USBDevice library with Blue Pill STM32F103C8T6 board support.
Dependents: STM32F103C8T6_USBSerial_Demo lightweight-weather-station
Fork of USBDevice by
targets/TARGET_NUVOTON/TARGET_NUC472/USBHAL_NUC472.cpp
- Committer:
- Konstantin Kochin
- Date:
- 2017-08-04
- Revision:
- 73:da92595e61da
- Parent:
- 71:53949e6131f6
File content as of revision 73:da92595e61da:
/* mbed Microcontroller Library * Copyright (c) 2015-2016 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(TARGET_NUMAKER_PFM_NUC472) #include "USBHAL.h" #include "NUC472_442.h" #include "pinmap.h" /** * EP: mbed USBD defined endpoint, e.g. EP0OUT/IN, EP1OUT/IN, EP2OUT/IN. * EPX: BSP defined endpoint, e.g. CEP, EPA, EPB, EPC. */ USBHAL * USBHAL::instance; static volatile uint32_t s_ep_compl = 0; static volatile uint32_t s_ep_buf_ind = 0; static volatile uint8_t s_usb_addr = 0; static volatile S_USBD_CMD_T s_setup; static volatile uint16_t s_ctrlin_packetsize; static uint8_t *g_usbd_CtrlInPointer = 0; static uint32_t g_usbd_CtrlMaxPktSize = 64; static uint32_t g_usbd_ShortPkt = 0; static uint32_t gEpRead = 0; static uint32_t gEpReadCnt = 0; void USBD_CtrlInput(void) { int volatile i; uint32_t volatile count; // Process remained data if (g_usbd_CtrlInSize >= g_usbd_CtrlMaxPktSize) { // Data size > MXPLD for (i=0; i<(g_usbd_CtrlMaxPktSize >> 2); i++, g_usbd_CtrlInPointer+=4) USBD->CEPDAT = *(uint32_t *)g_usbd_CtrlInPointer; USBD_START_CEP_IN(g_usbd_CtrlMaxPktSize); g_usbd_CtrlInSize -= g_usbd_CtrlMaxPktSize; } else { // Data size <= MXPLD for (i=0; i<(g_usbd_CtrlInSize >> 2); i++, g_usbd_CtrlInPointer+=4) USBD->CEPDAT = *(uint32_t *)g_usbd_CtrlInPointer; count = g_usbd_CtrlInSize % 4; for (i=0; i<count; i++) USBD->CEPDAT_BYTE = *(uint8_t *)(g_usbd_CtrlInPointer + i); USBD_START_CEP_IN(g_usbd_CtrlInSize); g_usbd_CtrlInPointer = 0; g_usbd_CtrlInSize = 0; } } USBHAL::USBHAL(void) { SYS_UnlockReg(); s_ep_buf_ind = 0; memset(epCallback, 0x00, sizeof (epCallback)); epCallback[0] = &USBHAL::EP1_OUT_callback; epCallback[1] = &USBHAL::EP2_IN_callback; epCallback[2] = &USBHAL::EP3_OUT_callback; epCallback[3] = &USBHAL::EP4_IN_callback; epCallback[4] = &USBHAL::EP5_OUT_callback; epCallback[5] = &USBHAL::EP6_IN_callback; epCallback[6] = &USBHAL::EP7_OUT_callback; epCallback[7] = &USBHAL::EP8_IN_callback; epCallback[8] = &USBHAL::EP9_OUT_callback; epCallback[9] = &USBHAL::EP10_IN_callback; epCallback[10] = &USBHAL::EP11_OUT_callback; epCallback[11] = &USBHAL::EP12_IN_callback; instance = this; /* Enable USBD module clock */ CLK_EnableModuleClock(USBD_MODULE); /* Enable USB PHY's LDO33. Run as USB device. */ SYS->USBPHY = SYS_USBPHY_USBROLE_OTG_V33_EN | SYS_USBPHY_USBROLE_STD_USBD; /* Enable USB PHY and wait for it ready */ USBD_ENABLE_PHY(); while (1) { USBD->EPAMPS = 0x20; if (USBD->EPAMPS == 0x20) break; } /* Force to full-speed */ USBD->OPER = 0;//USBD_OPER_HISPDEN_Msk; /* Set SE0 (disconnect) */ USBD_SET_SE0(); NVIC_SetVector(USBD_IRQn, (uint32_t) &_usbisr); NVIC_EnableIRQ(USBD_IRQn); } USBHAL::~USBHAL(void) { NVIC_DisableIRQ(USBD_IRQn); USBD_SET_SE0(); USBD_DISABLE_PHY(); } void USBHAL::connect(void) { USBD_ResetDMA(); USBD_SET_ADDR(0); /** * Control Transfer Packet Size Constraints * low-speed: 8 * full-speed: 8, 16, 32, 64 * high-speed: 64 */ /* Control endpoint */ USBD_SetEpBufAddr(CEP, s_ep_buf_ind, MAX_PACKET_SIZE_EP0); s_ep_buf_ind = MAX_PACKET_SIZE_EP0; /* Enable USB/CEP interrupt */ USBD_ENABLE_USB_INT(USBD_GINTEN_USBIE_Msk | USBD_GINTEN_CEPIE_Msk); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_SETUPPKIEN_Msk|USBD_CEPINTEN_STSDONEIEN_Msk); /* Enable BUS interrupt */ USBD_ENABLE_BUS_INT( USBD_BUSINTEN_DMADONEIEN_Msk | USBD_BUSINTEN_RESUMEIEN_Msk | USBD_BUSINTEN_RSTIEN_Msk | USBD_BUSINTEN_VBUSDETIEN_Msk | USBD_BUSINTEN_SOFIEN_Msk ); /* Clear SE0 (connect) */ USBD_CLR_SE0(); } void USBHAL::disconnect(void) { /* Set SE0 (disconnect) */ USBD_SET_SE0(); } void USBHAL::configureDevice(void) { /** * In USBDevice.cpp > USBDevice::requestSetConfiguration, configureDevice() is called after realiseEndpoint() (in USBCallback_setConfiguration()). * So we have the following USB buffer management policy: * 1. Allocate for CEP on connect(). * 2. Allocate for EPX in realiseEndpoint(). * 3. Deallocate all except for CEP in unconfigureDevice(). */ } void USBHAL::unconfigureDevice(void) { s_ep_buf_ind = MAX_PACKET_SIZE_EP0; } void USBHAL::setAddress(uint8_t address) { // NOTE: Delay address setting; otherwise, USB controller won't ack. s_usb_addr = address; } void USBHAL::remoteWakeup(void) { USBD->OPER |= USBD_OPER_RESUMEEN_Msk; } bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) { uint32_t ep_type; uint32_t ep_hw_index = NU_EP2EPH(endpoint); USBD_SetEpBufAddr(ep_hw_index, s_ep_buf_ind, maxPacket); s_ep_buf_ind += maxPacket; USBD_SET_MAX_PAYLOAD(ep_hw_index, maxPacket); switch (NU_EP2EPL(endpoint)) { case 1: case 2: ep_type = USB_EP_CFG_TYPE_INT; break; case 3: case 4: ep_type = USB_EP_CFG_TYPE_ISO; break; default: ep_type = USB_EP_CFG_TYPE_BULK; } uint32_t ep_dir = (NU_EP_DIR(endpoint) == NU_EP_DIR_IN) ? USB_EP_CFG_DIR_IN : USB_EP_CFG_DIR_OUT; USBD_ConfigEp(ep_hw_index, NU_EP2EPL(endpoint), ep_type, ep_dir); /* Enable USB/EPX interrupt */ // NOTE: Require USBD_GINTEN_EPAIE_Pos, USBD_GINTEN_EPBIE_Pos, ... USBD_GINTEN_EPLIE_Pos to be consecutive. USBD_ENABLE_USB_INT(USBD->GINTEN | USBD_GINTEN_USBIE_Msk | USBD_GINTEN_CEPIE_Msk | 1 << (ep_hw_index + USBD_GINTEN_EPAIE_Pos)); // Added USB/EPX interrupt if (ep_dir == 0) USBD_ENABLE_EP_INT(ep_hw_index, USBD_EPINTEN_RXPKIEN_Msk); else USBD_ENABLE_EP_INT(ep_hw_index, USBD_EPINTEN_TXPKIEN_Msk); return true; } void USBHAL::EP0setup(uint8_t *buffer) { uint32_t sz; endpointReadResult(EP0OUT, buffer, &sz); } void USBHAL::EP0read(void) { if (s_setup.wLength && ! (s_setup.bmRequestType & 0x80)) { // Control OUT USBD_ENABLE_CEP_INT(USBD_CEPINTEN_SETUPPKIEN_Msk | USBD_CEPINTEN_RXPKIEN_Msk); } else { // Status stage USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_STSDONEIF_Msk); USBD_SET_CEP_STATE(USB_CEPCTL_NAKCLR); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_STSDONEIEN_Msk); } } void USBHAL::EP0readStage(void) { // N/A } uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) { uint32_t i; uint32_t ceprxcnt = USBD->CEPRXCNT; for (i = 0; i < ceprxcnt; i ++) *buffer ++ = USBD->CEPDAT_BYTE; return ceprxcnt; } void USBHAL::EP0write(uint8_t *buffer, uint32_t size) { if (buffer && size) { g_usbd_CtrlInPointer = buffer; g_usbd_CtrlInSize = size; USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_INTKIF_Msk); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_INTKIEN_Msk); } else { /* Status stage */ s_ctrlin_packetsize = 0; USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_STSDONEIF_Msk); USBD_SET_CEP_STATE(USB_CEPCTL_NAKCLR); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_STSDONEIEN_Msk); } } void USBHAL::EP0getWriteResult(void) { // N/A } void USBHAL::EP0stall(void) { stallEndpoint(EP0OUT); } EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) { return EP_PENDING; } EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) //spcheng { if (endpoint == EP0OUT) { if (buffer) { *((uint16_t *) (buffer + 0)) = (uint16_t) USBD->SETUP1_0; *((uint16_t *) (buffer + 2)) = (uint16_t) USBD->SETUP3_2; *((uint16_t *) (buffer + 4)) = (uint16_t) USBD->SETUP5_4; *((uint16_t *) (buffer + 6)) = (uint16_t) USBD->SETUP7_6; } s_setup.bmRequestType = (uint8_t) (USBD->SETUP1_0 & 0xff); s_setup.bRequest = (int8_t) (USBD->SETUP1_0 >> 8) & 0xff; s_setup.wValue = (uint16_t) USBD->SETUP3_2; s_setup.wIndex = (uint16_t) USBD->SETUP5_4; s_setup.wLength = (uint16_t) USBD->SETUP7_6; } else { if (!(s_ep_compl & (1 << NU_EP2EPL(endpoint)))) { while (1) { if (!(USBD->DMACTL & USBD_DMACTL_DMAEN_Msk)) break; else if (!USBD_IS_ATTACHED()) break; } gEpReadCnt = USBD_GET_EP_DATA_COUNT(NU_EP2EPH(endpoint)); if (gEpReadCnt == 0) { *bytesRead = 0; return EP_COMPLETED; } s_ep_compl |= (1 << NU_EP2EPL(endpoint)); USBD_SET_DMA_LEN(gEpReadCnt); USBD_SET_DMA_ADDR((uint32_t)buffer); USBD_SET_DMA_WRITE(NU_EP2EPL(endpoint)); USBD_ENABLE_DMA(); return EP_PENDING;; } else { if ((USBD->DMACTL & USBD_DMACTL_DMAEN_Msk)) return EP_PENDING;; USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_DMADONEIF_Msk); s_ep_compl &= ~(1 << NU_EP2EPL(endpoint)); *bytesRead = gEpReadCnt; } } return EP_COMPLETED; } uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) { return 0; } EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) { uint32_t ep_logic_index = NU_EP2EPL(endpoint); if (ep_logic_index == 0) return EP_INVALID; else { uint32_t ep_hw_index = NU_EP2EPH(endpoint); uint32_t mps = USBD_GET_EP_MAX_PAYLOAD(ep_hw_index); if (size > mps) { return EP_INVALID; } if (size < mps) g_usbd_ShortPkt = 1; if (!(s_ep_compl & (1 << NU_EP2EPL(endpoint)))) { s_ep_compl |= (1 << ep_logic_index); while (1) { if (!(USBD->DMACTL & USBD_DMACTL_DMAEN_Msk)) break; else if (!USBD_IS_ATTACHED()) break; } USBD_SET_DMA_LEN(size); USBD_SET_DMA_ADDR((uint32_t)data); USBD_SET_DMA_READ(ep_logic_index); USBD_ENABLE_DMA(); } } return EP_PENDING; } EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) { if (!(s_ep_compl & (1 << NU_EP2EPL(endpoint)))) return EP_COMPLETED; else { if ((USBD_GET_EP_DATA_COUNT(NU_EP2EPH(endpoint))) == 0 && !