a4d8f5b3c546 | 178 | float getMagnitude() { |
lixianyu | 0:a4d8f5b3c546 | 179 | return sqrt(x*x + y*y + z*z); |
lixianyu | 0:a4d8f5b3c546 | 180 | } |
lixianyu | 0:a4d8f5b3c546 | 181 | |
lixianyu | 0:a4d8f5b3c546 | 182 | void normalize() { |
lixianyu | 0:a4d8f5b3c546 | 183 | float m = getMagnitude(); |
lixianyu | 0:a4d8f5b3c546 | 184 | x /= m; |
lixianyu | 0:a4d8f5b3c546 | 185 | y /= m; |
lixianyu | 0:a4d8f5b3c546 | 186 | z /= m; |
lixianyu | 0:a4d8f5b3c546 | 187 | } |
lixianyu | 0:a4d8f5b3c546 | 188 | |
lixianyu | 0:a4d8f5b3c546 | 189 | VectorFloat getNormalized() { |
lixianyu | 0:a4d8f5b3c546 | 190 | VectorFloat r(x, y, z); |
lixianyu | 0:a4d8f5b3c546 | 191 | r.normalize(); |
lixianyu | 0:a4d8f5b3c546 | 192 | return r; |
lixianyu | 0:a4d8f5b3c546 | 193 | } |
lixianyu | 0:a4d8f5b3c546 | 194 | |
lixianyu | 0:a4d8f5b3c546 | 195 | void rotate(Quaternion *q) { |
lixianyu | 0:a4d8f5b3c546 | 196 | Quaternion p(0, x, y, z); |
lixianyu | 0:a4d8f5b3c546 | 197 | |
lixianyu | 0:a4d8f5b3c546 | 198 | // quaternion multiplication: q * p, stored back in p |
lixianyu | 0:a4d8f5b3c546 | 199 | p = q -> getProduct(p); |
lixianyu | 0:a4d8f5b3c546 | 200 | |
lixianyu | 0:a4d8f5b3c546 | 201 | // quaternion multiplication: p * conj(q), stored back in p |
lixianyu | 0:a4d8f5b3c546 | 202 | p = p.getProduct(q -> getConjugate()); |
lixianyu | 0:a4d8f5b3c546 | 203 | |
lixianyu | 0:a4d8f5b3c546 | 204 | // p quaternion is now [0, x', y', z'] |
lixianyu | 0:a4d8f5b3c546 | 205 | x = p.x; |
lixianyu | 0:a4d8f5b3c546 | 206 | y = p.y; |
lixianyu | 0:a4d8f5b3c546 | 207 | z = p.z; |
lixianyu | 0:a4d8f5b3c546 | 208 | } |
lixianyu | 0:a4d8f5b3c546 | 209 | |
lixianyu | 0:a4d8f5b3c546 | 210 | VectorFloat getRotated(Quaternion *q) { |
lixianyu | 0:a4d8f5b3c546 | 211 | VectorFloat r(x, y, z); |
lixianyu | 0:a4d8f5b3c546 | 212 | r.rotate(q); |
lixianyu | 0:a4d8f5b3c546 | 213 | return r; |
lixianyu | 0:a4d8f5b3c546 | 214 | } |
lixianyu | 0:a4d8f5b3c546 | 215 | }; |
lixianyu | 0:a4d8f5b3c546 | 216 | |
lixianyu | 0:a4d8f5b3c546 | 217 | #endif /* _HELPER_3DMATH_H_ */ |