(USBD->DMACTL & USBD_DMACTL_DMAEN_Msk)) { s_ep_compl &= ~(s_ep_compl & (1 << NU_EP2EPL(endpoint))); return EP_COMPLETED; } } return EP_PENDING; } void USBHAL::stallEndpoint(uint8_t endpoint) { uint32_t ep_hw_index = NU_EP2EPH(endpoint); if (ep_hw_index >= NUMBER_OF_PHYSICAL_ENDPOINTS) return; USBD_SetStall(ep_hw_index); } void USBHAL::unstallEndpoint(uint8_t endpoint) { uint32_t ep_hw_index = NU_EP2EPH(endpoint); if (ep_hw_index >= NUMBER_OF_PHYSICAL_ENDPOINTS) return; USBD_ClearStall(ep_hw_index); } bool USBHAL::getEndpointStallState(uint8_t endpoint) { uint32_t ep_hw_index = NU_EP2EPH(endpoint); if (ep_hw_index >= NUMBER_OF_PHYSICAL_ENDPOINTS) return false; return USBD_GetStall(ep_hw_index) ? 1 : 0; } void USBHAL::_usbisr(void) { MBED_ASSERT(instance); instance->usbisr(); } void USBHAL::usbisr(void) { uint32_t gintsts = USBD->GINTSTS & USBD->GINTEN; if (! gintsts) return; if (gintsts & USBD_GINTSTS_USBIF_Msk) { uint32_t busintsts = USBD->BUSINTSTS & USBD->BUSINTEN; /* SOF */ if (busintsts & USBD_BUSINTSTS_SOFIF_Msk) { USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_SOFIF_Msk); // TODO SOF(USBD->FRAMECNT >> 3); } /* Reset */ if (busintsts & USBD_BUSINTSTS_RSTIF_Msk) { connect(); USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_RSTIF_Msk); USBD_CLR_CEP_INT_FLAG(0x1ffc); } /* Resume */ if (busintsts & USBD_BUSINTSTS_RESUMEIF_Msk) { USBD_ENABLE_BUS_INT(USBD_BUSINTEN_RSTIEN_Msk|USBD_BUSINTEN_SUSPENDIEN_Msk | USBD_BUSINTEN_SOFIEN_Msk | USBD_BUSINTEN_SOFIEN_Msk); USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_RESUMEIF_Msk); } /* Suspend */ if (busintsts & USBD_BUSINTSTS_SUSPENDIF_Msk) { USBD_ENABLE_BUS_INT(USBD_BUSINTEN_RSTIEN_Msk | USBD_BUSINTEN_RESUMEIEN_Msk |USBD_BUSINTEN_SOFIEN_Msk); USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_SUSPENDIF_Msk); } /* High-speed */ if (busintsts & USBD_BUSINTSTS_HISPDIF_Msk) { USBD_ENABLE_CEP_INT(USBD_CEPINTEN_SETUPPKIEN_Msk); USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_HISPDIF_Msk); } /* DMA */ if (busintsts & USBD_BUSINTSTS_DMADONEIF_Msk) { if (USBD->DMACTL & 0x10) /* IN - Read */ { if (g_usbd_ShortPkt) { uint32_t ep_hw_index = NU_EPL2EPH((USBD->DMACTL & 0xF)); USBD_SET_EP_SHORT_PACKET(ep_hw_index); g_usbd_ShortPkt = 0; } } USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_DMADONEIF_Msk); } /* PHY clock available */ if (busintsts & USBD_BUSINTSTS_PHYCLKVLDIF_Msk) { USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_PHYCLKVLDIF_Msk); } /* VBUS plug-in */ if (busintsts & USBD_BUSINTSTS_VBUSDETIF_Msk) { if (USBD_IS_ATTACHED()) { // USB plug-in USBD_ENABLE_USB(); } else { // USB unplug-out USBD_DISABLE_USB(); } USBD_CLR_BUS_INT_FLAG(USBD_BUSINTSTS_VBUSDETIF_Msk); } } /* CEP interrupts */ if (gintsts & USBD_GINTSTS_CEPIF_Msk) { uint32_t cepintsts = USBD->CEPINTSTS & USBD->CEPINTEN; /* SETUP token packet */ if (cepintsts & USBD_CEPINTSTS_SETUPTKIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_SETUPTKIF_Msk); return; } /* SETUP transaction */ if (cepintsts & USBD_CEPINTSTS_SETUPPKIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_SETUPPKIF_Msk); EP0setupCallback(); return; } /* OUT token packet */ if (cepintsts & USBD_CEPINTSTS_OUTTKIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_OUTTKIF_Msk); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_STSDONEIEN_Msk); return; } /* IN token packet */ if (cepintsts & USBD_CEPINTSTS_INTKIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_INTKIF_Msk); if (!(cepintsts & USBD_CEPINTSTS_STSDONEIF_Msk)) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_TXPKIF_Msk); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_TXPKIEN_Msk); USBD_CtrlInput(); } else { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_TXPKIF_Msk); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_TXPKIEN_Msk|USBD_CEPINTEN_STSDONEIEN_Msk); } return; } /* PING packet */ if (cepintsts & USBD_CEPINTSTS_PINGIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_PINGIF_Msk); return; } /* IN transaction */ if (cepintsts & USBD_CEPINTSTS_TXPKIF_Msk) { EP0in(); USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_TXPKIF_Msk); return; } /* OUT transaction */ if (cepintsts & USBD_CEPINTSTS_RXPKIF_Msk) { EP0out(); USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_RXPKIF_Msk); return; } /* NAK handshake packet */ if (cepintsts & USBD_CEPINTSTS_NAKIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_NAKIF_Msk); return; } /* STALL handshake packet */ if (cepintsts & USBD_CEPINTSTS_STALLIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_STALLIF_Msk); return; } /* ERR special packet */ if (cepintsts & USBD_CEPINTSTS_ERRIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_ERRIF_Msk); return; } /* Status stage transaction */ if (cepintsts & USBD_CEPINTSTS_STSDONEIF_Msk) { if (s_usb_addr) { USBD_SET_ADDR(s_usb_addr); s_usb_addr = 0; } USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_STSDONEIF_Msk); USBD_ENABLE_CEP_INT(USBD_CEPINTEN_SETUPPKIEN_Msk); return; } /* Buffer Full */ if (cepintsts & USBD_CEPINTSTS_BUFFULLIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_BUFFULLIF_Msk); return; } /* Buffer Empty */ if (cepintsts & USBD_CEPINTSTS_BUFEMPTYIF_Msk) { USBD_CLR_CEP_INT_FLAG(USBD_CEPINTSTS_BUFEMPTYIF_Msk); return; } } /* EPA, EPB, EPC, ... EPL interrupts */ uint32_t gintsts_epx = gintsts >> 2; uint32_t ep_hw_index = 0; while (gintsts_epx) { if (gintsts_epx & 0x01) { uint32_t epxintsts = USBD_GET_EP_INT_FLAG(ep_hw_index) & USBD_GET_EP_INT_EN(ep_hw_index); USBD_CLR_EP_INT_FLAG(ep_hw_index, epxintsts); /* Buffer Full */ if (epxintsts & USBD_EPINTSTS_BUFFULLIF_Msk) { } /* Buffer Empty */ if (epxintsts & USBD_EPINTSTS_BUFEMPTYIF_Msk) { } /* Short Packet Transferred */ if (epxintsts & USBD_EPINTSTS_SHORTTXIF_Msk) { } /* Data Packet Transmitted */ if (epxintsts & USBD_EPINTSTS_TXPKIF_Msk) { s_ep_compl &= ~(1 << (NU_EPH2EPL(ep_hw_index))); if ((instance->*(epCallback[ep_hw_index]))()) { } } /* Data Packet Received */ if (epxintsts & USBD_EPINTSTS_RXPKIF_Msk) { if ((instance->*(epCallback[ep_hw_index]))()) { } } /* OUT token packet */ if (epxintsts & USBD_EPINTSTS_OUTTKIF_Msk) { } /* IN token packet */ if (epxintsts & USBD_EPINTSTS_INTKIF_Msk) { } /* PING packet */ if (epxintsts & USBD_EPINTSTS_PINGIF_Msk) { } /* NAK handshake packet sent to Host */ if (epxintsts & USBD_EPINTSTS_NAKIF_Msk) { } /* STALL handshake packet sent to Host */ if (epxintsts & USBD_EPINTSTS_STALLIF_Msk) { } /* NYET handshake packet sent to Host */ if (epxintsts & USBD_EPINTSTS_NYETIF_Msk) { } /* ERR packet sent to Host */ if (epxintsts & USBD_EPINTSTS_ERRIF_Msk) { } /* Bulk Out Short Packet Received */ if (epxintsts & USBD_EPINTSTS_SHORTRXIF_Msk) { } } gintsts_epx = gintsts_epx >> 1; ep_hw_index++; } } #endif